Properties

Label 961.2.g.t.547.1
Level $961$
Weight $2$
Character 961.547
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 547.1
Root \(-1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.547
Dual form 961.2.g.t.448.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213065 - 0.655747i) q^{2} +(-0.603824 - 0.670615i) q^{3} +(1.23343 - 0.896137i) q^{4} +(-1.85376 - 3.21080i) q^{5} +(-0.311099 + 0.538840i) q^{6} +(-0.0797964 - 0.759212i) q^{7} +(-1.96606 - 1.42843i) q^{8} +(0.228465 - 2.17370i) q^{9} +(-1.71050 + 1.89971i) q^{10} +(-3.75981 - 1.67397i) q^{11} +(-1.34574 - 0.286045i) q^{12} +(2.84617 - 0.604971i) q^{13} +(-0.480849 + 0.214088i) q^{14} +(-1.03387 + 3.18192i) q^{15} +(0.424467 - 1.30637i) q^{16} +(1.19540 - 0.532225i) q^{17} +(-1.47407 + 0.313324i) q^{18} +(3.71651 + 0.789969i) q^{19} +(-5.16380 - 2.29907i) q^{20} +(-0.460956 + 0.511943i) q^{21} +(-0.296620 + 2.82215i) q^{22} +(2.65597 + 1.92967i) q^{23} +(0.229231 + 2.18099i) q^{24} +(-4.37284 + 7.57398i) q^{25} +(-1.00313 - 1.73747i) q^{26} +(-3.78584 + 2.75057i) q^{27} +(-0.778781 - 0.864924i) q^{28} +(1.51283 + 4.65602i) q^{29} +2.30681 q^{30} -5.80746 q^{32} +(1.14767 + 3.53217i) q^{33} +(-0.603702 - 0.670478i) q^{34} +(-2.28976 + 1.66361i) q^{35} +(-1.66614 - 2.88584i) q^{36} +(5.20639 - 9.01773i) q^{37} +(-0.273839 - 2.60541i) q^{38} +(-2.12429 - 1.54338i) q^{39} +(-0.941797 + 8.96060i) q^{40} +(0.505826 - 0.561777i) q^{41} +(0.433918 + 0.193193i) q^{42} +(7.00049 + 1.48800i) q^{43} +(-6.13756 + 1.30458i) q^{44} +(-7.40284 + 3.29596i) q^{45} +(0.699483 - 2.15279i) q^{46} +(-0.270719 + 0.833189i) q^{47} +(-1.13238 + 0.504167i) q^{48} +(6.27700 - 1.33422i) q^{49} +(5.89831 + 1.25372i) q^{50} +(-1.07873 - 0.480280i) q^{51} +(2.96840 - 3.29674i) q^{52} +(-0.373763 + 3.55612i) q^{53} +(2.61031 + 1.89650i) q^{54} +(1.59497 + 15.1751i) q^{55} +(-0.927595 + 1.60664i) q^{56} +(-1.71435 - 2.96935i) q^{57} +(2.73084 - 1.98407i) q^{58} +(0.620465 + 0.689096i) q^{59} +(1.57623 + 4.85115i) q^{60} +2.31704 q^{61} -1.66853 q^{63} +(0.388433 + 1.19547i) q^{64} +(-7.21855 - 8.01701i) q^{65} +(2.07168 - 1.50516i) q^{66} +(1.04345 + 1.80731i) q^{67} +(0.997488 - 1.72770i) q^{68} +(-0.309670 - 2.94632i) q^{69} +(1.57877 + 1.14704i) q^{70} +(0.808641 - 7.69371i) q^{71} +(-3.55415 + 3.94728i) q^{72} +(-5.16836 - 2.30110i) q^{73} +(-7.02265 - 1.49271i) q^{74} +(7.71965 - 1.64086i) q^{75} +(5.29197 - 2.35614i) q^{76} +(-0.970882 + 2.98807i) q^{77} +(-0.559458 + 1.72183i) q^{78} +(-12.8762 + 5.73284i) q^{79} +(-4.98137 + 1.05882i) q^{80} +(-2.28318 - 0.485304i) q^{81} +(-0.476157 - 0.211999i) q^{82} +(-9.43990 + 10.4841i) q^{83} +(-0.109784 + 1.04452i) q^{84} +(-3.92484 - 2.85157i) q^{85} +(-0.515809 - 4.90759i) q^{86} +(2.20891 - 3.82595i) q^{87} +(5.00086 + 8.66175i) q^{88} +(3.58784 - 2.60672i) q^{89} +(3.73860 + 4.15213i) q^{90} +(-0.686415 - 2.11257i) q^{91} +5.00520 q^{92} +0.604042 q^{94} +(-4.35308 - 13.3974i) q^{95} +(3.50669 + 3.89457i) q^{96} +(4.26970 - 3.10212i) q^{97} +(-2.21232 - 3.83184i) q^{98} +(-4.49770 + 7.79025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} + 12 q^{7} - 8 q^{8} + 5 q^{9} - 12 q^{10} - 2 q^{11} + 25 q^{12} + 18 q^{13} + 24 q^{14} + 4 q^{15} - 2 q^{16} - q^{17} - 8 q^{18} + 11 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213065 0.655747i −0.150660 0.463683i 0.847036 0.531536i \(-0.178385\pi\)
−0.997695 + 0.0678533i \(0.978385\pi\)
\(3\) −0.603824 0.670615i −0.348618 0.387179i 0.543178 0.839618i \(-0.317221\pi\)
−0.891796 + 0.452438i \(0.850554\pi\)
\(4\) 1.23343 0.896137i 0.616714 0.448069i
\(5\) −1.85376 3.21080i −0.829026 1.43591i −0.898803 0.438352i \(-0.855562\pi\)
0.0697774 0.997563i \(-0.477771\pi\)
\(6\) −0.311099 + 0.538840i −0.127006 + 0.219981i
\(7\) −0.0797964 0.759212i −0.0301602 0.286955i −0.999198 0.0400426i \(-0.987251\pi\)
0.969038 0.246913i \(-0.0794160\pi\)
\(8\) −1.96606 1.42843i −0.695108 0.505025i
\(9\) 0.228465 2.17370i 0.0761550 0.724566i
\(10\) −1.71050 + 1.89971i −0.540908 + 0.600740i
\(11\) −3.75981 1.67397i −1.13362 0.504722i −0.247832 0.968803i \(-0.579718\pi\)
−0.885793 + 0.464081i \(0.846385\pi\)
\(12\) −1.34574 0.286045i −0.388480 0.0825741i
\(13\) 2.84617 0.604971i 0.789384 0.167789i 0.204458 0.978875i \(-0.434457\pi\)
0.584926 + 0.811086i \(0.301123\pi\)
\(14\) −0.480849 + 0.214088i −0.128512 + 0.0572173i
\(15\) −1.03387 + 3.18192i −0.266943 + 0.821568i
\(16\) 0.424467 1.30637i 0.106117 0.326594i
\(17\) 1.19540 0.532225i 0.289926 0.129083i −0.256620 0.966512i \(-0.582609\pi\)
0.546546 + 0.837429i \(0.315942\pi\)
\(18\) −1.47407 + 0.313324i −0.347443 + 0.0738512i
\(19\) 3.71651 + 0.789969i 0.852626 + 0.181231i 0.613439 0.789742i \(-0.289786\pi\)
0.239187 + 0.970973i \(0.423119\pi\)
\(20\) −5.16380 2.29907i −1.15466 0.514088i
\(21\) −0.460956 + 0.511943i −0.100589 + 0.111715i
\(22\) −0.296620 + 2.82215i −0.0632395 + 0.601684i
\(23\) 2.65597 + 1.92967i 0.553808 + 0.402365i 0.829187 0.558971i \(-0.188804\pi\)
−0.275380 + 0.961336i \(0.588804\pi\)
\(24\) 0.229231 + 2.18099i 0.0467916 + 0.445192i
\(25\) −4.37284 + 7.57398i −0.874568 + 1.51480i
\(26\) −1.00313 1.73747i −0.196729 0.340745i
\(27\) −3.78584 + 2.75057i −0.728585 + 0.529348i
\(28\) −0.778781 0.864924i −0.147176 0.163455i
\(29\) 1.51283 + 4.65602i 0.280926 + 0.864602i 0.987590 + 0.157052i \(0.0501992\pi\)
−0.706664 + 0.707549i \(0.749801\pi\)
\(30\) 2.30681 0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) 1.14767 + 3.53217i 0.199784 + 0.614872i
\(34\) −0.603702 0.670478i −0.103534 0.114986i
\(35\) −2.28976 + 1.66361i −0.387040 + 0.281201i
\(36\) −1.66614 2.88584i −0.277690 0.480973i
\(37\) 5.20639 9.01773i 0.855925 1.48251i −0.0198583 0.999803i \(-0.506321\pi\)
0.875784 0.482704i \(-0.160345\pi\)
\(38\) −0.273839 2.60541i −0.0444226 0.422653i
\(39\) −2.12429 1.54338i −0.340158 0.247139i
\(40\) −0.941797 + 8.96060i −0.148911 + 1.41679i
\(41\) 0.505826 0.561777i 0.0789968 0.0877349i −0.702351 0.711831i \(-0.747866\pi\)
0.781347 + 0.624096i \(0.214533\pi\)
\(42\) 0.433918 + 0.193193i 0.0669551 + 0.0298103i
\(43\) 7.00049 + 1.48800i 1.06757 + 0.226918i 0.708008 0.706205i \(-0.249594\pi\)
0.359558 + 0.933123i \(0.382928\pi\)
\(44\) −6.13756 + 1.30458i −0.925272 + 0.196673i
\(45\) −7.40284 + 3.29596i −1.10355 + 0.491332i
\(46\) 0.699483 2.15279i 0.103133 0.317411i
\(47\) −0.270719 + 0.833189i −0.0394885 + 0.121533i −0.968857 0.247619i \(-0.920352\pi\)
0.929369 + 0.369152i \(0.120352\pi\)
\(48\) −1.13238 + 0.504167i −0.163445 + 0.0727702i
\(49\) 6.27700 1.33422i 0.896714 0.190602i
\(50\) 5.89831 + 1.25372i 0.834147 + 0.177303i
\(51\) −1.07873 0.480280i −0.151052 0.0672527i
\(52\) 2.96840 3.29674i 0.411643 0.457176i
\(53\) −0.373763 + 3.55612i −0.0513403 + 0.488470i 0.938396 + 0.345562i \(0.112312\pi\)
−0.989736 + 0.142908i \(0.954355\pi\)
\(54\) 2.61031 + 1.89650i 0.355218 + 0.258081i
\(55\) 1.59497 + 15.1751i 0.215066 + 2.04622i
\(56\) −0.927595 + 1.60664i −0.123955 + 0.214696i
\(57\) −1.71435 2.96935i −0.227072 0.393300i
\(58\) 2.73084 1.98407i 0.358577 0.260521i
\(59\) 0.620465 + 0.689096i 0.0807776 + 0.0897126i 0.782179 0.623054i \(-0.214108\pi\)
−0.701401 + 0.712767i \(0.747442\pi\)
\(60\) 1.57623 + 4.85115i 0.203491 + 0.626281i
\(61\) 2.31704 0.296666 0.148333 0.988937i \(-0.452609\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) 0.388433 + 1.19547i 0.0485541 + 0.149434i
\(65\) −7.21855 8.01701i −0.895351 0.994388i
\(66\) 2.07168 1.50516i 0.255006 0.185273i
\(67\) 1.04345 + 1.80731i 0.127478 + 0.220798i 0.922699 0.385522i \(-0.125979\pi\)
−0.795221 + 0.606320i \(0.792645\pi\)
\(68\) 0.997488 1.72770i 0.120963 0.209514i
\(69\) −0.309670 2.94632i −0.0372799 0.354695i
\(70\) 1.57877 + 1.14704i 0.188699 + 0.137098i
\(71\) 0.808641 7.69371i 0.0959680 0.913075i −0.835559 0.549401i \(-0.814856\pi\)
0.931527 0.363673i \(-0.118478\pi\)
\(72\) −3.55415 + 3.94728i −0.418860 + 0.465192i
\(73\) −5.16836 2.30110i −0.604911 0.269324i 0.0813424 0.996686i \(-0.474079\pi\)
−0.686254 + 0.727362i \(0.740746\pi\)
\(74\) −7.02265 1.49271i −0.816366 0.173524i
\(75\) 7.71965 1.64086i 0.891388 0.189470i
\(76\) 5.29197 2.35614i 0.607030 0.270267i
\(77\) −0.970882 + 2.98807i −0.110642 + 0.340522i
\(78\) −0.559458 + 1.72183i −0.0633461 + 0.194959i
\(79\) −12.8762 + 5.73284i −1.44868 + 0.644995i −0.972192 0.234185i \(-0.924758\pi\)
−0.476490 + 0.879180i \(0.658091\pi\)
\(80\) −4.98137 + 1.05882i −0.556934 + 0.118380i
\(81\) −2.28318 0.485304i −0.253686 0.0539227i
\(82\) −0.476157 0.211999i −0.0525828 0.0234114i
\(83\) −9.43990 + 10.4841i −1.03616 + 1.15078i −0.0477709 + 0.998858i \(0.515212\pi\)
−0.988393 + 0.151918i \(0.951455\pi\)
\(84\) −0.109784 + 1.04452i −0.0119784 + 0.113967i
\(85\) −3.92484 2.85157i −0.425709 0.309296i
\(86\) −0.515809 4.90759i −0.0556211 0.529199i
\(87\) 2.20891 3.82595i 0.236820 0.410184i
\(88\) 5.00086 + 8.66175i 0.533094 + 0.923346i
\(89\) 3.58784 2.60672i 0.380310 0.276311i −0.381163 0.924508i \(-0.624476\pi\)
0.761473 + 0.648196i \(0.224476\pi\)
\(90\) 3.73860 + 4.15213i 0.394083 + 0.437673i
\(91\) −0.686415 2.11257i −0.0719559 0.221457i
\(92\) 5.00520 0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) −4.35308 13.3974i −0.446617 1.37454i
\(96\) 3.50669 + 3.89457i 0.357900 + 0.397488i
\(97\) 4.26970 3.10212i 0.433522 0.314972i −0.349533 0.936924i \(-0.613660\pi\)
0.783056 + 0.621951i \(0.213660\pi\)
\(98\) −2.21232 3.83184i −0.223478 0.387075i
\(99\) −4.49770 + 7.79025i −0.452036 + 0.782949i
\(100\) 1.39375 + 13.2606i 0.139375 + 1.32606i
\(101\) −3.08028 2.23795i −0.306499 0.222684i 0.423894 0.905712i \(-0.360663\pi\)
−0.730393 + 0.683027i \(0.760663\pi\)
\(102\) −0.0851031 + 0.809702i −0.00842646 + 0.0801725i
\(103\) −4.17918 + 4.64146i −0.411787 + 0.457336i −0.912983 0.407998i \(-0.866227\pi\)
0.501196 + 0.865334i \(0.332894\pi\)
\(104\) −6.45990 2.87613i −0.633445 0.282028i
\(105\) 2.49825 + 0.531019i 0.243804 + 0.0518222i
\(106\) 2.41155 0.512590i 0.234230 0.0497872i
\(107\) 2.12617 0.946633i 0.205545 0.0915144i −0.301382 0.953503i \(-0.597448\pi\)
0.506927 + 0.861989i \(0.330781\pi\)
\(108\) −2.20467 + 6.78526i −0.212144 + 0.652912i
\(109\) 0.456365 1.40455i 0.0437118 0.134531i −0.926819 0.375509i \(-0.877468\pi\)
0.970531 + 0.240978i \(0.0774680\pi\)
\(110\) 9.61122 4.27919i 0.916394 0.408005i
\(111\) −9.19117 + 1.95364i −0.872387 + 0.185432i
\(112\) −1.02569 0.218016i −0.0969183 0.0206006i
\(113\) 5.82892 + 2.59520i 0.548339 + 0.244136i 0.662157 0.749366i \(-0.269641\pi\)
−0.113818 + 0.993502i \(0.536308\pi\)
\(114\) −1.58187 + 1.75685i −0.148156 + 0.164544i
\(115\) 1.27228 12.1049i 0.118641 1.12879i
\(116\) 6.03840 + 4.38716i 0.560652 + 0.407337i
\(117\) −0.664776 6.32492i −0.0614586 0.584739i
\(118\) 0.319673 0.553690i 0.0294283 0.0509713i
\(119\) −0.499460 0.865089i −0.0457854 0.0793026i
\(120\) 6.57779 4.77904i 0.600467 0.436265i
\(121\) 3.97353 + 4.41305i 0.361230 + 0.401187i
\(122\) −0.493680 1.51939i −0.0446957 0.137559i
\(123\) −0.682166 −0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 0.355505 + 1.09413i 0.0316709 + 0.0974730i
\(127\) −0.958204 1.06419i −0.0850269 0.0944319i 0.699130 0.714995i \(-0.253571\pi\)
−0.784157 + 0.620563i \(0.786904\pi\)
\(128\) −8.69550 + 6.31765i −0.768581 + 0.558407i
\(129\) −3.22919 5.59312i −0.284314 0.492447i
\(130\) −3.71911 + 6.44168i −0.326187 + 0.564973i
\(131\) −0.657787 6.25843i −0.0574711 0.546801i −0.984939 0.172900i \(-0.944686\pi\)
0.927468 0.373902i \(-0.121980\pi\)
\(132\) 4.58088 + 3.32820i 0.398714 + 0.289683i
\(133\) 0.303190 2.88466i 0.0262899 0.250132i
\(134\) 0.962812 1.06931i 0.0831743 0.0923744i
\(135\) 15.8496 + 7.05669i 1.36411 + 0.607343i
\(136\) −3.11047 0.661150i −0.266720 0.0566932i
\(137\) −12.4713 + 2.65085i −1.06549 + 0.226478i −0.707115 0.707098i \(-0.750004\pi\)
−0.358379 + 0.933576i \(0.616670\pi\)
\(138\) −1.86606 + 0.830822i −0.158849 + 0.0707242i
\(139\) 5.78287 17.7978i 0.490496 1.50959i −0.333363 0.942798i \(-0.608184\pi\)
0.823860 0.566794i \(-0.191816\pi\)
\(140\) −1.33343 + 4.10387i −0.112695 + 0.346841i
\(141\) 0.722216 0.321551i 0.0608215 0.0270795i
\(142\) −5.21741 + 1.10900i −0.437836 + 0.0930648i
\(143\) −11.7137 2.48983i −0.979553 0.208210i
\(144\) −2.74269 1.22112i −0.228558 0.101760i
\(145\) 12.1451 13.4885i 1.00860 1.12016i
\(146\) −0.407744 + 3.87942i −0.0337451 + 0.321063i
\(147\) −4.68495 3.40381i −0.386408 0.280742i
\(148\) −1.65942 15.7884i −0.136404 1.29780i
\(149\) 10.0677 17.4377i 0.824774 1.42855i −0.0773172 0.997007i \(-0.524635\pi\)
0.902092 0.431545i \(-0.142031\pi\)
\(150\) −2.72078 4.71252i −0.222150 0.384776i
\(151\) −12.4366 + 9.03571i −1.01207 + 0.735315i −0.964643 0.263559i \(-0.915104\pi\)
−0.0474314 + 0.998874i \(0.515104\pi\)
\(152\) −6.17848 6.86190i −0.501141 0.556573i
\(153\) −0.883790 2.72003i −0.0714502 0.219901i
\(154\) 2.16628 0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) 4.68076 + 14.4059i 0.373566 + 1.14972i 0.944441 + 0.328680i \(0.106604\pi\)
−0.570876 + 0.821037i \(0.693396\pi\)
\(158\) 6.50275 + 7.22203i 0.517331 + 0.574554i
\(159\) 2.61047 1.89662i 0.207024 0.150412i
\(160\) 10.7656 + 18.6466i 0.851098 + 1.47414i
\(161\) 1.25310 2.17042i 0.0987577 0.171053i
\(162\) 0.168228 + 1.60059i 0.0132173 + 0.125754i
\(163\) 0.845317 + 0.614159i 0.0662103 + 0.0481046i 0.620398 0.784287i \(-0.286971\pi\)
−0.554188 + 0.832392i \(0.686971\pi\)
\(164\) 0.120471 1.14620i 0.00940717 0.0895033i
\(165\) 9.21359 10.2327i 0.717277 0.796617i
\(166\) 8.88621 + 3.95639i 0.689704 + 0.307076i
\(167\) 11.0427 + 2.34720i 0.854510 + 0.181632i 0.614284 0.789085i \(-0.289445\pi\)
0.240226 + 0.970717i \(0.422778\pi\)
\(168\) 1.63754 0.348070i 0.126339 0.0268542i
\(169\) −4.14142 + 1.84388i −0.318571 + 0.141837i
\(170\) −1.03366 + 3.18127i −0.0792779 + 0.243992i
\(171\) 2.56625 7.89810i 0.196246 0.603983i
\(172\) 9.96805 4.43806i 0.760057 0.338399i
\(173\) 20.2014 4.29393i 1.53588 0.326462i 0.639166 0.769069i \(-0.279280\pi\)
0.896716 + 0.442607i \(0.145946\pi\)
\(174\) −2.97949 0.633311i −0.225875 0.0480112i
\(175\) 6.09919 + 2.71554i 0.461056 + 0.205275i
\(176\) −3.78275 + 4.20117i −0.285136 + 0.316675i
\(177\) 0.0874662 0.832185i 0.00657436 0.0625509i
\(178\) −2.47379 1.79731i −0.185418 0.134714i
\(179\) 0.0137625 + 0.130941i 0.00102866 + 0.00978700i 0.995024 0.0996337i \(-0.0317671\pi\)
−0.993996 + 0.109421i \(0.965100\pi\)
\(180\) −6.17723 + 10.6993i −0.460424 + 0.797477i
\(181\) −3.86599 6.69610i −0.287357 0.497717i 0.685821 0.727770i \(-0.259443\pi\)
−0.973178 + 0.230053i \(0.926110\pi\)
\(182\) −1.23906 + 0.900229i −0.0918451 + 0.0667294i
\(183\) −1.39908 1.55384i −0.103423 0.114863i
\(184\) −2.46540 7.58772i −0.181752 0.559374i
\(185\) −38.6056 −2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) 0.412739 + 1.27028i 0.0301021 + 0.0926447i
\(189\) 2.39036 + 2.65477i 0.173873 + 0.193106i
\(190\) −7.85781 + 5.70903i −0.570066 + 0.414177i
\(191\) 10.5513 + 18.2755i 0.763468 + 1.32237i 0.941053 + 0.338260i \(0.109838\pi\)
−0.177585 + 0.984106i \(0.556828\pi\)
\(192\) 0.567157 0.982344i 0.0409310 0.0708946i
\(193\) −0.591969 5.63221i −0.0426109 0.405415i −0.994950 0.100374i \(-0.967996\pi\)
0.952339 0.305042i \(-0.0986705\pi\)
\(194\) −2.94393 2.13889i −0.211362 0.153563i
\(195\) −1.01759 + 9.68173i −0.0728712 + 0.693323i
\(196\) 6.54658 7.27071i 0.467613 0.519337i
\(197\) 14.5389 + 6.47313i 1.03585 + 0.461192i 0.852979 0.521945i \(-0.174793\pi\)
0.182874 + 0.983136i \(0.441460\pi\)
\(198\) 6.06673 + 1.28952i 0.431144 + 0.0916424i
\(199\) 4.16833 0.886006i 0.295485 0.0628073i −0.0577838 0.998329i \(-0.518403\pi\)
0.353269 + 0.935522i \(0.385070\pi\)
\(200\) 19.4162 8.64463i 1.37293 0.611267i
\(201\) 0.581946 1.79105i 0.0410473 0.126331i
\(202\) −0.811230 + 2.49671i −0.0570779 + 0.175668i
\(203\) 3.41419 1.52009i 0.239629 0.106690i
\(204\) −1.76093 + 0.374297i −0.123290 + 0.0262060i
\(205\) −2.74144 0.582710i −0.191470 0.0406982i
\(206\) 3.93406 + 1.75155i 0.274099 + 0.122037i
\(207\) 4.80133 5.33241i 0.333715 0.370628i
\(208\) 0.417784 3.97495i 0.0289681 0.275613i
\(209\) −12.6510 9.19148i −0.875087 0.635788i
\(210\) −0.184075 1.75136i −0.0127024 0.120855i
\(211\) 5.75414 9.96646i 0.396131 0.686120i −0.597113 0.802157i \(-0.703686\pi\)
0.993245 + 0.116037i \(0.0370191\pi\)
\(212\) 2.72576 + 4.72115i 0.187206 + 0.324250i
\(213\) −5.64779 + 4.10336i −0.386980 + 0.281157i
\(214\) −1.07376 1.19254i −0.0734010 0.0815201i
\(215\) −8.19954 25.2356i −0.559204 1.72105i
\(216\) 11.3722 0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) 1.57763 + 4.85544i 0.106606 + 0.328100i
\(220\) 15.5663 + 17.2881i 1.04948 + 1.16557i
\(221\) 3.08032 2.23798i 0.207204 0.150543i
\(222\) 3.23941 + 5.61082i 0.217415 + 0.376574i
\(223\) −4.71196 + 8.16135i −0.315536 + 0.546524i −0.979551 0.201195i \(-0.935518\pi\)
0.664015 + 0.747719i \(0.268851\pi\)
\(224\) 0.463414 + 4.40909i 0.0309632 + 0.294595i
\(225\) 15.4645 + 11.2356i 1.03097 + 0.749042i
\(226\) 0.459856 4.37524i 0.0305892 0.291037i
\(227\) 14.5623 16.1731i 0.966534 1.07344i −0.0307302 0.999528i \(-0.509783\pi\)
0.997264 0.0739173i \(-0.0235501\pi\)
\(228\) −4.77548 2.12618i −0.316264 0.140810i
\(229\) −16.5854 3.52533i −1.09599 0.232960i −0.375776 0.926710i \(-0.622624\pi\)
−0.720216 + 0.693750i \(0.755957\pi\)
\(230\) −8.20885 + 1.74485i −0.541276 + 0.115052i
\(231\) 2.59008 1.15318i 0.170415 0.0758737i
\(232\) 3.67647 11.3150i 0.241372 0.742866i
\(233\) −3.03952 + 9.35469i −0.199126 + 0.612846i 0.800778 + 0.598962i \(0.204420\pi\)
−0.999904 + 0.0138848i \(0.995580\pi\)
\(234\) −4.00591 + 1.78354i −0.261874 + 0.116594i
\(235\) 3.17705 0.675304i 0.207248 0.0440520i
\(236\) 1.38282 + 0.293928i 0.0900141 + 0.0191331i
\(237\) 11.6195 + 5.17332i 0.754765 + 0.336043i
\(238\) −0.460862 + 0.511839i −0.0298733 + 0.0331776i
\(239\) −0.0617382 + 0.587399i −0.00399351 + 0.0379957i −0.996337 0.0855115i \(-0.972748\pi\)
0.992344 + 0.123507i \(0.0394142\pi\)
\(240\) 3.71793 + 2.70124i 0.239992 + 0.174364i
\(241\) −1.60665 15.2862i −0.103493 0.984674i −0.915852 0.401516i \(-0.868484\pi\)
0.812359 0.583158i \(-0.198183\pi\)
\(242\) 2.04722 3.54590i 0.131601 0.227939i
\(243\) 8.07252 + 13.9820i 0.517852 + 0.896946i
\(244\) 2.85790 2.07639i 0.182958 0.132927i
\(245\) −15.9199 17.6809i −1.01709 1.12959i
\(246\) 0.145346 + 0.447328i 0.00926690 + 0.0285206i
\(247\) 11.0557 0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) −2.95887 9.10646i −0.187135 0.575943i
\(251\) −4.04925 4.49714i −0.255586 0.283857i 0.601673 0.798743i \(-0.294501\pi\)
−0.857259 + 0.514885i \(0.827834\pi\)
\(252\) −2.05801 + 1.49523i −0.129642 + 0.0941907i
\(253\) −6.75571 11.7012i −0.424728 0.735650i
\(254\) −0.493682 + 0.855082i −0.0309763 + 0.0536526i
\(255\) 0.457614 + 4.35390i 0.0286569 + 0.272652i
\(256\) 8.02935 + 5.83366i 0.501834 + 0.364604i
\(257\) 0.473288 4.50304i 0.0295229 0.280892i −0.969794 0.243927i \(-0.921564\pi\)
0.999317 0.0369649i \(-0.0117690\pi\)
\(258\) −2.97964 + 3.30923i −0.185505 + 0.206024i
\(259\) −7.26182 3.23317i −0.451228 0.200900i
\(260\) −16.0879 3.41959i −0.997729 0.212074i
\(261\) 10.4664 2.22471i 0.647855 0.137706i
\(262\) −3.96379 + 1.76479i −0.244884 + 0.109029i
\(263\) −0.775281 + 2.38607i −0.0478059 + 0.147131i −0.972110 0.234525i \(-0.924646\pi\)
0.924304 + 0.381657i \(0.124646\pi\)
\(264\) 2.78905 8.58383i 0.171654 0.528298i
\(265\) 12.1109 5.39210i 0.743964 0.331234i
\(266\) −1.95620 + 0.415804i −0.119943 + 0.0254946i
\(267\) −3.91453 0.832058i −0.239565 0.0509211i
\(268\) 2.90661 + 1.29411i 0.177550 + 0.0790502i
\(269\) 8.92605 9.91338i 0.544231 0.604430i −0.406803 0.913516i \(-0.633357\pi\)
0.951034 + 0.309086i \(0.100023\pi\)
\(270\) 1.25041 11.8968i 0.0760974 0.724019i
\(271\) −11.1840 8.12564i −0.679379 0.493598i 0.193773 0.981046i \(-0.437928\pi\)
−0.873152 + 0.487449i \(0.837928\pi\)
\(272\) −0.187879 1.78755i −0.0113918 0.108386i
\(273\) −1.00225 + 1.73594i −0.0606586 + 0.105064i
\(274\) 4.39548 + 7.61320i 0.265541 + 0.459930i
\(275\) 29.1197 21.1567i 1.75598 1.27580i
\(276\) −3.02226 3.35656i −0.181919 0.202041i
\(277\) 3.57556 + 11.0044i 0.214834 + 0.661192i 0.999165 + 0.0408496i \(0.0130065\pi\)
−0.784331 + 0.620343i \(0.786994\pi\)
\(278\) −12.9030 −0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) −4.75866 14.6457i −0.283878 0.873686i −0.986733 0.162353i \(-0.948092\pi\)
0.702855 0.711333i \(-0.251908\pi\)
\(282\) −0.364735 0.405079i −0.0217196 0.0241221i
\(283\) 18.3612 13.3402i 1.09146 0.792993i 0.111816 0.993729i \(-0.464333\pi\)
0.979645 + 0.200736i \(0.0643333\pi\)
\(284\) −5.89722 10.2143i −0.349935 0.606106i
\(285\) −6.35600 + 11.0089i −0.376497 + 0.652112i
\(286\) 0.863089 + 8.21174i 0.0510355 + 0.485571i
\(287\) −0.466871 0.339202i −0.0275585 0.0200224i
\(288\) −1.32680 + 12.6237i −0.0781825 + 0.743857i
\(289\) −10.2295 + 11.3610i −0.601736 + 0.668295i
\(290\) −11.4328 5.09020i −0.671356 0.298907i
\(291\) −4.65847 0.990189i −0.273085 0.0580459i
\(292\) −8.43690 + 1.79332i −0.493732 + 0.104946i
\(293\) 11.3288 5.04388i 0.661833 0.294667i −0.0481978 0.998838i \(-0.515348\pi\)
0.710030 + 0.704171i \(0.248681\pi\)
\(294\) −1.23384 + 3.79737i −0.0719591 + 0.221467i
\(295\) 1.06236 3.26961i 0.0618530 0.190364i
\(296\) −23.1173 + 10.2925i −1.34366 + 0.598238i
\(297\) 18.8384 4.00423i 1.09312 0.232349i
\(298\) −13.5798 2.88647i −0.786655 0.167209i
\(299\) 8.72673 + 3.88539i 0.504680 + 0.224698i
\(300\) 8.05118 8.94174i 0.464835 0.516252i
\(301\) 0.571094 5.43360i 0.0329173 0.313187i
\(302\) 8.57493 + 6.23005i 0.493432 + 0.358499i
\(303\) 0.359142 + 3.41701i 0.0206322 + 0.196302i
\(304\) 2.60953 4.51984i 0.149667 0.259231i
\(305\) −4.29523 7.43956i −0.245944 0.425988i
\(306\) −1.59534 + 1.15908i −0.0911997 + 0.0662605i
\(307\) 20.5557 + 22.8294i 1.17317 + 1.30294i 0.944148 + 0.329523i \(0.106888\pi\)
0.229027 + 0.973420i \(0.426446\pi\)
\(308\) 1.48021 + 4.55561i 0.0843426 + 0.259580i
\(309\) 5.63612 0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) 1.97187 + 6.06878i 0.111635 + 0.343577i
\(313\) 7.19020 + 7.98553i 0.406414 + 0.451369i 0.911254 0.411844i \(-0.135115\pi\)
−0.504840 + 0.863213i \(0.668449\pi\)
\(314\) 8.44932 6.13879i 0.476823 0.346432i
\(315\) 3.09305 + 5.35732i 0.174274 + 0.301851i
\(316\) −10.7444 + 18.6098i −0.604420 + 1.04689i
\(317\) −0.914242 8.69844i −0.0513490 0.488553i −0.989730 0.142950i \(-0.954341\pi\)
0.938381 0.345603i \(-0.112326\pi\)
\(318\) −1.79990 1.30770i −0.100933 0.0733324i
\(319\) 2.10610 20.0382i 0.117919 1.12192i
\(320\) 3.11837 3.46330i 0.174322 0.193604i
\(321\) −1.91866 0.854242i −0.107089 0.0476791i
\(322\) −1.69024 0.359271i −0.0941933 0.0200214i
\(323\) 4.86315 1.03369i 0.270593 0.0575162i
\(324\) −3.25103 + 1.44745i −0.180613 + 0.0804140i
\(325\) −7.86379 + 24.2022i −0.436204 + 1.34250i
\(326\) 0.222625 0.685170i 0.0123301 0.0379480i
\(327\) −1.21747 + 0.542054i −0.0673264 + 0.0299756i
\(328\) −1.79694 + 0.381952i −0.0992196 + 0.0210898i
\(329\) 0.654169 + 0.139048i 0.0360655 + 0.00766596i
\(330\) −8.67317 3.86155i −0.477442 0.212571i
\(331\) −21.6592 + 24.0549i −1.19049 + 1.32218i −0.255799 + 0.966730i \(0.582339\pi\)
−0.934696 + 0.355449i \(0.884328\pi\)
\(332\) −2.24826 + 21.3908i −0.123389 + 1.17397i
\(333\) −18.4124 13.3774i −1.00899 0.733075i
\(334\) −0.813646 7.74132i −0.0445207 0.423586i
\(335\) 3.86860 6.70062i 0.211364 0.366094i
\(336\) 0.473129 + 0.819484i 0.0258113 + 0.0447065i
\(337\) −22.4371 + 16.3015i −1.22223 + 0.888000i −0.996283 0.0861400i \(-0.972547\pi\)
−0.225944 + 0.974140i \(0.572547\pi\)
\(338\) 2.09151 + 2.32286i 0.113763 + 0.126347i
\(339\) −1.77926 5.47600i −0.0966362 0.297416i
\(340\) −7.39640 −0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) −3.16515 9.74132i −0.170902 0.525982i
\(344\) −11.6379 12.9252i −0.627474 0.696880i
\(345\) −8.88598 + 6.45605i −0.478405 + 0.347582i
\(346\) −7.11994 12.3321i −0.382770 0.662977i
\(347\) 12.9580 22.4440i 0.695624 1.20486i −0.274347 0.961631i \(-0.588462\pi\)
0.969970 0.243224i \(-0.0782051\pi\)
\(348\) −0.704042 6.69851i −0.0377406 0.359078i
\(349\) −4.52559 3.28803i −0.242249 0.176004i 0.460036 0.887900i \(-0.347837\pi\)
−0.702285 + 0.711896i \(0.747837\pi\)
\(350\) 0.481179 4.57811i 0.0257201 0.244710i
\(351\) −9.11111 + 10.1189i −0.486315 + 0.540108i
\(352\) 21.8349 + 9.72154i 1.16381 + 0.518160i
\(353\) −11.4140 2.42612i −0.607505 0.129129i −0.106120 0.994353i \(-0.533843\pi\)
−0.501385 + 0.865224i \(0.667176\pi\)
\(354\) −0.564339 + 0.119954i −0.0299943 + 0.00637548i
\(355\) −26.2020 + 11.6659i −1.39066 + 0.619161i
\(356\) 2.08936 6.43039i 0.110736 0.340810i
\(357\) −0.278556 + 0.857307i −0.0147427 + 0.0453735i
\(358\) 0.0829319 0.0369237i 0.00438309 0.00195148i
\(359\) −25.6273 + 5.44725i −1.35256 + 0.287495i −0.826492 0.562949i \(-0.809667\pi\)
−0.526066 + 0.850444i \(0.676334\pi\)
\(360\) 19.2625 + 4.09437i 1.01522 + 0.215792i
\(361\) −4.16895 1.85614i −0.219418 0.0976913i
\(362\) −3.56723 + 3.96182i −0.187490 + 0.208228i
\(363\) 0.560144 5.32942i 0.0293999 0.279722i
\(364\) −2.73979 1.99058i −0.143604 0.104335i
\(365\) 2.19250 + 20.8603i 0.114761 + 1.09188i
\(366\) −0.720830 + 1.24851i −0.0376784 + 0.0652608i
\(367\) −13.5073 23.3953i −0.705076 1.22123i −0.966664 0.256047i \(-0.917580\pi\)
0.261589 0.965179i \(-0.415754\pi\)
\(368\) 3.64825 2.65061i 0.190178 0.138173i
\(369\) −1.10557 1.22786i −0.0575537 0.0639199i
\(370\) 8.22549 + 25.3155i 0.427623 + 1.31609i
\(371\) 2.72967 0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 1.14744 + 3.53145i 0.0593326 + 0.182607i
\(375\) −8.38540 9.31293i −0.433020 0.480918i
\(376\) 1.72240 1.25140i 0.0888261 0.0645359i
\(377\) 7.12253 + 12.3366i 0.366829 + 0.635367i
\(378\) 1.23155 2.13311i 0.0633442 0.109715i
\(379\) 0.484909 + 4.61360i 0.0249081 + 0.236985i 0.999892 + 0.0147084i \(0.00468201\pi\)
−0.974984 + 0.222276i \(0.928651\pi\)
\(380\) −17.3751 12.6238i −0.891325 0.647585i
\(381\) −0.135077 + 1.28517i −0.00692020 + 0.0658413i
\(382\) 9.73595 10.8129i 0.498134 0.553234i
\(383\) −4.58722 2.04236i −0.234396 0.104360i 0.286178 0.958177i \(-0.407615\pi\)
−0.520574 + 0.853817i \(0.674282\pi\)
\(384\) 9.48727 + 2.01658i 0.484145 + 0.102908i
\(385\) 11.3939 2.42184i 0.580686 0.123429i
\(386\) −3.56718 + 1.58821i −0.181564 + 0.0808377i
\(387\) 4.83383 14.8770i 0.245718 0.756241i
\(388\) 2.48644 7.65247i 0.126230 0.388496i
\(389\) 16.9936 7.56605i 0.861611 0.383614i 0.0721346 0.997395i \(-0.477019\pi\)
0.789476 + 0.613781i \(0.210352\pi\)
\(390\) 6.56557 1.39556i 0.332461 0.0706667i
\(391\) 4.20196 + 0.893153i 0.212502 + 0.0451687i
\(392\) −14.2468 6.34308i −0.719572 0.320374i
\(393\) −3.79980 + 4.22011i −0.191675 + 0.212876i
\(394\) 1.14701 10.9130i 0.0577853 0.549790i
\(395\) 42.2763 + 30.7155i 2.12715 + 1.54547i
\(396\) 1.43354 + 13.6393i 0.0720383 + 0.685399i
\(397\) −16.2794 + 28.1968i −0.817040 + 1.41515i 0.0908142 + 0.995868i \(0.471053\pi\)
−0.907854 + 0.419287i \(0.862280\pi\)
\(398\) −1.46912 2.54459i −0.0736404 0.127549i
\(399\) −2.11757 + 1.53850i −0.106011 + 0.0770214i
\(400\) 8.03833 + 8.92747i 0.401917 + 0.446374i
\(401\) −3.82880 11.7838i −0.191201 0.588457i −1.00000 0.000371451i \(-0.999882\pi\)
0.808799 0.588086i \(-0.200118\pi\)
\(402\) −1.29847 −0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) 2.67424 + 8.23046i 0.132884 + 0.408975i
\(406\) −1.72424 1.91496i −0.0855726 0.0950381i
\(407\) −34.6705 + 25.1896i −1.71855 + 1.24860i
\(408\) 1.43480 + 2.48514i 0.0710331 + 0.123033i
\(409\) 1.72404 2.98613i 0.0852484 0.147654i −0.820249 0.572007i \(-0.806165\pi\)
0.905497 + 0.424353i \(0.139498\pi\)
\(410\) 0.201994 + 1.92184i 0.00997576 + 0.0949130i
\(411\) 9.30817 + 6.76278i 0.459138 + 0.333583i
\(412\) −0.995339 + 9.47002i −0.0490368 + 0.466554i
\(413\) 0.473659 0.526052i 0.0233072 0.0258853i
\(414\) −4.51971 2.01230i −0.222131 0.0988993i
\(415\) 51.1616 + 10.8747i 2.51142 + 0.533820i
\(416\) −16.5290 + 3.51335i −0.810401 + 0.172256i
\(417\) −15.4273 + 6.86868i −0.755479 + 0.336361i
\(418\) −3.33180 + 10.2542i −0.162964 + 0.501550i
\(419\) −12.3752 + 38.0871i −0.604570 + 1.86068i −0.104854 + 0.994488i \(0.533437\pi\)
−0.499717 + 0.866189i \(0.666563\pi\)
\(420\) 3.55727 1.58380i 0.173577 0.0772815i
\(421\) −21.2106 + 4.50844i −1.03374 + 0.219728i −0.693384 0.720569i \(-0.743881\pi\)
−0.340356 + 0.940297i \(0.610548\pi\)
\(422\) −7.76148 1.64975i −0.377823 0.0803088i
\(423\) 1.74925 + 0.778817i 0.0850516 + 0.0378674i
\(424\) 5.81449 6.45765i 0.282377 0.313611i
\(425\) −1.19622 + 11.3812i −0.0580250 + 0.552071i
\(426\) 3.89411 + 2.82924i 0.188670 + 0.137077i
\(427\) −0.184891 1.75912i −0.00894752 0.0851300i
\(428\) 1.77417 3.07294i 0.0857575 0.148536i
\(429\) 5.40332 + 9.35883i 0.260875 + 0.451849i
\(430\) −14.8011 + 10.7536i −0.713774 + 0.518587i
\(431\) −7.77574 8.63584i −0.374544 0.415974i 0.526174 0.850377i \(-0.323626\pi\)
−0.900719 + 0.434403i \(0.856959\pi\)
\(432\) 1.98632 + 6.11325i 0.0955667 + 0.294124i
\(433\) 24.5964 1.18203 0.591015 0.806661i \(-0.298728\pi\)
0.591015 + 0.806661i \(0.298728\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) −0.695773 2.14137i −0.0333215 0.102553i
\(437\) 8.34656 + 9.26979i 0.399270 + 0.443434i
\(438\) 2.84780 2.06905i 0.136073 0.0988630i
\(439\) −9.09662 15.7558i −0.434158 0.751984i 0.563068 0.826410i \(-0.309621\pi\)
−0.997227 + 0.0744265i \(0.976287\pi\)
\(440\) 18.5408 32.1136i 0.883897 1.53096i
\(441\) −1.46611 13.9491i −0.0698149 0.664244i
\(442\) −2.12386 1.54307i −0.101021 0.0733964i
\(443\) −1.85646 + 17.6630i −0.0882031 + 0.839196i 0.857570 + 0.514368i \(0.171973\pi\)
−0.945773 + 0.324829i \(0.894693\pi\)
\(444\) −9.58590 + 10.6462i −0.454927 + 0.505247i
\(445\) −15.0206 6.68762i −0.712047 0.317024i
\(446\) 6.35573 + 1.35095i 0.300952 + 0.0639694i
\(447\) −17.7731 + 3.77778i −0.840637 + 0.178683i
\(448\) 0.876622 0.390297i 0.0414165 0.0184398i
\(449\) −2.84252 + 8.74836i −0.134147 + 0.412861i −0.995456 0.0952196i \(-0.969645\pi\)
0.861310 + 0.508080i \(0.169645\pi\)
\(450\) 4.07278 12.5347i 0.191993 0.590892i
\(451\) −2.84221 + 1.26543i −0.133835 + 0.0595870i
\(452\) 9.51520 2.02252i 0.447558 0.0951313i
\(453\) 13.5690 + 2.88418i 0.637526 + 0.135510i
\(454\) −13.7082 6.10327i −0.643356 0.286440i
\(455\) −5.51059 + 6.12014i −0.258341 + 0.286916i
\(456\) −0.870973 + 8.28676i −0.0407871 + 0.388063i
\(457\) 25.2412 + 18.3388i 1.18074 + 0.857855i 0.992254 0.124222i \(-0.0396436\pi\)
0.188481 + 0.982077i \(0.439644\pi\)
\(458\) 1.22204 + 11.6269i 0.0571021 + 0.543290i
\(459\) −3.06166 + 5.30294i −0.142906 + 0.247520i
\(460\) −9.27842 16.0707i −0.432609 0.749300i
\(461\) 5.39491 3.91963i 0.251266 0.182555i −0.455022 0.890480i \(-0.650369\pi\)
0.706288 + 0.707925i \(0.250369\pi\)
\(462\) −1.30805 1.45274i −0.0608560 0.0675874i
\(463\) 10.9140 + 33.5899i 0.507217 + 1.56105i 0.797011 + 0.603964i \(0.206413\pi\)
−0.289795 + 0.957089i \(0.593587\pi\)
\(464\) 6.72466 0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) 11.1071 + 34.1842i 0.513977 + 1.58186i 0.785136 + 0.619324i \(0.212593\pi\)
−0.271159 + 0.962535i \(0.587407\pi\)
\(468\) −6.48795 7.20560i −0.299906 0.333079i
\(469\) 1.28886 0.936415i 0.0595143 0.0432396i
\(470\) −1.11975 1.93946i −0.0516501 0.0894606i
\(471\) 6.83446 11.8376i 0.314915 0.545449i
\(472\) −0.235548 2.24109i −0.0108420 0.103155i
\(473\) −23.8296 17.3132i −1.09569 0.796064i
\(474\) 0.916685 8.72168i 0.0421047 0.400600i
\(475\) −22.2349 + 24.6944i −1.02021 + 1.13306i
\(476\) −1.39129 0.619440i −0.0637695 0.0283920i
\(477\) 7.64454 + 1.62490i 0.350019 + 0.0743989i
\(478\) 0.398339 0.0846697i 0.0182196 0.00387270i
\(479\) 30.3703 13.5217i 1.38765 0.617823i 0.429236 0.903192i \(-0.358783\pi\)
0.958418 + 0.285369i \(0.0921163\pi\)
\(480\) 6.00415 18.4789i 0.274051 0.843441i
\(481\) 9.36278 28.8157i 0.426906 1.31388i
\(482\) −9.68158 + 4.31052i −0.440984 + 0.196339i
\(483\) −2.21217 + 0.470211i −0.100657 + 0.0213953i
\(484\) 8.85576 + 1.88235i 0.402535 + 0.0855614i
\(485\) −17.8753 7.95859i −0.811675 0.361381i
\(486\) 7.44868 8.27260i 0.337879 0.375253i
\(487\) −2.98067 + 28.3591i −0.135067 + 1.28508i 0.691557 + 0.722321i \(0.256925\pi\)
−0.826624 + 0.562754i \(0.809742\pi\)
\(488\) −4.55544 3.30972i −0.206215 0.149824i
\(489\) −0.0985590 0.937726i −0.00445699 0.0424054i
\(490\) −8.20220 + 14.2066i −0.370538 + 0.641790i
\(491\) 13.9818 + 24.2172i 0.630991 + 1.09291i 0.987350 + 0.158559i \(0.0506848\pi\)
−0.356359 + 0.934349i \(0.615982\pi\)
\(492\) −0.841402 + 0.611315i −0.0379333 + 0.0275602i
\(493\) 4.28648 + 4.76062i 0.193054 + 0.214408i
\(494\) −2.35559 7.24975i −0.105983 0.326182i
\(495\) 33.3506 1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) −2.71249 8.34819i −0.121550 0.374091i
\(499\) −27.6384 30.6956i −1.23727 1.37412i −0.901848 0.432053i \(-0.857789\pi\)
−0.335417 0.942070i \(-0.608877\pi\)
\(500\) 17.1288 12.4448i 0.766023 0.556548i
\(501\) −5.09378 8.82269i −0.227573 0.394169i
\(502\) −2.08623 + 3.61346i −0.0931132 + 0.161277i
\(503\) 2.67447 + 25.4459i 0.119249 + 1.13458i 0.876483 + 0.481432i \(0.159883\pi\)
−0.757235 + 0.653143i \(0.773450\pi\)
\(504\) 3.28043 + 2.38337i 0.146122 + 0.106164i
\(505\) −1.47554 + 14.0388i −0.0656604 + 0.624717i
\(506\) −6.23364 + 6.92315i −0.277119 + 0.307772i
\(507\) 3.73722 + 1.66392i 0.165976 + 0.0738972i
\(508\) −2.13554 0.453923i −0.0947492 0.0201396i
\(509\) 23.9331 5.08714i 1.06082 0.225483i 0.355718 0.934593i \(-0.384236\pi\)
0.705098 + 0.709110i \(0.250903\pi\)
\(510\) 2.75755 1.22774i 0.122107 0.0543654i
\(511\) −1.33461 + 4.10750i −0.0590396 + 0.181705i
\(512\) −4.52814 + 13.9362i −0.200118 + 0.615898i
\(513\) −16.2430 + 7.23185i −0.717146 + 0.319294i
\(514\) −3.05369 + 0.649082i −0.134693 + 0.0286298i
\(515\) 22.6500 + 4.81441i 0.998078 + 0.212148i
\(516\) −8.99518 4.00491i −0.395991 0.176306i
\(517\) 2.41259 2.67945i 0.106106 0.117842i
\(518\) −0.572901 + 5.45079i −0.0251718 + 0.239494i
\(519\) −15.0776 10.9546i −0.661835 0.480851i
\(520\) 2.74039 + 26.0731i 0.120174 + 1.14338i
\(521\) −7.48279 + 12.9606i −0.327827 + 0.567813i −0.982080 0.188462i \(-0.939650\pi\)
0.654253 + 0.756275i \(0.272983\pi\)
\(522\) −3.68887 6.38931i −0.161458 0.279653i
\(523\) 16.9615 12.3233i 0.741677 0.538860i −0.151559 0.988448i \(-0.548429\pi\)
0.893236 + 0.449589i \(0.148429\pi\)
\(524\) −6.41974 7.12985i −0.280448 0.311469i
\(525\) −1.86176 5.72991i −0.0812539 0.250074i
\(526\) 1.72984 0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) −3.77686 11.6240i −0.164211 0.505391i
\(530\) −6.11625 6.79278i −0.265673 0.295060i
\(531\) 1.63964 1.19127i 0.0711544 0.0516967i
\(532\) −2.21109 3.82971i −0.0958628 0.166039i
\(533\) 1.09981 1.90492i 0.0476379 0.0825113i
\(534\) 0.288429 + 2.74422i 0.0124815 + 0.118754i
\(535\) −6.98086 5.07189i −0.301809 0.219277i
\(536\) 0.530121 5.04377i 0.0228977 0.217858i
\(537\) 0.0795009 0.0882947i 0.00343072 0.00381020i
\(538\) −8.40250 3.74103i −0.362257 0.161287i
\(539\) −25.8338 5.49113i −1.11274 0.236520i
\(540\) 25.8731 5.49949i 1.11340 0.236660i
\(541\) 1.58162 0.704184i 0.0679993 0.0302752i −0.372455 0.928050i \(-0.621484\pi\)
0.440454 + 0.897775i \(0.354817\pi\)
\(542\) −2.94545 + 9.06515i −0.126518 + 0.389382i
\(543\) −2.15612 + 6.63586i −0.0925280 + 0.284772i
\(544\) −6.94222 + 3.09087i −0.297645 + 0.132520i
\(545\) −5.35571 + 1.13839i −0.229413 + 0.0487633i
\(546\) 1.35188 + 0.287351i 0.0578551 + 0.0122975i
\(547\) −11.9870 5.33697i −0.512528 0.228192i 0.134142 0.990962i \(-0.457172\pi\)
−0.646670 + 0.762770i \(0.723839\pi\)
\(548\) −13.0069 + 14.4456i −0.555627 + 0.617086i
\(549\) 0.529362 5.03655i 0.0225926 0.214955i
\(550\) −20.0778 14.5874i −0.856121 0.622008i
\(551\) 1.94435 + 18.4993i 0.0828321 + 0.788095i
\(552\) −3.59977 + 6.23498i −0.153216 + 0.265378i
\(553\) 5.37991 + 9.31828i 0.228777 + 0.396254i
\(554\) 6.45429 4.68932i 0.274217 0.199230i
\(555\) 23.3110 + 25.8895i 0.989495 + 1.09895i
\(556\) −8.81656 27.1346i −0.373905 1.15076i
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) 1.20137 + 3.69743i 0.0507670 + 0.156245i
\(561\) 3.25183 + 3.61152i 0.137292 + 0.152479i
\(562\) −8.58993 + 6.24095i −0.362344 + 0.263259i
\(563\) −11.3259 19.6171i −0.477331 0.826762i 0.522331 0.852743i \(-0.325062\pi\)
−0.999662 + 0.0259808i \(0.991729\pi\)
\(564\) 0.602646 1.04381i 0.0253760 0.0439525i
\(565\) −2.47272 23.5264i −0.104028 0.989763i
\(566\) −12.6599 9.19798i −0.532136 0.386620i
\(567\) −0.186259 + 1.77214i −0.00782216 + 0.0744229i
\(568\) −12.5797 + 13.9712i −0.527834 + 0.586219i
\(569\) −42.4269 18.8897i −1.77863 0.791896i −0.982372 0.186936i \(-0.940144\pi\)
−0.796256 0.604960i \(-0.793189\pi\)
\(570\) 8.57330 + 1.82231i 0.359096 + 0.0763282i
\(571\) 12.2252 2.59855i 0.511610 0.108746i 0.0551292 0.998479i \(-0.482443\pi\)
0.456481 + 0.889733i \(0.349110\pi\)
\(572\) −16.6793 + 7.42610i −0.697396 + 0.310501i
\(573\) 5.88463 18.1110i 0.245834 0.756600i
\(574\) −0.122956 + 0.378421i −0.00513210 + 0.0157950i
\(575\) −26.2294 + 11.6781i −1.09384 + 0.487010i
\(576\) 2.68734 0.571212i 0.111973 0.0238005i
\(577\) 29.8181 + 6.33804i 1.24135 + 0.263856i 0.781366 0.624073i \(-0.214523\pi\)
0.459980 + 0.887929i \(0.347857\pi\)
\(578\) 9.62950 + 4.28733i 0.400535 + 0.178329i
\(579\) −3.41960 + 3.79785i −0.142114 + 0.157833i
\(580\) 2.89256 27.5209i 0.120107 1.14274i
\(581\) 8.71290 + 6.33030i 0.361472 + 0.262625i
\(582\) 0.343244 + 3.26575i 0.0142279 + 0.135370i
\(583\) 7.35812 12.7446i 0.304742 0.527829i
\(584\) 6.87436 + 11.9067i 0.284463 + 0.492705i
\(585\) −19.0758 + 13.8593i −0.788685 + 0.573013i
\(586\) −5.72127 6.35411i −0.236343 0.262486i
\(587\) 10.4009 + 32.0107i 0.429292 + 1.32123i 0.898824 + 0.438310i \(0.144423\pi\)
−0.469532 + 0.882915i \(0.655577\pi\)
\(588\) −8.82883 −0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) −4.43796 13.6586i −0.182553 0.561841i
\(592\) −9.57060 10.6292i −0.393349 0.436859i
\(593\) 36.3151 26.3844i 1.49128 1.08348i 0.517585 0.855632i \(-0.326831\pi\)
0.973697 0.227847i \(-0.0731687\pi\)
\(594\) −6.63957 11.5001i −0.272425 0.471854i
\(595\) −1.85175 + 3.20733i −0.0759145 + 0.131488i
\(596\) −3.20884 30.5301i −0.131439 1.25056i
\(597\) −3.11111 2.26035i −0.127329 0.0925100i
\(598\) 0.688471 6.55036i 0.0281537 0.267864i
\(599\) −13.1047 + 14.5542i −0.535442 + 0.594669i −0.948791 0.315904i \(-0.897692\pi\)
0.413349 + 0.910573i \(0.364359\pi\)
\(600\) −17.5212 7.80092i −0.715298 0.318471i
\(601\) −29.7938 6.33288i −1.21532 0.258323i −0.444733 0.895663i \(-0.646702\pi\)
−0.770583 + 0.637340i \(0.780035\pi\)
\(602\) −3.68474 + 0.783216i −0.150179 + 0.0319215i
\(603\) 4.16693 1.85524i 0.169691 0.0755511i
\(604\) −7.24238 + 22.2898i −0.294688 + 0.906958i
\(605\) 6.80348 20.9390i 0.276601 0.851290i
\(606\) 2.16417 0.963550i 0.0879134 0.0391416i
\(607\) 13.0823 2.78073i 0.530994 0.112866i 0.0653907 0.997860i \(-0.479171\pi\)
0.465604 + 0.884993i \(0.345837\pi\)
\(608\) −21.5835 4.58772i −0.875327 0.186056i
\(609\) −3.08097 1.37173i −0.124847 0.0555855i
\(610\) −3.96330 + 4.40169i −0.160469 + 0.178219i
\(611\) −0.266457 + 2.53517i −0.0107797 + 0.102562i
\(612\) −3.52761 2.56296i −0.142595 0.103601i
\(613\) 0.543047 + 5.16675i 0.0219335 + 0.208683i 1.00000 0.000389879i \(0.000124102\pi\)
−0.978066 + 0.208293i \(0.933209\pi\)
\(614\) 10.5906 18.3435i 0.427402 0.740282i
\(615\) 1.26457 + 2.19030i 0.0509924 + 0.0883215i
\(616\) 6.17705 4.48789i 0.248881 0.180822i
\(617\) −20.0827 22.3041i −0.808498 0.897927i 0.187947 0.982179i \(-0.439817\pi\)
−0.996445 + 0.0842517i \(0.973150\pi\)
\(618\) −1.20086 3.69587i −0.0483057 0.148670i
\(619\) 18.3260 0.736584 0.368292 0.929710i \(-0.379943\pi\)
0.368292 + 0.929710i \(0.379943\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) −0.507396 1.56160i −0.0203447 0.0626146i
\(623\) −2.26535 2.51592i −0.0907592 0.100798i
\(624\) −2.91793 + 2.12000i −0.116811 + 0.0848679i
\(625\) −3.87924 6.71905i −0.155170 0.268762i
\(626\) 3.70450 6.41639i 0.148062 0.256450i
\(627\) 1.47503 + 14.0340i 0.0589070 + 0.560463i
\(628\) 18.6831 + 13.5740i 0.745535 + 0.541663i
\(629\) 1.42424 13.5507i 0.0567882 0.540303i
\(630\) 2.85402 3.16971i 0.113707 0.126284i
\(631\) 9.44169 + 4.20371i 0.375868 + 0.167347i 0.585971 0.810332i \(-0.300713\pi\)
−0.210103 + 0.977679i \(0.567380\pi\)
\(632\) 33.5043 + 7.12155i 1.33273 + 0.283280i
\(633\) −10.1581 + 2.15918i −0.403750 + 0.0858197i
\(634\) −5.50918 + 2.45284i −0.218797 + 0.0974148i
\(635\) −1.64064 + 5.04936i −0.0651067 + 0.200378i
\(636\) 1.52020 4.67868i 0.0602797 0.185522i
\(637\) 17.0582 7.59481i 0.675871 0.300917i
\(638\) −13.5887 + 2.88837i −0.537982 + 0.114352i
\(639\) −16.5391 3.51548i −0.654275 0.139070i
\(640\) 36.4041 + 16.2082i 1.43900 + 0.640683i
\(641\) 0.0677508 0.0752449i 0.00267599 0.00297199i −0.741805 0.670615i \(-0.766030\pi\)
0.744481 + 0.667643i \(0.232697\pi\)
\(642\) −0.151367 + 1.44016i −0.00597399 + 0.0568387i
\(643\) 11.0931 + 8.05961i 0.437469 + 0.317840i 0.784629 0.619966i \(-0.212854\pi\)
−0.347159 + 0.937806i \(0.612854\pi\)
\(644\) −0.399397 3.80001i −0.0157384 0.149741i
\(645\) −11.9723 + 20.7366i −0.471408 + 0.816503i
\(646\) −1.71401 2.96875i −0.0674367 0.116804i
\(647\) 8.76519 6.36828i 0.344595 0.250363i −0.402003 0.915638i \(-0.631686\pi\)
0.746598 + 0.665275i \(0.231686\pi\)
\(648\) 3.79564 + 4.21549i 0.149107 + 0.165600i
\(649\) −1.17930 3.62951i −0.0462916 0.142471i
\(650\) 17.5460 0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) −7.49434 23.0652i −0.293276 0.902611i −0.983795 0.179297i \(-0.942618\pi\)
0.690519 0.723314i \(-0.257382\pi\)
\(654\) 0.614851 + 0.682861i 0.0240426 + 0.0267020i
\(655\) −18.8752 + 13.7136i −0.737515 + 0.535836i
\(656\) −0.519185 0.899255i −0.0202708 0.0351100i
\(657\) −6.18270 + 10.7087i −0.241210 + 0.417788i
\(658\) −0.0482003 0.458596i −0.00187904 0.0178779i
\(659\) 6.90374 + 5.01586i 0.268932 + 0.195390i 0.714075 0.700069i \(-0.246847\pi\)
−0.445144 + 0.895459i \(0.646847\pi\)
\(660\) 2.19436 20.8780i 0.0854155 0.812674i
\(661\) 25.3495 28.1535i 0.985981 1.09504i −0.00948838 0.999955i \(-0.503020\pi\)
0.995469 0.0950874i \(-0.0303130\pi\)
\(662\) 20.3887 + 9.07765i 0.792431 + 0.352813i
\(663\) −3.36079 0.714358i −0.130522 0.0277434i
\(664\) 33.5352 7.12812i 1.30142 0.276625i
\(665\) −9.82411 + 4.37397i −0.380963 + 0.169615i
\(666\) −4.84913 + 14.9241i −0.187900 + 0.578297i
\(667\) −4.96657 + 15.2855i −0.192306 + 0.591858i
\(668\) 15.7238 7.00068i 0.608371 0.270864i
\(669\) 8.31831 1.76811i 0.321604 0.0683591i
\(670\) −5.21817 1.10916i −0.201596 0.0428504i
\(671\) −8.71162 3.87867i −0.336309 0.149734i
\(672\) 2.67698 2.97309i 0.103267 0.114689i
\(673\) −0.744254 + 7.08110i −0.0286889 + 0.272956i 0.970769 + 0.240018i \(0.0771533\pi\)
−0.999457 + 0.0329387i \(0.989513\pi\)
\(674\) 15.4702 + 11.2398i 0.595891 + 0.432940i
\(675\) −4.27792 40.7017i −0.164657 1.56661i
\(676\) −3.45577 + 5.98557i −0.132914 + 0.230214i
\(677\) −24.0305 41.6220i −0.923567 1.59966i −0.793850 0.608113i \(-0.791927\pi\)
−0.129716 0.991551i \(-0.541407\pi\)
\(678\) −3.21177 + 2.33349i −0.123347 + 0.0896171i
\(679\) −2.69587 2.99407i −0.103458 0.114902i
\(680\) 3.64323 + 11.2127i 0.139712 + 0.429988i
\(681\) −19.6390 −0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) −3.91250 12.0414i −0.149598 0.460416i
\(685\) 31.6301 + 35.1288i 1.20852 + 1.34220i
\(686\) −5.71346 + 4.15107i −0.218141 + 0.158489i
\(687\) 7.65051 + 13.2511i 0.291885 + 0.505560i
\(688\) 4.91537 8.51366i 0.187397 0.324580i
\(689\) 1.08756 + 10.3474i 0.0414326 + 0.394205i
\(690\) 6.12682 + 4.45140i 0.233244 + 0.169462i
\(691\) −2.84872 + 27.1038i −0.108371 + 1.03108i 0.796282 + 0.604926i \(0.206797\pi\)
−0.904652 + 0.426151i \(0.859869\pi\)
\(692\) 21.0690 23.3995i 0.800922 0.889514i
\(693\) 6.27335 + 2.79308i 0.238305 + 0.106100i
\(694\) −17.4785 3.71516i −0.663473 0.141026i
\(695\) −67.8654 + 14.4252i −2.57428 + 0.547180i
\(696\) −9.80794 + 4.36678i −0.371769 + 0.165522i
\(697\) 0.305671 0.940760i 0.0115781 0.0356338i
\(698\) −1.19187 + 3.66820i −0.0451130 + 0.138844i
\(699\) 8.10873 3.61024i 0.306700 0.136552i
\(700\) 9.95640 2.11630i 0.376317 0.0799886i
\(701\) −8.30364 1.76499i −0.313624 0.0666629i 0.0484104 0.998828i \(-0.484584\pi\)
−0.362035 + 0.932165i \(0.617918\pi\)
\(702\) 8.57670 + 3.81859i 0.323707 + 0.144124i
\(703\) 26.4734 29.4016i 0.998461 1.10890i
\(704\) 0.540759 5.14498i 0.0203806 0.193909i
\(705\) −2.37125 1.72281i −0.0893065 0.0648849i
\(706\) 0.841002 + 8.00160i 0.0316515 + 0.301144i
\(707\) −1.45328 + 2.51716i −0.0546564 + 0.0946676i
\(708\) −0.637869 1.10482i −0.0239726 0.0415217i
\(709\) 18.9198 13.7460i 0.710546 0.516242i −0.172804 0.984956i \(-0.555283\pi\)
0.883350 + 0.468714i \(0.155283\pi\)
\(710\) 13.2326 + 14.6963i 0.496610 + 0.551542i
\(711\) 9.51971 + 29.2987i 0.357017 + 1.09879i
\(712\) −10.7774 −0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) 13.7201 + 42.2261i 0.513102 + 1.57917i
\(716\) 0.134316 + 0.149173i 0.00501963 + 0.00557487i
\(717\) 0.431198 0.313283i 0.0161034 0.0116998i
\(718\) 9.03230 + 15.6444i 0.337083 + 0.583844i
\(719\) −6.48843 + 11.2383i −0.241978 + 0.419118i −0.961278 0.275582i \(-0.911129\pi\)
0.719300 + 0.694700i \(0.244463\pi\)
\(720\) 1.16349 + 11.0699i 0.0433609 + 0.412551i
\(721\) 3.85733 + 2.80252i 0.143655 + 0.104371i
\(722\) −0.328898 + 3.12925i −0.0122403 + 0.116459i
\(723\) −9.28104 + 10.3076i −0.345166 + 0.383345i
\(724\) −10.7690 4.79469i −0.400228 0.178193i
\(725\) −41.8800 8.90187i −1.55538 0.330607i
\(726\) −3.61409 + 0.768199i −0.134132 + 0.0285106i
\(727\) −11.3490 + 5.05290i −0.420911 + 0.187402i −0.606252 0.795273i \(-0.707328\pi\)
0.185341 + 0.982674i \(0.440661\pi\)
\(728\) −1.66812 + 5.13393i −0.0618245 + 0.190276i
\(729\) 2.33825 7.19640i 0.0866020 0.266533i
\(730\) 13.2119 5.88232i 0.488995 0.217715i
\(731\) 9.16031 1.94708i 0.338806 0.0720155i
\(732\) −3.11812 0.662777i −0.115249 0.0244970i
\(733\) −31.2043 13.8930i −1.15256 0.513151i −0.260678 0.965426i \(-0.583946\pi\)
−0.891879 + 0.452275i \(0.850613\pi\)
\(734\) −12.4635 + 13.8421i −0.460035 + 0.510921i
\(735\) −2.24422 + 21.3523i −0.0827792 + 0.787591i
\(736\) −15.4244 11.2065i −0.568552 0.413077i
\(737\) −0.897783 8.54183i −0.0330702 0.314642i
\(738\) −0.569607 + 0.986589i −0.0209675 + 0.0363168i
\(739\) 6.18747 + 10.7170i 0.227610 + 0.394231i 0.957099 0.289761i \(-0.0935757\pi\)
−0.729490 + 0.683992i \(0.760242\pi\)
\(740\) −47.6171 + 34.5959i −1.75044 + 1.27177i
\(741\) −6.67571 7.41413i −0.245238 0.272365i
\(742\) −0.581597 1.78997i −0.0213511 0.0657119i
\(743\) −16.2455 −0.595990 −0.297995 0.954567i \(-0.596318\pi\)
−0.297995 + 0.954567i \(0.596318\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 2.64325 + 8.13509i 0.0967763 + 0.297847i
\(747\) 20.6325 + 22.9148i 0.754905 + 0.838407i
\(748\) −6.64249 + 4.82605i −0.242873 + 0.176458i
\(749\) −0.888356 1.53868i −0.0324598 0.0562220i
\(750\) −4.32029 + 7.48296i −0.157755 + 0.273239i
\(751\) 1.12768 + 10.7292i 0.0411497 + 0.391513i 0.995641 + 0.0932730i \(0.0297329\pi\)
−0.954491 + 0.298240i \(0.903600\pi\)
\(752\) 0.973546 + 0.707322i 0.0355016 + 0.0257934i
\(753\) −0.570817 + 5.43097i −0.0208017 + 0.197915i
\(754\) 6.57211 7.29907i 0.239342 0.265817i
\(755\) 52.0663 + 23.1814i 1.89489 + 0.843658i
\(756\) 5.32738 + 1.13237i 0.193755 + 0.0411839i
\(757\) −40.2035 + 8.54552i −1.46122 + 0.310592i −0.868851 0.495074i \(-0.835141\pi\)
−0.592370 + 0.805666i \(0.701808\pi\)
\(758\) 2.92203 1.30097i 0.106133 0.0472535i
\(759\) −3.76776 + 11.5960i −0.136761 + 0.420907i
\(760\) −10.5788 + 32.5582i −0.383733 + 1.18101i
\(761\) 17.9608 7.99665i 0.651078 0.289878i −0.0544972 0.998514i \(-0.517356\pi\)
0.705575 + 0.708636i \(0.250689\pi\)
\(762\) 0.871527 0.185249i 0.0315721 0.00671086i
\(763\) −1.10276 0.234400i −0.0399227 0.00848584i
\(764\) 29.3916 + 13.0860i 1.06335 + 0.473435i
\(765\) −7.09514 + 7.87995i −0.256525 + 0.284900i
\(766\) −0.361896 + 3.44321i −0.0130758 + 0.124408i
\(767\) 2.18283 + 1.58592i 0.0788174 + 0.0572642i
\(768\) −0.936174 8.90710i −0.0337813 0.321407i
\(769\) −1.89417 + 3.28080i −0.0683055 + 0.118309i −0.898155 0.439678i \(-0.855093\pi\)
0.829850 + 0.557986i \(0.188426\pi\)
\(770\) −4.01575 6.95549i −0.144718 0.250658i
\(771\) −3.30558 + 2.40165i −0.119048 + 0.0864932i
\(772\) −5.77739 6.41644i −0.207933 0.230933i
\(773\) −7.83963 24.1279i −0.281972 0.867820i −0.987290 0.158929i \(-0.949196\pi\)
0.705318 0.708891i \(-0.250804\pi\)
\(774\) −10.7855 −0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) 2.21665 + 6.82215i 0.0795219 + 0.244743i
\(778\) −8.58216 9.53145i −0.307685 0.341719i
\(779\) 2.32370 1.68826i 0.0832551 0.0604884i
\(780\) 7.42103 + 12.8536i 0.265716 + 0.460233i
\(781\) −15.9194 + 27.5732i −0.569641 + 0.986647i
\(782\) −0.309607 2.94572i −0.0110715 0.105339i
\(783\) −18.5341 13.4658i −0.662354 0.481228i
\(784\) 0.921390 8.76644i 0.0329068 0.313087i
\(785\) 37.5775 41.7341i 1.34120 1.48955i
\(786\) 3.57693 + 1.59255i 0.127585 + 0.0568044i
\(787\) 25.3796 + 5.39460i 0.904685 + 0.192297i 0.636687 0.771123i \(-0.280305\pi\)
0.267998 + 0.963419i \(0.413638\pi\)
\(788\) 23.7335 5.04471i 0.845470 0.179710i
\(789\) 2.06827 0.920852i 0.0736323 0.0327832i
\(790\) 11.1340 34.2670i 0.396130 1.21916i
\(791\) 1.50518 4.63247i 0.0535181 0.164712i
\(792\) 19.9706 8.89147i 0.709623 0.315945i
\(793\) 6.59468 1.40174i 0.234184 0.0497773i
\(794\) 21.9585 + 4.66742i 0.779278 + 0.165641i
\(795\) −10.9288 4.86584i −0.387606 0.172573i
\(796\) 4.34735 4.82822i 0.154088 0.171132i
\(797\) 1.93405 18.4013i 0.0685076 0.651806i −0.905353 0.424660i \(-0.860394\pi\)
0.973861 0.227146i \(-0.0729396\pi\)
\(798\) 1.46005 + 1.06079i 0.0516851 + 0.0375514i
\(799\) 0.119827 + 1.14007i 0.00423916 + 0.0403329i
\(800\) 25.3951 43.9856i 0.897852 1.55513i
\(801\) −4.84652 8.39442i −0.171243 0.296602i
\(802\) −6.91143 + 5.02145i −0.244051 + 0.177314i
\(803\) 15.5801 + 17.3034i 0.549809 + 0.610624i
\(804\) −0.887235 2.73063i −0.0312904 0.0963019i
\(805\) −9.29174 −0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) 2.85926 + 8.79990i 0.100588 + 0.309579i
\(809\) 24.5891 + 27.3090i 0.864507 + 0.960132i 0.999528 0.0307106i \(-0.00977704\pi\)
−0.135022 + 0.990843i \(0.543110\pi\)
\(810\) 4.82731 3.50725i 0.169614 0.123232i
\(811\) 19.7151 + 34.1475i 0.692289 + 1.19908i 0.971086 + 0.238730i \(0.0767310\pi\)
−0.278797 + 0.960350i \(0.589936\pi\)
\(812\) 2.84894 4.93451i 0.0999782 0.173167i
\(813\) 1.30399 + 12.4066i 0.0457328 + 0.435119i
\(814\) 23.9051 + 17.3680i 0.837872 + 0.608749i
\(815\) 0.404930 3.85265i 0.0141841 0.134952i
\(816\) −1.08531 + 1.20536i −0.0379934 + 0.0421960i
\(817\) 24.8420 + 11.0603i 0.869110 + 0.386953i
\(818\) −2.32548 0.494295i −0.0813083 0.0172826i
\(819\) −4.74891 + 1.00941i −0.165940 + 0.0352717i
\(820\) −3.90355 + 1.73797i −0.136318 + 0.0606926i
\(821\) 0.457525 1.40812i 0.0159677 0.0491436i −0.942755 0.333486i \(-0.891775\pi\)
0.958723 + 0.284342i \(0.0917751\pi\)
\(822\) 2.45142 7.54471i 0.0855032 0.263152i
\(823\) −35.5051 + 15.8079i −1.23763 + 0.551029i −0.918025 0.396521i \(-0.870217\pi\)
−0.319606 + 0.947551i \(0.603551\pi\)
\(824\) 14.8465 3.15572i 0.517203 0.109935i
\(825\) −31.7711 6.75317i −1.10613 0.235115i
\(826\) −0.445877 0.198517i −0.0155140 0.00690729i
\(827\) 22.7078 25.2196i 0.789628 0.876971i −0.205182 0.978724i \(-0.565779\pi\)
0.994810 + 0.101753i \(0.0324452\pi\)
\(828\) 1.14351 10.8798i 0.0397398 0.378099i
\(829\) −13.3736 9.71650i −0.464485 0.337468i 0.330803 0.943700i \(-0.392680\pi\)
−0.795288 + 0.606232i \(0.792680\pi\)
\(830\) −3.76968 35.8661i −0.130847 1.24493i
\(831\) 5.22073 9.04256i 0.181105 0.313683i
\(832\) 1.82877 + 3.16752i 0.0634012 + 0.109814i
\(833\) 6.79340 4.93569i 0.235377 0.171012i
\(834\) 7.79114 + 8.65293i 0.269785 + 0.299627i
\(835\) −12.9341 39.8071i −0.447603 1.37758i
\(836\) −23.8409 −0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) −16.7110 51.4313i −0.576929 1.77561i −0.629514 0.776989i \(-0.716746\pi\)
0.0525843 0.998616i \(-0.483254\pi\)
\(840\) −4.15319 4.61258i −0.143299 0.159149i
\(841\) 4.07162 2.95820i 0.140401 0.102007i
\(842\) 7.47562 + 12.9482i 0.257627 + 0.446223i
\(843\) −6.94819 + 12.0346i −0.239308 + 0.414494i
\(844\) −1.83401 17.4494i −0.0631291 0.600633i
\(845\) 13.5975 + 9.87918i 0.467769 + 0.339854i
\(846\) 0.138002 1.31300i 0.00474462 0.0451420i
\(847\) 3.03337 3.36890i 0.104228 0.115757i
\(848\) 4.48697 + 1.99773i 0.154083 + 0.0686023i
\(849\) −20.0331 4.25816i −0.687534 0.146140i
\(850\) 7.71808 1.64053i 0.264728 0.0562697i
\(851\) 31.2293 13.9042i 1.07053 0.476629i
\(852\) −3.28896 + 10.1224i −0.112678 + 0.346787i
\(853\) 12.2297 37.6392i 0.418738 1.28874i −0.490127 0.871651i \(-0.663050\pi\)
0.908865 0.417091i \(-0.136950\pi\)
\(854\) −1.11415 + 0.496050i −0.0381253 + 0.0169745i
\(855\) −30.1165 + 6.40145i −1.02996 + 0.218925i
\(856\) −5.53238 1.17594i −0.189093 0.0401929i
\(857\) 11.6249 + 5.17574i 0.397099 + 0.176800i 0.595564 0.803308i \(-0.296929\pi\)
−0.198464 + 0.980108i \(0.563595\pi\)
\(858\) 4.98576 5.53725i 0.170211 0.189039i
\(859\) 2.21123 21.0385i 0.0754462 0.717823i −0.889777 0.456396i \(-0.849140\pi\)
0.965223 0.261427i \(-0.0841931\pi\)
\(860\) −32.7281 23.7784i −1.11602 0.810835i
\(861\) 0.0544344 + 0.517909i 0.00185512 + 0.0176503i
\(862\) −4.00618 + 6.93891i −0.136451 + 0.236340i
\(863\) −4.66987 8.08845i −0.158964 0.275334i 0.775531 0.631309i \(-0.217482\pi\)
−0.934495 + 0.355975i \(0.884149\pi\)
\(864\) 21.9861 15.9739i 0.747983 0.543441i
\(865\) −51.2354 56.9027i −1.74206 1.93475i
\(866\) −5.24064 16.1290i −0.178084 0.548087i
\(867\) 13.7957 0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 3.48982 + 10.7406i 0.118316 + 0.364139i
\(871\) 4.06320 + 4.51264i 0.137676 + 0.152905i
\(872\) −2.90353 + 2.10954i −0.0983260 + 0.0714380i
\(873\) −5.76760 9.98977i −0.195204 0.338102i
\(874\) 4.30028 7.44830i 0.145459 0.251942i
\(875\) −1.10815 10.5433i −0.0374621 0.356429i
\(876\) 6.29703 + 4.57506i 0.212757 + 0.154577i
\(877\) −2.34512 + 22.3123i −0.0791892 + 0.753435i 0.880817 + 0.473456i \(0.156994\pi\)
−0.960006 + 0.279978i \(0.909673\pi\)
\(878\) −8.39365 + 9.32209i −0.283272 + 0.314605i
\(879\) −10.2231 4.55161i −0.344816 0.153522i
\(880\) 20.5014 + 4.35772i 0.691104 + 0.146899i
\(881\) 45.4168 9.65365i 1.53013 0.325240i 0.635520 0.772084i \(-0.280786\pi\)
0.894612 + 0.446844i \(0.147452\pi\)
\(882\) −8.83472 + 3.93347i −0.297480 + 0.132447i
\(883\) 11.2913 34.7512i 0.379984 1.16947i −0.560070 0.828445i \(-0.689226\pi\)
0.940054 0.341026i \(-0.110774\pi\)
\(884\) 1.79381 5.52077i 0.0603323 0.185684i
\(885\) −2.83412 + 1.26183i −0.0952681 + 0.0424161i
\(886\) 11.9780 2.54601i 0.402410 0.0855348i
\(887\) −28.0582 5.96396i −0.942102 0.200250i −0.288836 0.957378i \(-0.593268\pi\)
−0.653266 + 0.757128i \(0.726602\pi\)
\(888\) 20.8610 + 9.28793i 0.700051 + 0.311683i
\(889\) −0.731487 + 0.812399i −0.0245333 + 0.0272470i
\(890\) −1.18501 + 11.2746i −0.0397217 + 0.377926i
\(891\) 7.77192 + 5.64663i 0.260369 + 0.189169i
\(892\) 1.50183 + 14.2890i 0.0502851 + 0.478431i
\(893\) −1.66433 + 2.88270i −0.0556945 + 0.0964658i
\(894\) 6.26408 + 10.8497i 0.209502 + 0.362869i
\(895\) 0.394914 0.286922i 0.0132005 0.00959074i
\(896\) 5.49031 + 6.09761i 0.183418 + 0.203707i
\(897\) −2.66381 8.19836i −0.0889420 0.273735i
\(898\) 6.34235 0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) 1.44586 + 4.44989i 0.0481685 + 0.148247i
\(902\) 1.43538 + 1.59415i 0.0477929 + 0.0530794i
\(903\) −3.98869 + 2.89795i −0.132735 + 0.0964378i
\(904\) −7.75296 13.4285i −0.257860 0.446626i
\(905\) −14.3332 + 24.8259i −0.476453 + 0.825240i
\(906\) −0.999786 9.51233i −0.0332157 0.316026i
\(907\) 17.9518 + 13.0427i 0.596079 + 0.433077i 0.844485 0.535579i \(-0.179907\pi\)
−0.248406 + 0.968656i \(0.579907\pi\)
\(908\) 3.46824 32.9981i 0.115098 1.09508i
\(909\) −5.56837 + 6.18430i −0.184691 + 0.205120i
\(910\) 5.18737 + 2.30957i 0.171960 + 0.0765614i
\(911\) 28.2024 + 5.99460i 0.934386 + 0.198610i 0.649856 0.760057i \(-0.274829\pi\)
0.284530 + 0.958667i \(0.408162\pi\)
\(912\) −4.60677 + 0.979199i −0.152545 + 0.0324245i
\(913\) 53.0423 23.6160i 1.75544 0.781574i
\(914\) 6.64760 20.4592i 0.219883 0.676731i
\(915\) −2.39551 + 7.37263i −0.0791932 + 0.243732i
\(916\) −23.6160 + 10.5145i −0.780295 + 0.347410i
\(917\) −4.69898 + 0.998800i −0.155174 + 0.0329833i
\(918\) 4.12972 + 0.877799i 0.136301 + 0.0289717i
\(919\) 43.9071 + 19.5487i 1.44836 + 0.644853i 0.972125 0.234464i \(-0.0753335\pi\)
0.476238 + 0.879317i \(0.342000\pi\)
\(920\) −19.7924 + 21.9817i −0.652537 + 0.724715i
\(921\) 2.89771 27.5699i 0.0954828 0.908459i
\(922\) −3.71975 2.70256i −0.122503 0.0890039i
\(923\) −2.35294 22.3868i −0.0774481 0.736869i
\(924\) 2.16127 3.74343i 0.0711007 0.123150i
\(925\) 45.5334 + 78.8662i 1.49713 + 2.59310i
\(926\) 19.7010 14.3136i 0.647416 0.470376i
\(927\) 9.13433 + 10.1447i 0.300011 + 0.333196i
\(928\) −8.78572 27.0397i −0.288405 0.887621i
\(929\) 7.01617 0.230193 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) 4.63406 + 14.2622i 0.151794 + 0.467173i
\(933\) −1.43795 1.59701i −0.0470765 0.0522837i
\(934\) 20.0497 14.5669i 0.656045 0.476644i
\(935\) 9.98321 + 17.2914i 0.326486 + 0.565490i
\(936\) −7.72770 + 13.3848i −0.252588 + 0.437495i
\(937\) 1.34639 + 12.8101i 0.0439848 + 0.418487i 0.994253 + 0.107055i \(0.0341421\pi\)
−0.950268 + 0.311432i \(0.899191\pi\)
\(938\) −0.888663 0.645651i −0.0290159 0.0210813i
\(939\) 1.01359 9.64371i 0.0330774 0.314711i
\(940\) 3.31350 3.68001i 0.108074 0.120029i
\(941\) −45.7131 20.3528i −1.49021 0.663482i −0.509768 0.860312i \(-0.670269\pi\)
−0.980438 + 0.196830i \(0.936935\pi\)
\(942\) −9.21866 1.95949i −0.300360 0.0638436i
\(943\) 2.42751 0.515982i 0.0790505 0.0168027i
\(944\) 1.16358 0.518061i 0.0378714 0.0168615i
\(945\) 4.09278 12.5963i 0.133138 0.409757i
\(946\) −6.27584 + 19.3151i −0.204045 + 0.627987i
\(947\) 47.3837 21.0966i 1.53976 0.685547i 0.550928 0.834553i \(-0.314274\pi\)
0.988836 + 0.149006i \(0.0476073\pi\)
\(948\) 18.9678 4.03172i 0.616044 0.130944i
\(949\) −16.1021 3.42261i −0.522697 0.111103i
\(950\) 20.9307 + 9.31896i 0.679083 + 0.302347i
\(951\) −5.28126 + 5.86543i −0.171256 + 0.190200i
\(952\) −0.253749 + 2.41426i −0.00822405 + 0.0782467i
\(953\) −15.1571 11.0123i −0.490987 0.356723i 0.314577 0.949232i \(-0.398137\pi\)
−0.805564 + 0.592509i \(0.798137\pi\)
\(954\) −0.563263 5.35909i −0.0182363 0.173507i
\(955\) 39.1193 67.7565i 1.26587 2.19255i
\(956\) 0.450241 + 0.779840i 0.0145618 + 0.0252218i
\(957\) −14.7096 + 10.6872i −0.475494 + 0.345467i
\(958\) −15.3377 17.0342i −0.495537 0.550350i
\(959\) 3.00772 + 9.25682i 0.0971245 + 0.298918i
\(960\) −4.20549 −0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) −1.57194 4.83793i −0.0506550 0.155900i
\(964\) −15.6803 17.4147i −0.505027 0.560889i
\(965\) −16.9866 + 12.3415i −0.546817 + 0.397285i
\(966\) 0.779674 + 1.35044i 0.0250856 + 0.0434496i
\(967\) 23.8923 41.3827i 0.768324 1.33078i −0.170146 0.985419i \(-0.554424\pi\)
0.938471 0.345358i \(-0.112243\pi\)
\(968\) −1.50848 14.3522i −0.0484844 0.461298i
\(969\) −3.62969 2.63713i −0.116603 0.0847167i
\(970\) −1.41022 + 13.4174i −0.0452795 + 0.430805i
\(971\) −20.8104 + 23.1123i −0.667838 + 0.741709i −0.977915 0.209002i \(-0.932978\pi\)
0.310077 + 0.950711i \(0.399645\pi\)
\(972\) 22.4867 + 10.0117i 0.721260 + 0.321126i
\(973\) −13.9738 2.97022i −0.447979 0.0952208i
\(974\) 19.2315 4.08778i 0.616217 0.130981i
\(975\) 20.9787 9.34033i 0.671857 0.299130i
\(976\) 0.983507 3.02692i 0.0314813 0.0968894i
\(977\) −6.82283 + 20.9985i −0.218282 + 0.671802i 0.780623 + 0.625003i \(0.214902\pi\)
−0.998904 + 0.0467994i \(0.985098\pi\)
\(978\) −0.593911 + 0.264426i −0.0189912 + 0.00845542i
\(979\) −17.8532 + 3.79481i −0.570590 + 0.121283i
\(980\) −35.4806 7.54163i −1.13339 0.240909i
\(981\) −2.94880 1.31289i −0.0941478 0.0419173i
\(982\) 12.9013 14.3284i 0.411698 0.457237i
\(983\) 3.92785 37.3710i 0.125279 1.19195i −0.733531 0.679656i \(-0.762129\pi\)
0.858810 0.512294i \(-0.171204\pi\)
\(984\) 1.34118 + 0.974425i 0.0427553 + 0.0310635i
\(985\) −6.16764 58.6811i −0.196517 1.86974i
\(986\) 2.20846 3.82517i 0.0703318 0.121818i
\(987\) −0.301756 0.522656i −0.00960499 0.0166363i
\(988\) 13.6364 9.90744i 0.433832 0.315198i
\(989\) 15.7217 + 17.4608i 0.499922 + 0.555220i
\(990\) −7.10585 21.8695i −0.225839 0.695060i
\(991\) −6.77397 −0.215182 −0.107591 0.994195i \(-0.534314\pi\)
−0.107591 + 0.994195i \(0.534314\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 1.25829 + 3.87263i 0.0399106 + 0.122832i
\(995\) −10.5719 11.7413i −0.335151 0.372223i
\(996\) 15.7025 11.4086i 0.497554 0.361494i
\(997\) 14.7866 + 25.6112i 0.468298 + 0.811115i 0.999344 0.0362278i \(-0.0115342\pi\)
−0.531046 + 0.847343i \(0.678201\pi\)
\(998\) −14.2397 + 24.6639i −0.450751 + 0.780724i
\(999\) 5.09338 + 48.4603i 0.161147 + 1.53321i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.t.547.1 16
31.2 even 5 31.2.g.a.18.2 16
31.3 odd 30 961.2.c.i.521.3 16
31.4 even 5 961.2.g.k.816.2 16
31.5 even 3 961.2.d.p.531.1 16
31.6 odd 6 961.2.g.m.844.1 16
31.7 even 15 31.2.g.a.19.2 yes 16
31.8 even 5 961.2.g.s.846.1 16
31.9 even 15 961.2.d.p.628.1 16
31.10 even 15 961.2.d.o.388.4 16
31.11 odd 30 961.2.d.n.374.4 16
31.12 odd 30 961.2.g.j.338.2 16
31.13 odd 30 961.2.a.j.1.3 8
31.14 even 15 inner 961.2.g.t.448.1 16
31.15 odd 10 961.2.c.i.439.3 16
31.16 even 5 961.2.c.j.439.3 16
31.17 odd 30 961.2.g.n.448.1 16
31.18 even 15 961.2.a.i.1.3 8
31.19 even 15 961.2.g.k.338.2 16
31.20 even 15 961.2.d.o.374.4 16
31.21 odd 30 961.2.d.n.388.4 16
31.22 odd 30 961.2.d.q.628.1 16
31.23 odd 10 961.2.g.m.846.1 16
31.24 odd 30 961.2.g.l.732.2 16
31.25 even 3 961.2.g.s.844.1 16
31.26 odd 6 961.2.d.q.531.1 16
31.27 odd 10 961.2.g.j.816.2 16
31.28 even 15 961.2.c.j.521.3 16
31.29 odd 10 961.2.g.l.235.2 16
31.30 odd 2 961.2.g.n.547.1 16
93.2 odd 10 279.2.y.c.235.1 16
93.38 odd 30 279.2.y.c.19.1 16
93.44 even 30 8649.2.a.be.1.6 8
93.80 odd 30 8649.2.a.bf.1.6 8
124.7 odd 30 496.2.bg.c.81.1 16
124.95 odd 10 496.2.bg.c.49.1 16
155.2 odd 20 775.2.ck.a.49.3 32
155.7 odd 60 775.2.ck.a.174.2 32
155.33 odd 20 775.2.ck.a.49.2 32
155.38 odd 60 775.2.ck.a.174.3 32
155.64 even 10 775.2.bl.a.576.1 16
155.69 even 30 775.2.bl.a.701.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.2 even 5
31.2.g.a.19.2 yes 16 31.7 even 15
279.2.y.c.19.1 16 93.38 odd 30
279.2.y.c.235.1 16 93.2 odd 10
496.2.bg.c.49.1 16 124.95 odd 10
496.2.bg.c.81.1 16 124.7 odd 30
775.2.bl.a.576.1 16 155.64 even 10
775.2.bl.a.701.1 16 155.69 even 30
775.2.ck.a.49.2 32 155.33 odd 20
775.2.ck.a.49.3 32 155.2 odd 20
775.2.ck.a.174.2 32 155.7 odd 60
775.2.ck.a.174.3 32 155.38 odd 60
961.2.a.i.1.3 8 31.18 even 15
961.2.a.j.1.3 8 31.13 odd 30
961.2.c.i.439.3 16 31.15 odd 10
961.2.c.i.521.3 16 31.3 odd 30
961.2.c.j.439.3 16 31.16 even 5
961.2.c.j.521.3 16 31.28 even 15
961.2.d.n.374.4 16 31.11 odd 30
961.2.d.n.388.4 16 31.21 odd 30
961.2.d.o.374.4 16 31.20 even 15
961.2.d.o.388.4 16 31.10 even 15
961.2.d.p.531.1 16 31.5 even 3
961.2.d.p.628.1 16 31.9 even 15
961.2.d.q.531.1 16 31.26 odd 6
961.2.d.q.628.1 16 31.22 odd 30
961.2.g.j.338.2 16 31.12 odd 30
961.2.g.j.816.2 16 31.27 odd 10
961.2.g.k.338.2 16 31.19 even 15
961.2.g.k.816.2 16 31.4 even 5
961.2.g.l.235.2 16 31.29 odd 10
961.2.g.l.732.2 16 31.24 odd 30
961.2.g.m.844.1 16 31.6 odd 6
961.2.g.m.846.1 16 31.23 odd 10
961.2.g.n.448.1 16 31.17 odd 30
961.2.g.n.547.1 16 31.30 odd 2
961.2.g.s.844.1 16 31.25 even 3
961.2.g.s.846.1 16 31.8 even 5
961.2.g.t.448.1 16 31.14 even 15 inner
961.2.g.t.547.1 16 1.1 even 1 trivial
8649.2.a.be.1.6 8 93.44 even 30
8649.2.a.bf.1.6 8 93.80 odd 30