Normalized defining polynomial
\( x^{27} - 18 x^{25} - 9 x^{24} + 135 x^{23} + 63 x^{22} - 642 x^{21} - 135 x^{20} + 2133 x^{19} + 336 x^{18} - 6156 x^{17} - 270 x^{16} + 15525 x^{15} - 4347 x^{14} - 26667 x^{13} + 16194 x^{12} + 26730 x^{11} - 24912 x^{10} - 13179 x^{9} + 19197 x^{8} + 693 x^{7} - 6957 x^{6} + 1917 x^{5} + 648 x^{4} - 507 x^{3} + 135 x^{2} - 18 x + 1 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[9, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-218729065566982775445089767573496266752\)\(\medspace = -\,2^{18}\cdot 3^{69}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $26.30$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $9$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{53} a^{25} - \frac{19}{53} a^{24} + \frac{10}{53} a^{23} - \frac{20}{53} a^{22} - \frac{6}{53} a^{21} - \frac{22}{53} a^{19} + \frac{18}{53} a^{18} + \frac{1}{53} a^{17} - \frac{6}{53} a^{16} - \frac{15}{53} a^{15} - \frac{1}{53} a^{14} - \frac{25}{53} a^{13} + \frac{12}{53} a^{12} - \frac{20}{53} a^{11} + \frac{17}{53} a^{10} - \frac{5}{53} a^{9} - \frac{3}{53} a^{8} - \frac{9}{53} a^{7} + \frac{15}{53} a^{6} + \frac{13}{53} a^{5} - \frac{9}{53} a^{4} - \frac{15}{53} a^{3} + \frac{8}{53} a^{2} - \frac{10}{53} a - \frac{7}{53}$, $\frac{1}{2852468315136422218788511661435728003394789} a^{26} + \frac{5182105344944835593657101376591251615283}{2852468315136422218788511661435728003394789} a^{25} + \frac{1005998949987806990487381506647986161658786}{2852468315136422218788511661435728003394789} a^{24} + \frac{1073154836042779104984267379506506316695508}{2852468315136422218788511661435728003394789} a^{23} + \frac{1311113602917772319032920710680785354355201}{2852468315136422218788511661435728003394789} a^{22} + \frac{874992971872720327892903302830656790577228}{2852468315136422218788511661435728003394789} a^{21} - \frac{208771419596483366353386530283725941372035}{2852468315136422218788511661435728003394789} a^{20} - \frac{231754735186413685535703360121346974749671}{2852468315136422218788511661435728003394789} a^{19} - \frac{385878629697495464215196868433632692980447}{2852468315136422218788511661435728003394789} a^{18} - \frac{205749050034918326325351193481724360301767}{2852468315136422218788511661435728003394789} a^{17} - \frac{586739861087500565661176488052431487552114}{2852468315136422218788511661435728003394789} a^{16} - \frac{90832374734768949085718066206037114548007}{2852468315136422218788511661435728003394789} a^{15} + \frac{847671336260582855096496813028862209653071}{2852468315136422218788511661435728003394789} a^{14} + \frac{1104714419644441020345414585384176989542851}{2852468315136422218788511661435728003394789} a^{13} + \frac{1379930473388021444875037160719485388679137}{2852468315136422218788511661435728003394789} a^{12} + \frac{108300386159691395940215086580249457354525}{2852468315136422218788511661435728003394789} a^{11} + \frac{97871363767983647305334810005073740369484}{2852468315136422218788511661435728003394789} a^{10} + \frac{772805190921319707156702884491804778466951}{2852468315136422218788511661435728003394789} a^{9} - \frac{682701025388252762801038886288415742422059}{2852468315136422218788511661435728003394789} a^{8} + \frac{10630344126660540981193428743735410616367}{2852468315136422218788511661435728003394789} a^{7} + \frac{1063058768461405712745985675649591848318964}{2852468315136422218788511661435728003394789} a^{6} + \frac{1102715873090825185940595144319718357704266}{2852468315136422218788511661435728003394789} a^{5} + \frac{1116213759299017630816496132079633357218619}{2852468315136422218788511661435728003394789} a^{4} + \frac{829403287961859005297536211909072301075466}{2852468315136422218788511661435728003394789} a^{3} - \frac{1134577424934260901563671176128173843908480}{2852468315136422218788511661435728003394789} a^{2} + \frac{447179909271429046069062868686940534428118}{2852468315136422218788511661435728003394789} a - \frac{293565525383250620684079298808389716228543}{2852468315136422218788511661435728003394789}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $17$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 932907706.847076 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_9\times S_3$ (as 27T12):
A solvable group of order 54 |
The 27 conjugacy class representatives for $C_9\times S_3$ |
Character table for $C_9\times S_3$ is not computed |
Intermediate fields
\(\Q(\zeta_{9})^+\), 3.1.108.1, \(\Q(\zeta_{27})^+\), 9.3.918330048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $18{,}\,{\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{3}$ | $18{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{9}$ | $18{,}\,{\href{/LocalNumberField/23.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{9}$ | $18{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{3}$ | $18{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{9}$ | $18{,}\,{\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.9.6t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.6t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})\) | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.27.18t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.27.18t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.27.18t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.27.18t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
1.27.18t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 1.27.9t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.27.9t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
1.27.18t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})\) | $C_{18}$ (as 18T1) | $0$ | $-1$ | |
* | 2.108.3t2.b.a | $2$ | $ 2^{2} \cdot 3^{3}$ | 3.1.108.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.324.6t5.c.a | $2$ | $ 2^{2} \cdot 3^{4}$ | 6.0.314928.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.324.6t5.c.b | $2$ | $ 2^{2} \cdot 3^{4}$ | 6.0.314928.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.2916.18t16.b.a | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.2916.18t16.b.b | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.2916.18t16.b.c | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.2916.18t16.b.d | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.2916.18t16.b.e | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |
* | 2.2916.18t16.b.f | $2$ | $ 2^{2} \cdot 3^{6}$ | 27.9.218729065566982775445089767573496266752.1 | $C_9\times S_3$ (as 27T12) | $0$ | $0$ |