Properties

Label 31.2.g.a.18.2
Level 31
Weight 2
Character 31.18
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 18.2
Root \(1.83925i\)
Character \(\chi\) = 31.18
Dual form 31.2.g.a.19.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.557811 - 0.405274i) q^{2}\) \(+(-0.824384 + 0.367040i) q^{3}\) \(+(-0.471127 + 1.44998i) q^{4}\) \(+(-1.85376 - 3.21080i) q^{5}\) \(+(-0.311099 + 0.538840i) q^{6}\) \(+(0.510810 + 0.567312i) q^{7}\) \(+(0.750969 + 2.31124i) q^{8}\) \(+(-1.46250 + 1.62427i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.557811 - 0.405274i) q^{2}\) \(+(-0.824384 + 0.367040i) q^{3}\) \(+(-0.471127 + 1.44998i) q^{4}\) \(+(-1.85376 - 3.21080i) q^{5}\) \(+(-0.311099 + 0.538840i) q^{6}\) \(+(0.510810 + 0.567312i) q^{7}\) \(+(0.750969 + 2.31124i) q^{8}\) \(+(-1.46250 + 1.62427i) q^{9}\) \(+(-2.33530 - 1.03974i) q^{10}\) \(+(4.02569 - 0.855686i) q^{11}\) \(+(-0.143810 - 1.36826i) q^{12}\) \(+(0.304152 - 2.89381i) q^{13}\) \(+(0.514852 + 0.109435i) q^{14}\) \(+(2.70670 + 1.96653i) q^{15}\) \(+(-1.11127 - 0.807384i) q^{16}\) \(+(-1.27993 - 0.272057i) q^{17}\) \(+(-0.157525 + 1.49875i) q^{18}\) \(+(0.397160 + 3.77873i) q^{19}\) \(+(5.52896 - 1.17522i) q^{20}\) \(+(-0.629330 - 0.280196i) q^{21}\) \(+(1.89879 - 2.10882i) q^{22}\) \(+(-1.01449 - 3.12228i) q^{23}\) \(+(-1.46740 - 1.62972i) q^{24}\) \(+(-4.37284 + 7.57398i) q^{25}\) \(+(-1.00313 - 1.73747i) q^{26}\) \(+(1.44606 - 4.45052i) q^{27}\) \(+(-1.06325 + 0.473389i) q^{28}\) \(+(-3.96065 + 2.87758i) q^{29}\) \(+2.30681 q^{30}\) \(+(-1.63580 + 5.32204i) q^{31}\) \(-5.80746 q^{32}\) \(+(-3.00464 + 2.18300i) q^{33}\) \(+(-0.824217 + 0.366965i) q^{34}\) \(+(0.874609 - 2.69177i) q^{35}\) \(+(-1.66614 - 2.88584i) q^{36}\) \(+(5.20639 - 9.01773i) q^{37}\) \(+(1.75296 + 1.94686i) q^{38}\) \(+(0.811405 + 2.49725i) q^{39}\) \(+(6.02884 - 6.69570i) q^{40}\) \(+(0.690591 + 0.307471i) q^{41}\) \(+(-0.464603 + 0.0987545i) q^{42}\) \(+(0.748099 + 7.11768i) q^{43}\) \(+(-0.655882 + 6.24030i) q^{44}\) \(+(7.92634 + 1.68480i) q^{45}\) \(+(-1.83127 - 1.33050i) q^{46}\) \(+(0.708753 + 0.514939i) q^{47}\) \(+(1.21245 + 0.257715i) q^{48}\) \(+(0.670783 - 6.38208i) q^{49}\) \(+(0.630315 + 5.99705i) q^{50}\) \(+(1.15501 - 0.245505i) q^{51}\) \(+(4.05268 + 1.80437i) q^{52}\) \(+(2.39261 - 2.65727i) q^{53}\) \(+(-0.997049 - 3.06860i) q^{54}\) \(+(-10.2101 - 11.3395i) q^{55}\) \(+(-0.927595 + 1.60664i) q^{56}\) \(+(-1.71435 - 2.96935i) q^{57}\) \(+(-1.04309 + 3.21029i) q^{58}\) \(+(0.847103 - 0.377155i) q^{59}\) \(+(-4.12664 + 2.99818i) q^{60}\) \(+2.31704 q^{61}\) \(+(1.24441 + 3.63164i) q^{62}\) \(-1.66853 q^{63}\) \(+(-1.01693 + 0.738843i) q^{64}\) \(+(-9.85528 + 4.38785i) q^{65}\) \(+(-0.791311 + 2.43540i) q^{66}\) \(+(1.04345 + 1.80731i) q^{67}\) \(+(0.997488 - 1.72770i) q^{68}\) \(+(1.98233 + 2.20160i) q^{69}\) \(+(-0.603037 - 1.85596i) q^{70}\) \(+(-5.17645 + 5.74903i) q^{71}\) \(+(-4.85238 - 2.16042i) q^{72}\) \(+(5.53385 - 1.17626i) q^{73}\) \(+(-0.750466 - 7.14021i) q^{74}\) \(+(0.824950 - 7.84887i) q^{75}\) \(+(-5.66619 - 1.20439i) q^{76}\) \(+(2.54180 + 1.84673i) q^{77}\) \(+(1.46468 + 1.06415i) q^{78}\) \(+(13.7867 + 2.93046i) q^{79}\) \(+(-0.532328 + 5.06476i) q^{80}\) \(+(-0.243989 - 2.32140i) q^{81}\) \(+(0.509829 - 0.108368i) q^{82}\) \(+(-12.8880 - 5.73812i) q^{83}\) \(+(0.702773 - 0.780508i) q^{84}\) \(+(1.49916 + 4.61393i) q^{85}\) \(+(3.30191 + 3.66714i) q^{86}\) \(+(2.20891 - 3.82595i) q^{87}\) \(+(5.00086 + 8.66175i) q^{88}\) \(+(-1.37043 + 4.21776i) q^{89}\) \(+(5.10420 - 2.27254i) q^{90}\) \(+(1.79706 - 1.30564i) q^{91}\) \(+5.00520 q^{92}\) \(+(-0.604868 - 4.98781i) q^{93}\) \(+0.604042 q^{94}\) \(+(11.3965 - 8.28005i) q^{95}\) \(+(4.78758 - 2.13157i) q^{96}\) \(+(-1.63088 + 5.01933i) q^{97}\) \(+(-2.21232 - 3.83184i) q^{98}\) \(+(-4.49770 + 7.79025i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.557811 0.405274i 0.394432 0.286572i −0.372837 0.927897i \(-0.621615\pi\)
0.767269 + 0.641325i \(0.221615\pi\)
\(3\) −0.824384 + 0.367040i −0.475958 + 0.211910i −0.630673 0.776049i \(-0.717221\pi\)
0.154714 + 0.987959i \(0.450554\pi\)
\(4\) −0.471127 + 1.44998i −0.235564 + 0.724990i
\(5\) −1.85376 3.21080i −0.829026 1.43591i −0.898803 0.438352i \(-0.855562\pi\)
0.0697774 0.997563i \(-0.477771\pi\)
\(6\) −0.311099 + 0.538840i −0.127006 + 0.219981i
\(7\) 0.510810 + 0.567312i 0.193068 + 0.214424i 0.831905 0.554919i \(-0.187251\pi\)
−0.638836 + 0.769343i \(0.720584\pi\)
\(8\) 0.750969 + 2.31124i 0.265508 + 0.817148i
\(9\) −1.46250 + 1.62427i −0.487500 + 0.541424i
\(10\) −2.33530 1.03974i −0.738487 0.328796i
\(11\) 4.02569 0.855686i 1.21379 0.257999i 0.443842 0.896105i \(-0.353615\pi\)
0.769948 + 0.638106i \(0.220282\pi\)
\(12\) −0.143810 1.36826i −0.0415145 0.394984i
\(13\) 0.304152 2.89381i 0.0843565 0.802599i −0.867785 0.496940i \(-0.834457\pi\)
0.952141 0.305658i \(-0.0988766\pi\)
\(14\) 0.514852 + 0.109435i 0.137600 + 0.0292478i
\(15\) 2.70670 + 1.96653i 0.698867 + 0.507757i
\(16\) −1.11127 0.807384i −0.277817 0.201846i
\(17\) −1.27993 0.272057i −0.310429 0.0659836i 0.0500631 0.998746i \(-0.484058\pi\)
−0.360492 + 0.932762i \(0.617391\pi\)
\(18\) −0.157525 + 1.49875i −0.0371290 + 0.353259i
\(19\) 0.397160 + 3.77873i 0.0911148 + 0.866900i 0.940652 + 0.339371i \(0.110214\pi\)
−0.849538 + 0.527528i \(0.823119\pi\)
\(20\) 5.52896 1.17522i 1.23631 0.262786i
\(21\) −0.629330 0.280196i −0.137331 0.0611437i
\(22\) 1.89879 2.10882i 0.404823 0.449601i
\(23\) −1.01449 3.12228i −0.211536 0.651040i −0.999381 0.0351674i \(-0.988804\pi\)
0.787846 0.615873i \(-0.211196\pi\)
\(24\) −1.46740 1.62972i −0.299533 0.332665i
\(25\) −4.37284 + 7.57398i −0.874568 + 1.51480i
\(26\) −1.00313 1.73747i −0.196729 0.340745i
\(27\) 1.44606 4.45052i 0.278295 0.856503i
\(28\) −1.06325 + 0.473389i −0.200935 + 0.0894620i
\(29\) −3.96065 + 2.87758i −0.735474 + 0.534353i −0.891290 0.453433i \(-0.850199\pi\)
0.155816 + 0.987786i \(0.450199\pi\)
\(30\) 2.30681 0.421164
\(31\) −1.63580 + 5.32204i −0.293799 + 0.955867i
\(32\) −5.80746 −1.02662
\(33\) −3.00464 + 2.18300i −0.523041 + 0.380012i
\(34\) −0.824217 + 0.366965i −0.141352 + 0.0629340i
\(35\) 0.874609 2.69177i 0.147836 0.454992i
\(36\) −1.66614 2.88584i −0.277690 0.480973i
\(37\) 5.20639 9.01773i 0.855925 1.48251i −0.0198583 0.999803i \(-0.506321\pi\)
0.875784 0.482704i \(-0.160345\pi\)
\(38\) 1.75296 + 1.94686i 0.284368 + 0.315822i
\(39\) 0.811405 + 2.49725i 0.129929 + 0.399880i
\(40\) 6.02884 6.69570i 0.953243 1.05868i
\(41\) 0.690591 + 0.307471i 0.107852 + 0.0480189i 0.459953 0.887943i \(-0.347866\pi\)
−0.352101 + 0.935962i \(0.614533\pi\)
\(42\) −0.464603 + 0.0987545i −0.0716898 + 0.0152381i
\(43\) 0.748099 + 7.11768i 0.114084 + 1.08544i 0.890427 + 0.455126i \(0.150406\pi\)
−0.776343 + 0.630311i \(0.782928\pi\)
\(44\) −0.655882 + 6.24030i −0.0988780 + 0.940761i
\(45\) 7.92634 + 1.68480i 1.18159 + 0.251154i
\(46\) −1.83127 1.33050i −0.270006 0.196171i
\(47\) 0.708753 + 0.514939i 0.103382 + 0.0751116i 0.638275 0.769808i \(-0.279648\pi\)
−0.534893 + 0.844920i \(0.679648\pi\)
\(48\) 1.21245 + 0.257715i 0.175003 + 0.0371980i
\(49\) 0.670783 6.38208i 0.0958262 0.911725i
\(50\) 0.630315 + 5.99705i 0.0891400 + 0.848111i
\(51\) 1.15501 0.245505i 0.161734 0.0343776i
\(52\) 4.05268 + 1.80437i 0.562005 + 0.250221i
\(53\) 2.39261 2.65727i 0.328651 0.365004i −0.556062 0.831141i \(-0.687688\pi\)
0.884712 + 0.466138i \(0.154355\pi\)
\(54\) −0.997049 3.06860i −0.135681 0.417584i
\(55\) −10.2101 11.3395i −1.37673 1.52901i
\(56\) −0.927595 + 1.60664i −0.123955 + 0.214696i
\(57\) −1.71435 2.96935i −0.227072 0.393300i
\(58\) −1.04309 + 3.21029i −0.136964 + 0.421532i
\(59\) 0.847103 0.377155i 0.110283 0.0491014i −0.350853 0.936430i \(-0.614108\pi\)
0.461137 + 0.887329i \(0.347442\pi\)
\(60\) −4.12664 + 2.99818i −0.532746 + 0.387063i
\(61\) 2.31704 0.296666 0.148333 0.988937i \(-0.452609\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(62\) 1.24441 + 3.63164i 0.158041 + 0.461219i
\(63\) −1.66853 −0.210215
\(64\) −1.01693 + 0.738843i −0.127116 + 0.0923554i
\(65\) −9.85528 + 4.38785i −1.22240 + 0.544246i
\(66\) −0.791311 + 2.43540i −0.0974036 + 0.299778i
\(67\) 1.04345 + 1.80731i 0.127478 + 0.220798i 0.922699 0.385522i \(-0.125979\pi\)
−0.795221 + 0.606320i \(0.792645\pi\)
\(68\) 0.997488 1.72770i 0.120963 0.209514i
\(69\) 1.98233 + 2.20160i 0.238644 + 0.265041i
\(70\) −0.603037 1.85596i −0.0720767 0.221829i
\(71\) −5.17645 + 5.74903i −0.614332 + 0.682284i −0.967383 0.253320i \(-0.918478\pi\)
0.353051 + 0.935604i \(0.385144\pi\)
\(72\) −4.85238 2.16042i −0.571858 0.254608i
\(73\) 5.53385 1.17626i 0.647688 0.137670i 0.127658 0.991818i \(-0.459254\pi\)
0.520030 + 0.854148i \(0.325921\pi\)
\(74\) −0.750466 7.14021i −0.0872399 0.830032i
\(75\) 0.824950 7.84887i 0.0952570 0.906310i
\(76\) −5.66619 1.20439i −0.649957 0.138153i
\(77\) 2.54180 + 1.84673i 0.289665 + 0.210454i
\(78\) 1.46468 + 1.06415i 0.165842 + 0.120492i
\(79\) 13.7867 + 2.93046i 1.55113 + 0.329702i 0.902257 0.431198i \(-0.141909\pi\)
0.648869 + 0.760900i \(0.275242\pi\)
\(80\) −0.532328 + 5.06476i −0.0595161 + 0.566257i
\(81\) −0.243989 2.32140i −0.0271098 0.257933i
\(82\) 0.509829 0.108368i 0.0563012 0.0119672i
\(83\) −12.8880 5.73812i −1.41465 0.629841i −0.449913 0.893072i \(-0.648545\pi\)
−0.964733 + 0.263231i \(0.915212\pi\)
\(84\) 0.702773 0.780508i 0.0766788 0.0851604i
\(85\) 1.49916 + 4.61393i 0.162606 + 0.500451i
\(86\) 3.30191 + 3.66714i 0.356054 + 0.395438i
\(87\) 2.20891 3.82595i 0.236820 0.410184i
\(88\) 5.00086 + 8.66175i 0.533094 + 0.923346i
\(89\) −1.37043 + 4.21776i −0.145266 + 0.447081i −0.997045 0.0768191i \(-0.975524\pi\)
0.851780 + 0.523900i \(0.175524\pi\)
\(90\) 5.10420 2.27254i 0.538030 0.239547i
\(91\) 1.79706 1.30564i 0.188383 0.136868i
\(92\) 5.00520 0.521828
\(93\) −0.604868 4.98781i −0.0627219 0.517212i
\(94\) 0.604042 0.0623021
\(95\) 11.3965 8.28005i 1.16926 0.849515i
\(96\) 4.78758 2.13157i 0.488630 0.217552i
\(97\) −1.63088 + 5.01933i −0.165591 + 0.509636i −0.999079 0.0429007i \(-0.986340\pi\)
0.833489 + 0.552537i \(0.186340\pi\)
\(98\) −2.21232 3.83184i −0.223478 0.387075i
\(99\) −4.49770 + 7.79025i −0.452036 + 0.782949i
\(100\) −8.92196 9.90884i −0.892196 0.990884i
\(101\) 1.17656 + 3.62108i 0.117072 + 0.360311i 0.992374 0.123267i \(-0.0393371\pi\)
−0.875301 + 0.483578i \(0.839337\pi\)
\(102\) 0.544781 0.605040i 0.0539413 0.0599079i
\(103\) −5.70573 2.54035i −0.562202 0.250308i 0.105902 0.994377i \(-0.466227\pi\)
−0.668104 + 0.744068i \(0.732894\pi\)
\(104\) 6.91671 1.47019i 0.678239 0.144164i
\(105\) 0.266972 + 2.54007i 0.0260538 + 0.247885i
\(106\) 0.257707 2.45192i 0.0250307 0.238151i
\(107\) −2.27653 0.483890i −0.220080 0.0467795i 0.0965518 0.995328i \(-0.469219\pi\)
−0.316632 + 0.948548i \(0.602552\pi\)
\(108\) 5.77189 + 4.19352i 0.555400 + 0.403522i
\(109\) −1.19478 0.868057i −0.114439 0.0831448i 0.529094 0.848563i \(-0.322532\pi\)
−0.643533 + 0.765419i \(0.722532\pi\)
\(110\) −10.2909 2.18740i −0.981197 0.208560i
\(111\) −0.982202 + 9.34503i −0.0932265 + 0.886991i
\(112\) −0.109609 1.04286i −0.0103570 0.0985407i
\(113\) −6.24112 + 1.32659i −0.587115 + 0.124795i −0.491885 0.870660i \(-0.663692\pi\)
−0.0952299 + 0.995455i \(0.530359\pi\)
\(114\) −2.15969 0.961554i −0.202273 0.0900578i
\(115\) −8.14440 + 9.04528i −0.759470 + 0.843476i
\(116\) −2.30647 7.09857i −0.214150 0.659086i
\(117\) 4.25551 + 4.72623i 0.393422 + 0.436940i
\(118\) 0.319673 0.553690i 0.0294283 0.0509713i
\(119\) −0.499460 0.865089i −0.0457854 0.0793026i
\(120\) −2.51249 + 7.73265i −0.229358 + 0.705891i
\(121\) 5.42495 2.41534i 0.493178 0.219577i
\(122\) 1.29247 0.939035i 0.117015 0.0850162i
\(123\) −0.682166 −0.0615089
\(124\) −6.94619 4.87924i −0.623786 0.438169i
\(125\) 13.8872 1.24211
\(126\) −0.930724 + 0.676211i −0.0829155 + 0.0602417i
\(127\) −1.30821 + 0.582453i −0.116085 + 0.0516843i −0.463957 0.885858i \(-0.653571\pi\)
0.347872 + 0.937542i \(0.386904\pi\)
\(128\) 3.32139 10.2222i 0.293572 0.903521i
\(129\) −3.22919 5.59312i −0.284314 0.492447i
\(130\) −3.71911 + 6.44168i −0.326187 + 0.564973i
\(131\) 4.21077 + 4.67654i 0.367897 + 0.408591i 0.898461 0.439054i \(-0.144686\pi\)
−0.530564 + 0.847645i \(0.678020\pi\)
\(132\) −1.74974 5.38514i −0.152295 0.468717i
\(133\) −1.94084 + 2.15553i −0.168293 + 0.186908i
\(134\) 1.31450 + 0.585254i 0.113556 + 0.0505582i
\(135\) −16.9704 + 3.60717i −1.46058 + 0.310456i
\(136\) −0.332396 3.16254i −0.0285027 0.271185i
\(137\) −1.33273 + 12.6801i −0.113863 + 1.08333i 0.777139 + 0.629330i \(0.216670\pi\)
−0.891001 + 0.454001i \(0.849996\pi\)
\(138\) 1.99802 + 0.424691i 0.170082 + 0.0361521i
\(139\) −15.1397 10.9997i −1.28414 0.932979i −0.284466 0.958686i \(-0.591816\pi\)
−0.999670 + 0.0257067i \(0.991816\pi\)
\(140\) 3.49096 + 2.53633i 0.295040 + 0.214359i
\(141\) −0.773288 0.164367i −0.0651226 0.0138422i
\(142\) −0.557552 + 5.30475i −0.0467887 + 0.445165i
\(143\) −1.25177 11.9098i −0.104679 0.995950i
\(144\) 2.93664 0.624203i 0.244720 0.0520169i
\(145\) 16.5814 + 7.38253i 1.37701 + 0.613086i
\(146\) 2.61014 2.89885i 0.216017 0.239911i
\(147\) 1.78949 + 5.50749i 0.147595 + 0.454250i
\(148\) 10.6227 + 11.7977i 0.873178 + 0.969762i
\(149\) 10.0677 17.4377i 0.824774 1.42855i −0.0773172 0.997007i \(-0.524635\pi\)
0.902092 0.431545i \(-0.142031\pi\)
\(150\) −2.72078 4.71252i −0.222150 0.384776i
\(151\) 4.75035 14.6201i 0.386578 1.18977i −0.548751 0.835986i \(-0.684896\pi\)
0.935329 0.353779i \(-0.115104\pi\)
\(152\) −8.43531 + 3.75564i −0.684194 + 0.304623i
\(153\) 2.31379 1.68107i 0.187059 0.135906i
\(154\) 2.16628 0.174564
\(155\) 20.1204 4.61353i 1.61611 0.370568i
\(156\) −4.00324 −0.320515
\(157\) −12.2544 + 8.90334i −0.978008 + 0.710564i −0.957262 0.289221i \(-0.906604\pi\)
−0.0207452 + 0.999785i \(0.506604\pi\)
\(158\) 8.87802 3.95275i 0.706298 0.314464i
\(159\) −0.997111 + 3.06879i −0.0790760 + 0.243371i
\(160\) 10.7656 + 18.6466i 0.851098 + 1.47414i
\(161\) 1.25310 2.17042i 0.0987577 0.171053i
\(162\) −1.07690 1.19602i −0.0846093 0.0939681i
\(163\) −0.322882 0.993730i −0.0252901 0.0778349i 0.937615 0.347676i \(-0.113029\pi\)
−0.962905 + 0.269841i \(0.913029\pi\)
\(164\) −0.771183 + 0.856485i −0.0602193 + 0.0668803i
\(165\) 12.5791 + 5.60056i 0.979279 + 0.436003i
\(166\) −9.51460 + 2.02239i −0.738477 + 0.156968i
\(167\) 1.18006 + 11.2276i 0.0913161 + 0.868815i 0.940289 + 0.340378i \(0.110555\pi\)
−0.848973 + 0.528437i \(0.822778\pi\)
\(168\) 0.174994 1.66495i 0.0135011 0.128454i
\(169\) 4.43428 + 0.942536i 0.341099 + 0.0725028i
\(170\) 2.70615 + 1.96613i 0.207552 + 0.150796i
\(171\) −6.71853 4.88129i −0.513778 0.373282i
\(172\) −10.6730 2.26861i −0.813805 0.172980i
\(173\) 2.15879 20.5395i 0.164130 1.56159i −0.533915 0.845538i \(-0.679280\pi\)
0.698045 0.716054i \(-0.254054\pi\)
\(174\) −0.318400 3.02937i −0.0241378 0.229656i
\(175\) −6.53050 + 1.38810i −0.493660 + 0.104931i
\(176\) −5.16449 2.29938i −0.389288 0.173322i
\(177\) −0.559908 + 0.621841i −0.0420853 + 0.0467404i
\(178\) 0.944903 + 2.90811i 0.0708235 + 0.217972i
\(179\) −0.0880993 0.0978442i −0.00658485 0.00731322i 0.739843 0.672779i \(-0.234900\pi\)
−0.746428 + 0.665466i \(0.768233\pi\)
\(180\) −6.17723 + 10.6993i −0.460424 + 0.797477i
\(181\) −3.86599 6.69610i −0.287357 0.497717i 0.685821 0.727770i \(-0.259443\pi\)
−0.973178 + 0.230053i \(0.926110\pi\)
\(182\) 0.473278 1.45660i 0.0350817 0.107970i
\(183\) −1.91013 + 0.850445i −0.141201 + 0.0628667i
\(184\) 6.45450 4.68947i 0.475832 0.345712i
\(185\) −38.6056 −2.83834
\(186\) −2.35883 2.53712i −0.172958 0.186031i
\(187\) −5.38539 −0.393819
\(188\) −1.08056 + 0.785076i −0.0788083 + 0.0572576i
\(189\) 3.26350 1.45300i 0.237385 0.105690i
\(190\) 3.00142 9.23741i 0.217746 0.670152i
\(191\) 10.5513 + 18.2755i 0.763468 + 1.32237i 0.941053 + 0.338260i \(0.109838\pi\)
−0.177585 + 0.984106i \(0.556828\pi\)
\(192\) 0.567157 0.982344i 0.0409310 0.0708946i
\(193\) 3.78944 + 4.20860i 0.272770 + 0.302942i 0.863929 0.503613i \(-0.167996\pi\)
−0.591159 + 0.806555i \(0.701330\pi\)
\(194\) 1.12448 + 3.46079i 0.0807330 + 0.248471i
\(195\) 6.51402 7.23456i 0.466479 0.518077i
\(196\) 8.93786 + 3.97939i 0.638419 + 0.284242i
\(197\) −15.5670 + 3.30887i −1.10910 + 0.235747i −0.725821 0.687883i \(-0.758540\pi\)
−0.383283 + 0.923631i \(0.625207\pi\)
\(198\) 0.648313 + 6.16829i 0.0460736 + 0.438361i
\(199\) 0.445443 4.23811i 0.0315766 0.300432i −0.967324 0.253545i \(-0.918403\pi\)
0.998900 0.0468866i \(-0.0149299\pi\)
\(200\) −20.7892 4.41888i −1.47002 0.312462i
\(201\) −1.52356 1.10693i −0.107463 0.0780767i
\(202\) 2.12383 + 1.54305i 0.149432 + 0.108569i
\(203\) −3.65563 0.777027i −0.256575 0.0545366i
\(204\) −0.188179 + 1.79041i −0.0131752 + 0.125353i
\(205\) −0.292960 2.78733i −0.0204612 0.194675i
\(206\) −4.21226 + 0.895343i −0.293482 + 0.0623815i
\(207\) 6.55512 + 2.91853i 0.455612 + 0.202852i
\(208\) −2.67441 + 2.97024i −0.185437 + 0.205949i
\(209\) 4.83225 + 14.8721i 0.334254 + 1.02873i
\(210\) 1.17834 + 1.30868i 0.0813134 + 0.0903077i
\(211\) 5.75414 9.96646i 0.396131 0.686120i −0.597113 0.802157i \(-0.703686\pi\)
0.993245 + 0.116037i \(0.0370191\pi\)
\(212\) 2.72576 + 4.72115i 0.187206 + 0.324250i
\(213\) 2.15726 6.63937i 0.147813 0.454922i
\(214\) −1.46598 + 0.652696i −0.100212 + 0.0446174i
\(215\) 21.4667 15.5965i 1.46402 1.06367i
\(216\) 11.3722 0.773780
\(217\) −3.85485 + 1.79054i −0.261684 + 0.121550i
\(218\) −1.01826 −0.0689654
\(219\) −4.13028 + 3.00083i −0.279099 + 0.202777i
\(220\) 21.2522 9.46211i 1.43283 0.637935i
\(221\) −1.17658 + 3.62113i −0.0791450 + 0.243583i
\(222\) 3.23941 + 5.61082i 0.217415 + 0.376574i
\(223\) −4.71196 + 8.16135i −0.315536 + 0.546524i −0.979551 0.201195i \(-0.935518\pi\)
0.664015 + 0.747719i \(0.268851\pi\)
\(224\) −2.96651 3.29464i −0.198208 0.220133i
\(225\) −5.90692 18.1796i −0.393795 1.21197i
\(226\) −2.94373 + 3.26935i −0.195814 + 0.217474i
\(227\) 19.8815 + 8.85182i 1.31958 + 0.587516i 0.941111 0.338097i \(-0.109783\pi\)
0.378471 + 0.925613i \(0.376450\pi\)
\(228\) 5.11318 1.08684i 0.338629 0.0719777i
\(229\) −1.77237 16.8630i −0.117122 1.11434i −0.882355 0.470585i \(-0.844043\pi\)
0.765233 0.643754i \(-0.222624\pi\)
\(230\) −0.877228 + 8.34627i −0.0578427 + 0.550337i
\(231\) −2.77324 0.589471i −0.182466 0.0387844i
\(232\) −9.62511 6.99305i −0.631920 0.459117i
\(233\) 7.95758 + 5.78152i 0.521318 + 0.378760i 0.817100 0.576496i \(-0.195580\pi\)
−0.295782 + 0.955255i \(0.595580\pi\)
\(234\) 4.28919 + 0.911695i 0.280393 + 0.0595994i
\(235\) 0.339512 3.23024i 0.0221473 0.210718i
\(236\) 0.147774 + 1.40597i 0.00961924 + 0.0915209i
\(237\) −12.4411 + 2.64445i −0.808139 + 0.171775i
\(238\) −0.629202 0.280139i −0.0407851 0.0181587i
\(239\) 0.395212 0.438927i 0.0255641 0.0283919i −0.730227 0.683204i \(-0.760586\pi\)
0.755791 + 0.654813i \(0.227252\pi\)
\(240\) −1.42012 4.37069i −0.0916687 0.282127i
\(241\) 10.2848 + 11.4225i 0.662504 + 0.735786i 0.976945 0.213491i \(-0.0684836\pi\)
−0.314440 + 0.949277i \(0.601817\pi\)
\(242\) 2.04722 3.54590i 0.131601 0.227939i
\(243\) 8.07252 + 13.9820i 0.517852 + 0.896946i
\(244\) −1.09162 + 3.35966i −0.0698838 + 0.215080i
\(245\) −21.7351 + 9.67707i −1.38860 + 0.618245i
\(246\) −0.380520 + 0.276464i −0.0242611 + 0.0176267i
\(247\) 11.0557 0.703459
\(248\) −13.5290 + 0.215944i −0.859091 + 0.0137124i
\(249\) 12.7308 0.806783
\(250\) 7.74642 5.62810i 0.489926 0.355952i
\(251\) −5.52832 + 2.46137i −0.348945 + 0.155360i −0.573722 0.819050i \(-0.694501\pi\)
0.224778 + 0.974410i \(0.427834\pi\)
\(252\) 0.786090 2.41933i 0.0495190 0.152404i
\(253\) −6.75571 11.7012i −0.424728 0.735650i
\(254\) −0.493682 + 0.855082i −0.0309763 + 0.0536526i
\(255\) −2.92938 3.25340i −0.183445 0.203736i
\(256\) −3.06694 9.43906i −0.191684 0.589942i
\(257\) −3.02972 + 3.36484i −0.188988 + 0.209893i −0.830192 0.557478i \(-0.811769\pi\)
0.641203 + 0.767371i \(0.278436\pi\)
\(258\) −4.06803 1.81120i −0.253264 0.112760i
\(259\) 7.77535 1.65270i 0.483137 0.102694i
\(260\) −1.71921 16.3572i −0.106621 1.01443i
\(261\) 1.11848 10.6416i 0.0692322 0.658700i
\(262\) 4.24409 + 0.902110i 0.262201 + 0.0557325i
\(263\) 2.02971 + 1.47467i 0.125157 + 0.0909322i 0.648603 0.761127i \(-0.275354\pi\)
−0.523445 + 0.852059i \(0.675354\pi\)
\(264\) −7.30184 5.30510i −0.449397 0.326506i
\(265\) −12.9673 2.75628i −0.796574 0.169317i
\(266\) −0.209047 + 1.98895i −0.0128175 + 0.121950i
\(267\) −0.418321 3.98005i −0.0256008 0.243575i
\(268\) −3.11216 + 0.661509i −0.190105 + 0.0404081i
\(269\) 12.1865 + 5.42577i 0.743023 + 0.330815i 0.743096 0.669185i \(-0.233357\pi\)
−7.27860e−5 1.00000i \(0.500023\pi\)
\(270\) −8.00439 + 8.88978i −0.487132 + 0.541015i
\(271\) 4.27190 + 13.1476i 0.259500 + 0.798658i 0.992910 + 0.118871i \(0.0379276\pi\)
−0.733410 + 0.679787i \(0.762072\pi\)
\(272\) 1.20269 + 1.33572i 0.0729239 + 0.0809902i
\(273\) −1.00225 + 1.73594i −0.0606586 + 0.105064i
\(274\) 4.39548 + 7.61320i 0.265541 + 0.459930i
\(275\) −11.1227 + 34.2322i −0.670726 + 2.06428i
\(276\) −4.12621 + 1.83711i −0.248368 + 0.110581i
\(277\) −9.36093 + 6.80111i −0.562444 + 0.408639i −0.832353 0.554247i \(-0.813006\pi\)
0.269909 + 0.962886i \(0.413006\pi\)
\(278\) −12.9030 −0.773870
\(279\) −6.25208 10.4405i −0.374302 0.625055i
\(280\) 6.87814 0.411048
\(281\) 12.4583 9.05151i 0.743202 0.539968i −0.150510 0.988608i \(-0.548092\pi\)
0.893712 + 0.448641i \(0.148092\pi\)
\(282\) −0.497962 + 0.221707i −0.0296532 + 0.0132025i
\(283\) −7.01336 + 21.5849i −0.416901 + 1.28309i 0.493638 + 0.869667i \(0.335667\pi\)
−0.910539 + 0.413422i \(0.864333\pi\)
\(284\) −5.89722 10.2143i −0.349935 0.606106i
\(285\) −6.35600 + 11.0089i −0.376497 + 0.652112i
\(286\) −5.52500 6.13613i −0.326700 0.362837i
\(287\) 0.178329 + 0.548840i 0.0105264 + 0.0323970i
\(288\) 8.49342 9.43289i 0.500479 0.555839i
\(289\) −13.9661 6.21809i −0.821533 0.365770i
\(290\) 12.2413 2.60196i 0.718831 0.152792i
\(291\) −0.497822 4.73646i −0.0291828 0.277656i
\(292\) −0.901599 + 8.57814i −0.0527621 + 0.501998i
\(293\) −12.1299 2.57828i −0.708635 0.150625i −0.160525 0.987032i \(-0.551319\pi\)
−0.548109 + 0.836407i \(0.684652\pi\)
\(294\) 3.23024 + 2.34690i 0.188391 + 0.136874i
\(295\) −2.78129 2.02073i −0.161933 0.117651i
\(296\) 24.7520 + 5.26121i 1.43868 + 0.305801i
\(297\) 2.01314 19.1538i 0.116814 1.11142i
\(298\) −1.45118 13.8071i −0.0840649 0.799824i
\(299\) −9.34384 + 1.98610i −0.540368 + 0.114859i
\(300\) 10.9921 + 4.89398i 0.634627 + 0.282554i
\(301\) −3.65581 + 4.06019i −0.210718 + 0.234026i
\(302\) −3.27533 10.0804i −0.188474 0.580064i
\(303\) −2.29902 2.55332i −0.132075 0.146684i
\(304\) 2.60953 4.51984i 0.149667 0.259231i
\(305\) −4.29523 7.43956i −0.245944 0.425988i
\(306\) 0.609367 1.87544i 0.0348352 0.107212i
\(307\) 28.0641 12.4949i 1.60170 0.713124i 0.605152 0.796110i \(-0.293112\pi\)
0.996551 + 0.0829855i \(0.0264455\pi\)
\(308\) −3.87523 + 2.81552i −0.220812 + 0.160429i
\(309\) 5.63612 0.320628
\(310\) 9.35366 10.7278i 0.531252 0.609296i
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) −5.16241 + 3.75071i −0.292264 + 0.212342i
\(313\) 9.81659 4.37063i 0.554866 0.247042i −0.110094 0.993921i \(-0.535115\pi\)
0.664960 + 0.746879i \(0.268449\pi\)
\(314\) −3.22735 + 9.93277i −0.182130 + 0.560539i
\(315\) 3.09305 + 5.35732i 0.174274 + 0.301851i
\(316\) −10.7444 + 18.6098i −0.604420 + 1.04689i
\(317\) 5.85245 + 6.49980i 0.328706 + 0.365065i 0.884732 0.466100i \(-0.154341\pi\)
−0.556026 + 0.831165i \(0.687674\pi\)
\(318\) 0.687501 + 2.11591i 0.0385531 + 0.118654i
\(319\) −13.4820 + 14.9733i −0.754849 + 0.838344i
\(320\) 4.25742 + 1.89553i 0.237997 + 0.105963i
\(321\) 2.05434 0.436663i 0.114662 0.0243722i
\(322\) −0.180625 1.71853i −0.0100658 0.0957701i
\(323\) 0.519694 4.94456i 0.0289165 0.275122i
\(324\) 3.48093 + 0.739894i 0.193385 + 0.0411052i
\(325\) 20.5877 + 14.9578i 1.14200 + 0.829710i
\(326\) −0.582840 0.423458i −0.0322805 0.0234532i
\(327\) 1.30357 + 0.277082i 0.0720874 + 0.0153227i
\(328\) −0.192028 + 1.82703i −0.0106030 + 0.100881i
\(329\) 0.0699070 + 0.665120i 0.00385410 + 0.0366693i
\(330\) 9.28650 1.97391i 0.511205 0.108660i
\(331\) −29.5706 13.1657i −1.62535 0.723652i −0.626889 0.779109i \(-0.715672\pi\)
−0.998461 + 0.0554567i \(0.982339\pi\)
\(332\) 14.3921 15.9840i 0.789868 0.877237i
\(333\) 7.03290 + 21.6450i 0.385400 + 1.18614i
\(334\) 5.20849 + 5.78461i 0.284996 + 0.316520i
\(335\) 3.86860 6.70062i 0.211364 0.366094i
\(336\) 0.473129 + 0.819484i 0.0258113 + 0.0447065i
\(337\) 8.57021 26.3764i 0.466849 1.43681i −0.389792 0.920903i \(-0.627453\pi\)
0.856642 0.515912i \(-0.172547\pi\)
\(338\) 2.85548 1.27134i 0.155318 0.0691518i
\(339\) 4.65817 3.38436i 0.252997 0.183813i
\(340\) −7.39640 −0.401126
\(341\) −2.03124 + 22.8246i −0.109998 + 1.23602i
\(342\) −5.72593 −0.309623
\(343\) 8.28646 6.02047i 0.447427 0.325075i
\(344\) −15.8889 + 7.07420i −0.856672 + 0.381415i
\(345\) 3.39414 10.4461i 0.182735 0.562399i
\(346\) −7.11994 12.3321i −0.382770 0.662977i
\(347\) 12.9580 22.4440i 0.695624 1.20486i −0.274347 0.961631i \(-0.588462\pi\)
0.969970 0.243224i \(-0.0782051\pi\)
\(348\) 4.50687 + 5.00539i 0.241594 + 0.268317i
\(349\) 1.72862 + 5.32015i 0.0925309 + 0.284781i 0.986602 0.163144i \(-0.0521634\pi\)
−0.894071 + 0.447924i \(0.852163\pi\)
\(350\) −3.08023 + 3.42094i −0.164645 + 0.182857i
\(351\) −12.4391 5.53827i −0.663953 0.295611i
\(352\) −23.3790 + 4.96936i −1.24611 + 0.264868i
\(353\) −1.21974 11.6051i −0.0649202 0.617675i −0.977814 0.209477i \(-0.932824\pi\)
0.912893 0.408198i \(-0.133843\pi\)
\(354\) −0.0603073 + 0.573786i −0.00320530 + 0.0304964i
\(355\) 28.0549 + 5.96325i 1.48900 + 0.316497i
\(356\) −5.47002 3.97420i −0.289910 0.210632i
\(357\) 0.729269 + 0.529845i 0.0385970 + 0.0280424i
\(358\) −0.0887965 0.0188743i −0.00469304 0.000997537i
\(359\) −2.73863 + 26.0563i −0.144539 + 1.37520i 0.646257 + 0.763120i \(0.276334\pi\)
−0.790796 + 0.612080i \(0.790333\pi\)
\(360\) 2.05846 + 19.5849i 0.108490 + 1.03222i
\(361\) 4.46376 0.948801i 0.234935 0.0499369i
\(362\) −4.87025 2.16837i −0.255974 0.113967i
\(363\) −3.58572 + 3.98234i −0.188201 + 0.209019i
\(364\) 1.04651 + 3.22082i 0.0548519 + 0.168817i
\(365\) −14.0351 15.5876i −0.734633 0.815893i
\(366\) −0.720830 + 1.24851i −0.0376784 + 0.0652608i
\(367\) −13.5073 23.3953i −0.705076 1.22123i −0.966664 0.256047i \(-0.917580\pi\)
0.261589 0.965179i \(-0.415754\pi\)
\(368\) −1.39351 + 4.28877i −0.0726416 + 0.223568i
\(369\) −1.50941 + 0.672031i −0.0785765 + 0.0349845i
\(370\) −21.5346 + 15.6458i −1.11953 + 0.813387i
\(371\) 2.72967 0.141717
\(372\) 7.51720 + 1.47285i 0.389749 + 0.0763636i
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) −3.00403 + 2.18256i −0.155335 + 0.112857i
\(375\) −11.4484 + 5.09714i −0.591191 + 0.263215i
\(376\) −0.657899 + 2.02480i −0.0339285 + 0.104421i
\(377\) 7.12253 + 12.3366i 0.366829 + 0.635367i
\(378\) 1.23155 2.13311i 0.0633442 0.109715i
\(379\) −3.10411 3.44746i −0.159447 0.177084i 0.658128 0.752906i \(-0.271349\pi\)
−0.817575 + 0.575822i \(0.804682\pi\)
\(380\) 6.63670 + 20.4257i 0.340456 + 1.04782i
\(381\) 0.864685 0.960330i 0.0442991 0.0491992i
\(382\) 13.2922 + 5.91808i 0.680089 + 0.302795i
\(383\) 4.91161 1.04399i 0.250971 0.0533456i −0.0807080 0.996738i \(-0.525718\pi\)
0.331679 + 0.943392i \(0.392385\pi\)
\(384\) 1.01384 + 9.64608i 0.0517375 + 0.492250i
\(385\) 1.21759 11.5846i 0.0620542 0.590407i
\(386\) 3.81943 + 0.811845i 0.194404 + 0.0413218i
\(387\) −12.6551 9.19450i −0.643297 0.467383i
\(388\) −6.50958 4.72949i −0.330474 0.240103i
\(389\) −18.1953 3.86754i −0.922540 0.196092i −0.277928 0.960602i \(-0.589648\pi\)
−0.644612 + 0.764510i \(0.722981\pi\)
\(390\) 0.701621 6.67548i 0.0355280 0.338026i
\(391\) 0.449036 + 4.27230i 0.0227087 + 0.216059i
\(392\) 15.2543 3.24240i 0.770457 0.163766i
\(393\) −5.18777 2.30974i −0.261688 0.116511i
\(394\) −7.34246 + 8.15463i −0.369908 + 0.410824i
\(395\) −16.1481 49.6988i −0.812500 2.50062i
\(396\) −9.17672 10.1918i −0.461147 0.512156i
\(397\) −16.2794 + 28.1968i −0.817040 + 1.41515i 0.0908142 + 0.995868i \(0.471053\pi\)
−0.907854 + 0.419287i \(0.862280\pi\)
\(398\) −1.46912 2.54459i −0.0736404 0.127549i
\(399\) 0.808838 2.48935i 0.0404926 0.124623i
\(400\) 10.9745 4.88617i 0.548725 0.244308i
\(401\) 10.0239 7.28282i 0.500572 0.363687i −0.308664 0.951171i \(-0.599882\pi\)
0.809235 + 0.587485i \(0.199882\pi\)
\(402\) −1.29847 −0.0647616
\(403\) 14.9035 + 6.35242i 0.742394 + 0.316437i
\(404\) −5.80481 −0.288800
\(405\) −7.00125 + 5.08671i −0.347895 + 0.252760i
\(406\) −2.35406 + 1.04809i −0.116830 + 0.0520161i
\(407\) 13.2429 40.7576i 0.656429 2.02028i
\(408\) 1.43480 + 2.48514i 0.0710331 + 0.123033i
\(409\) 1.72404 2.98613i 0.0852484 0.147654i −0.820249 0.572007i \(-0.806165\pi\)
0.905497 + 0.424353i \(0.139498\pi\)
\(410\) −1.29305 1.43607i −0.0638590 0.0709227i
\(411\) −3.55540 10.9424i −0.175375 0.539749i
\(412\) 6.37158 7.07636i 0.313905 0.348627i
\(413\) 0.646673 + 0.287918i 0.0318207 + 0.0141675i
\(414\) 4.83932 1.02863i 0.237840 0.0505544i
\(415\) 5.46732 + 52.0180i 0.268380 + 2.55347i
\(416\) −1.76635 + 16.8057i −0.0866024 + 0.823967i
\(417\) 16.5183 + 3.51107i 0.808903 + 0.171938i
\(418\) 8.72276 + 6.33746i 0.426644 + 0.309975i
\(419\) 32.3988 + 23.5391i 1.58279 + 1.14996i 0.913412 + 0.407035i \(0.133437\pi\)
0.669374 + 0.742926i \(0.266563\pi\)
\(420\) −3.80883 0.809592i −0.185852 0.0395040i
\(421\) −2.26664 + 21.5656i −0.110469 + 1.05104i 0.789100 + 0.614265i \(0.210548\pi\)
−0.899569 + 0.436779i \(0.856119\pi\)
\(422\) −0.829421 7.89141i −0.0403756 0.384148i
\(423\) −1.87295 + 0.398108i −0.0910660 + 0.0193567i
\(424\) 7.93837 + 3.53439i 0.385521 + 0.171645i
\(425\) 7.65748 8.50450i 0.371442 0.412529i
\(426\) −1.48742 4.57780i −0.0720656 0.221795i
\(427\) 1.18357 + 1.31448i 0.0572768 + 0.0636124i
\(428\) 1.77417 3.07294i 0.0857575 0.148536i
\(429\) 5.40332 + 9.35883i 0.260875 + 0.451849i
\(430\) 5.65353 17.3998i 0.272637 0.839091i
\(431\) −10.6160 + 4.72655i −0.511355 + 0.227670i −0.646160 0.763202i \(-0.723626\pi\)
0.134805 + 0.990872i \(0.456959\pi\)
\(432\) −5.20024 + 3.77820i −0.250197 + 0.181779i
\(433\) 24.5964 1.18203 0.591015 0.806661i \(-0.298728\pi\)
0.591015 + 0.806661i \(0.298728\pi\)
\(434\) −1.42462 + 2.56105i −0.0683838 + 0.122934i
\(435\) −16.3791 −0.785320
\(436\) 1.82156 1.32344i 0.0872368 0.0633813i
\(437\) 11.3953 5.07353i 0.545112 0.242700i
\(438\) −1.08776 + 3.34779i −0.0519753 + 0.159964i
\(439\) −9.09662 15.7558i −0.434158 0.751984i 0.563068 0.826410i \(-0.309621\pi\)
−0.997227 + 0.0744265i \(0.976287\pi\)
\(440\) 18.5408 32.1136i 0.883897 1.53096i
\(441\) 9.38520 + 10.4233i 0.446914 + 0.496349i
\(442\) 0.811240 + 2.49674i 0.0385868 + 0.118758i
\(443\) 11.8840 13.1985i 0.564625 0.627080i −0.391451 0.920199i \(-0.628027\pi\)
0.956076 + 0.293119i \(0.0946933\pi\)
\(444\) −13.0874 5.82687i −0.621099 0.276531i
\(445\) 16.0828 3.41851i 0.762400 0.162053i
\(446\) 0.679196 + 6.46212i 0.0321609 + 0.305990i
\(447\) −1.89929 + 18.0706i −0.0898336 + 0.854709i
\(448\) −0.938613 0.199508i −0.0443453 0.00942588i
\(449\) 7.44180 + 5.40679i 0.351200 + 0.255162i 0.749372 0.662149i \(-0.230355\pi\)
−0.398172 + 0.917311i \(0.630355\pi\)
\(450\) −10.6627 7.74688i −0.502643 0.365192i
\(451\) 3.04320 + 0.646852i 0.143299 + 0.0304591i
\(452\) 1.01683 9.67449i 0.0478277 0.455050i
\(453\) 1.45003 + 13.7961i 0.0681284 + 0.648199i
\(454\) 14.6775 3.11981i 0.688851 0.146420i
\(455\) −7.52346 3.34966i −0.352705 0.157035i
\(456\) 5.57547 6.19218i 0.261095 0.289975i
\(457\) −9.64130 29.6729i −0.451001 1.38804i −0.875767 0.482735i \(-0.839644\pi\)
0.424766 0.905303i \(-0.360356\pi\)
\(458\) −7.82278 8.68808i −0.365535 0.405967i
\(459\) −3.06166 + 5.30294i −0.142906 + 0.247520i
\(460\) −9.27842 16.0707i −0.432609 0.749300i
\(461\) −2.06067 + 6.34209i −0.0959750 + 0.295381i −0.987507 0.157578i \(-0.949631\pi\)
0.891532 + 0.452959i \(0.149631\pi\)
\(462\) −1.78584 + 0.795109i −0.0830850 + 0.0369918i
\(463\) −28.5732 + 20.7597i −1.32791 + 0.964784i −0.328114 + 0.944638i \(0.606413\pi\)
−0.999797 + 0.0201457i \(0.993587\pi\)
\(464\) 6.72466 0.312184
\(465\) −14.8936 + 11.1883i −0.690675 + 0.518846i
\(466\) 6.78192 0.314167
\(467\) −29.0789 + 21.1270i −1.34561 + 0.977642i −0.346391 + 0.938090i \(0.612593\pi\)
−0.999218 + 0.0395520i \(0.987407\pi\)
\(468\) −8.85782 + 3.94376i −0.409453 + 0.182300i
\(469\) −0.492303 + 1.51515i −0.0227324 + 0.0699632i
\(470\) −1.11975 1.93946i −0.0516501 0.0894606i
\(471\) 6.83446 11.8376i 0.314915 0.545449i
\(472\) 1.50784 + 1.67463i 0.0694042 + 0.0770811i
\(473\) 9.10211 + 28.0134i 0.418516 + 1.28806i
\(474\) −5.86809 + 6.51717i −0.269530 + 0.299344i
\(475\) −30.3567 13.5157i −1.39286 0.620142i
\(476\) 1.48967 0.316640i 0.0682790 0.0145131i
\(477\) 0.816923 + 7.77251i 0.0374043 + 0.355879i
\(478\) 0.0425680 0.405008i 0.00194702 0.0185246i
\(479\) −32.5179 6.91190i −1.48578 0.315813i −0.607640 0.794212i \(-0.707884\pi\)
−0.878142 + 0.478400i \(0.841217\pi\)
\(480\) −15.7191 11.4206i −0.717474 0.521275i
\(481\) −24.5121 17.8091i −1.11765 0.812024i
\(482\) 10.3662 + 2.20341i 0.472168 + 0.100363i
\(483\) −0.236400 + 2.24920i −0.0107566 + 0.102342i
\(484\) 0.946360 + 9.00401i 0.0430163 + 0.409273i
\(485\) 19.1393 4.06819i 0.869073 0.184727i
\(486\) 10.1695 + 4.52775i 0.461297 + 0.205383i
\(487\) 19.0805 21.1910i 0.864620 0.960258i −0.134912 0.990858i \(-0.543075\pi\)
0.999532 + 0.0305999i \(0.00974178\pi\)
\(488\) 1.74002 + 5.35524i 0.0787672 + 0.242420i
\(489\) 0.630917 + 0.700705i 0.0285311 + 0.0316870i
\(490\) −8.20220 + 14.2066i −0.370538 + 0.641790i
\(491\) 13.9818 + 24.2172i 0.630991 + 1.09291i 0.987350 + 0.158559i \(0.0506848\pi\)
−0.356359 + 0.934349i \(0.615982\pi\)
\(492\) 0.321387 0.989128i 0.0144892 0.0445933i
\(493\) 5.85222 2.60558i 0.263571 0.117349i
\(494\) 6.16701 4.48059i 0.277467 0.201591i
\(495\) 33.3506 1.49900
\(496\) 6.11475 4.59350i 0.274560 0.206254i
\(497\) −5.90568 −0.264906
\(498\) 7.10139 5.15946i 0.318221 0.231201i
\(499\) −37.7340 + 16.8002i −1.68920 + 0.752082i −0.689593 + 0.724197i \(0.742211\pi\)
−0.999611 + 0.0278849i \(0.991123\pi\)
\(500\) −6.54262 + 20.1361i −0.292595 + 0.900514i
\(501\) −5.09378 8.82269i −0.227573 0.394169i
\(502\) −2.08623 + 3.61346i −0.0931132 + 0.161277i
\(503\) −17.1204 19.0141i −0.763361 0.847798i 0.228708 0.973495i \(-0.426550\pi\)
−0.992069 + 0.125697i \(0.959883\pi\)
\(504\) −1.25301 3.85638i −0.0558136 0.171777i
\(505\) 9.44552 10.4903i 0.420320 0.466813i
\(506\) −8.51061 3.78917i −0.378343 0.168449i
\(507\) −4.00150 + 0.850545i −0.177713 + 0.0377741i
\(508\) −0.228212 2.17129i −0.0101253 0.0963353i
\(509\) 2.55758 24.3337i 0.113363 1.07857i −0.778928 0.627113i \(-0.784236\pi\)
0.892291 0.451461i \(-0.149097\pi\)
\(510\) −2.95256 0.627585i −0.130741 0.0277900i
\(511\) 3.49405 + 2.53858i 0.154568 + 0.112300i
\(512\) 11.8548 + 8.61304i 0.523915 + 0.380646i
\(513\) 17.3916 + 3.69670i 0.767859 + 0.163213i
\(514\) −0.326329 + 3.10481i −0.0143937 + 0.136947i
\(515\) 2.42046 + 23.0292i 0.106658 + 1.01479i
\(516\) 9.63128 2.04719i 0.423994 0.0901226i
\(517\) 3.29384 + 1.46651i 0.144863 + 0.0644972i
\(518\) 3.66738 4.07304i 0.161135 0.178959i
\(519\) 5.75915 + 17.7248i 0.252799 + 0.778034i
\(520\) −17.5424 19.4828i −0.769286 0.854378i
\(521\) −7.48279 + 12.9606i −0.327827 + 0.567813i −0.982080 0.188462i \(-0.939650\pi\)
0.654253 + 0.756275i \(0.272983\pi\)
\(522\) −3.68887 6.38931i −0.161458 0.279653i
\(523\) −6.47873 + 19.9395i −0.283295 + 0.871893i 0.703609 + 0.710587i \(0.251571\pi\)
−0.986904 + 0.161306i \(0.948429\pi\)
\(524\) −8.76470 + 3.90229i −0.382887 + 0.170472i
\(525\) 4.87415 3.54128i 0.212726 0.154554i
\(526\) 1.72984 0.0754247
\(527\) 3.54162 6.36681i 0.154275 0.277342i
\(528\) 5.10148 0.222014
\(529\) 9.88796 7.18402i 0.429911 0.312349i
\(530\) −8.35035 + 3.71781i −0.362716 + 0.161492i
\(531\) −0.626287 + 1.92751i −0.0271786 + 0.0836470i
\(532\) −2.21109 3.82971i −0.0958628 0.166039i
\(533\) 1.09981 1.90492i 0.0476379 0.0825113i
\(534\) −1.84636 2.05059i −0.0798996 0.0887375i
\(535\) 2.66645 + 8.20649i 0.115281 + 0.354798i
\(536\) −3.39353 + 3.76890i −0.146578 + 0.162791i
\(537\) 0.108540 + 0.0483253i 0.00468386 + 0.00208539i
\(538\) 8.99669 1.91230i 0.387875 0.0824453i
\(539\) −2.76069 26.2662i −0.118911 1.13137i
\(540\) 2.76489 26.3062i 0.118982 1.13204i
\(541\) −1.69347 0.359958i −0.0728079 0.0154758i 0.171364 0.985208i \(-0.445183\pi\)
−0.244172 + 0.969732i \(0.578516\pi\)
\(542\) 7.71128 + 5.60257i 0.331228 + 0.240651i
\(543\) 5.64480 + 4.10118i 0.242241 + 0.175999i
\(544\) 7.43314 + 1.57996i 0.318693 + 0.0677404i
\(545\) −0.572331 + 5.44536i −0.0245160 + 0.233254i
\(546\) 0.144467 + 1.37451i 0.00618261 + 0.0588236i
\(547\) 12.8347 2.72810i 0.548772 0.116645i 0.0748220 0.997197i \(-0.476161\pi\)
0.473950 + 0.880552i \(0.342828\pi\)
\(548\) −17.7580 7.90635i −0.758582 0.337743i
\(549\) −3.38867 + 3.76350i −0.144625 + 0.160622i
\(550\) 7.66904 + 23.6029i 0.327009 + 1.00643i
\(551\) −12.4466 13.8234i −0.530243 0.588895i
\(552\) −3.59977 + 6.23498i −0.153216 + 0.265378i
\(553\) 5.37991 + 9.31828i 0.228777 + 0.396254i
\(554\) −2.46532 + 7.58748i −0.104741 + 0.322361i
\(555\) 31.8258 14.1698i 1.35093 0.601473i
\(556\) 23.0820 16.7701i 0.978897 0.711210i
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) −7.71873 3.29002i −0.326760 0.139278i
\(559\) 20.8248 0.880794
\(560\) −3.14522 + 2.28514i −0.132910 + 0.0965646i
\(561\) 4.43963 1.97665i 0.187441 0.0834543i
\(562\) 3.28106 10.0981i 0.138403 0.425961i
\(563\) −11.3259 19.6171i −0.477331 0.826762i 0.522331 0.852743i \(-0.325062\pi\)
−0.999662 + 0.0259808i \(0.991729\pi\)
\(564\) 0.602646 1.04381i 0.0253760 0.0439525i
\(565\) 15.8289 + 17.5798i 0.665928 + 0.739589i
\(566\) 4.83566 + 14.8826i 0.203258 + 0.625564i
\(567\) 1.19232 1.32421i 0.0500729 0.0556116i
\(568\) −17.1748 7.64670i −0.720637 0.320848i
\(569\) 45.4271 9.65584i 1.90441 0.404794i 0.904634 0.426189i \(-0.140144\pi\)
0.999771 + 0.0213953i \(0.00681086\pi\)
\(570\) 0.916174 + 8.71682i 0.0383743 + 0.365107i
\(571\) 1.30643 12.4299i 0.0546726 0.520175i −0.932574 0.360978i \(-0.882443\pi\)
0.987247 0.159197i \(-0.0508904\pi\)
\(572\) 17.8588 + 3.79600i 0.746713 + 0.158719i
\(573\) −15.4062 11.1932i −0.643602 0.467604i
\(574\) 0.321904 + 0.233877i 0.0134360 + 0.00976184i
\(575\) 28.0843 + 5.96950i 1.17120 + 0.248945i
\(576\) 0.287179 2.73233i 0.0119658 0.113847i
\(577\) 3.18648 + 30.3173i 0.132655 + 1.26213i 0.834984 + 0.550274i \(0.185477\pi\)
−0.702330 + 0.711852i \(0.747857\pi\)
\(578\) −10.3105 + 2.19156i −0.428859 + 0.0911567i
\(579\) −4.66868 2.07863i −0.194024 0.0863850i
\(580\) −18.5165 + 20.5646i −0.768855 + 0.853900i
\(581\) −3.32803 10.2426i −0.138070 0.424936i
\(582\) −2.19725 2.44030i −0.0910790 0.101153i
\(583\) 7.35812 12.7446i 0.304742 0.527829i
\(584\) 6.87436 + 11.9067i 0.284463 + 0.492705i
\(585\) 7.28629 22.4249i 0.301251 0.927155i
\(586\) −7.81109 + 3.47772i −0.322673 + 0.143663i
\(587\) −27.2300 + 19.7837i −1.12390 + 0.816562i −0.984796 0.173716i \(-0.944423\pi\)
−0.139105 + 0.990278i \(0.544423\pi\)
\(588\) −8.82883 −0.364095
\(589\) −20.7602 4.06756i −0.855410 0.167601i
\(590\) −2.37039 −0.0975872
\(591\) 11.6187 8.44150i 0.477930 0.347237i
\(592\) −13.0665 + 5.81757i −0.537029 + 0.239101i
\(593\) −13.8711 + 42.6909i −0.569619 + 1.75311i 0.0841933 + 0.996449i \(0.473169\pi\)
−0.653812 + 0.756657i \(0.726831\pi\)
\(594\) −6.63957 11.5001i −0.272425 0.471854i
\(595\) −1.85175 + 3.20733i −0.0759145 + 0.131488i
\(596\) 20.5412 + 22.8133i 0.841399 + 0.934468i
\(597\) 1.18834 + 3.65733i 0.0486354 + 0.149684i
\(598\) −4.40719 + 4.89468i −0.180223 + 0.200158i
\(599\) −17.8914 7.96578i −0.731024 0.325473i 0.00724987 0.999974i \(-0.497692\pi\)
−0.738274 + 0.674501i \(0.764359\pi\)
\(600\) 18.7602 3.98760i 0.765881 0.162793i
\(601\) −3.18388 30.2926i −0.129873 1.23566i −0.844269 0.535919i \(-0.819965\pi\)
0.714396 0.699742i \(-0.246702\pi\)
\(602\) −0.393765 + 3.74642i −0.0160487 + 0.152693i
\(603\) −4.46160 0.948342i −0.181690 0.0386195i
\(604\) 18.9608 + 13.7758i 0.771504 + 0.560531i
\(605\) −17.8117 12.9410i −0.724150 0.526126i
\(606\) −2.31721 0.492538i −0.0941302 0.0200080i
\(607\) 1.39802 13.3013i 0.0567440 0.539883i −0.928814 0.370546i \(-0.879171\pi\)
0.985558 0.169337i \(-0.0541627\pi\)
\(608\) −2.30649 21.9448i −0.0935406 0.889980i
\(609\) 3.29884 0.701190i 0.133676 0.0284137i
\(610\) −5.41099 2.40913i −0.219084 0.0975427i
\(611\) 1.70570 1.89438i 0.0690054 0.0766383i
\(612\) 1.34743 + 4.14695i 0.0544665 + 0.167631i
\(613\) −3.47627 3.86079i −0.140405 0.155936i 0.668841 0.743406i \(-0.266791\pi\)
−0.809246 + 0.587470i \(0.800124\pi\)
\(614\) 10.5906 18.3435i 0.427402 0.740282i
\(615\) 1.26457 + 2.19030i 0.0509924 + 0.0883215i
\(616\) −2.35942 + 7.26156i −0.0950639 + 0.292577i
\(617\) −27.4183 + 12.2074i −1.10382 + 0.491452i −0.876029 0.482258i \(-0.839817\pi\)
−0.227790 + 0.973710i \(0.573150\pi\)
\(618\) 3.14389 2.28417i 0.126466 0.0918828i
\(619\) 18.3260 0.736584 0.368292 0.929710i \(-0.379943\pi\)
0.368292 + 0.929710i \(0.379943\pi\)
\(620\) −2.78974 + 31.3478i −0.112039 + 1.25896i
\(621\) −15.3628 −0.616487
\(622\) 1.32838 0.965124i 0.0532631 0.0386979i
\(623\) −3.09282 + 1.37701i −0.123911 + 0.0551687i
\(624\) 1.11455 3.43023i 0.0446177 0.137319i
\(625\) −3.87924 6.71905i −0.155170 0.268762i
\(626\) 3.70450 6.41639i 0.148062 0.256450i
\(627\) −9.44229 10.4867i −0.377089 0.418799i
\(628\) −7.13629 21.9632i −0.284769 0.876429i
\(629\) −9.11716 + 10.1256i −0.363525 + 0.403735i
\(630\) 3.89652 + 1.73484i 0.155241 + 0.0691178i
\(631\) −10.1094 + 2.14881i −0.402447 + 0.0855428i −0.404688 0.914455i \(-0.632620\pi\)
0.00224100 + 0.999997i \(0.499287\pi\)
\(632\) 3.58039 + 34.0651i 0.142420 + 1.35504i
\(633\) −1.08554 + 10.3282i −0.0431462 + 0.410509i
\(634\) 5.89876 + 1.25382i 0.234270 + 0.0497956i
\(635\) 4.29525 + 3.12068i 0.170452 + 0.123840i
\(636\) −3.97992 2.89158i −0.157814 0.114659i
\(637\) −18.2645 3.88224i −0.723666 0.153820i
\(638\) −1.45214 + 13.8162i −0.0574908 + 0.546988i
\(639\) −1.76742 16.8159i −0.0699182 0.665228i
\(640\) −38.9785 + 8.28513i −1.54076 + 0.327498i
\(641\) 0.0924983 + 0.0411829i 0.00365346 + 0.00162663i 0.408563 0.912730i \(-0.366030\pi\)
−0.404909 + 0.914357i \(0.632697\pi\)
\(642\) 0.968965 1.07615i 0.0382420 0.0424721i
\(643\) −4.23719 13.0407i −0.167098 0.514276i 0.832086 0.554646i \(-0.187146\pi\)
−0.999185 + 0.0403701i \(0.987146\pi\)
\(644\) 2.55671 + 2.83951i 0.100748 + 0.111892i
\(645\) −11.9723 + 20.7366i −0.471408 + 0.816503i
\(646\) −1.71401 2.96875i −0.0674367 0.116804i
\(647\) −3.34800 + 10.3041i −0.131624 + 0.405096i −0.995050 0.0993798i \(-0.968314\pi\)
0.863426 + 0.504476i \(0.168314\pi\)
\(648\) 5.18208 2.30721i 0.203572 0.0906359i
\(649\) 3.08745 2.24316i 0.121193 0.0880518i
\(650\) 17.5460 0.688212
\(651\) 2.52067 2.89098i 0.0987930 0.113306i
\(652\) 1.59301 0.0623870
\(653\) 19.6204 14.2551i 0.767807 0.557844i −0.133488 0.991050i \(-0.542618\pi\)
0.901295 + 0.433206i \(0.142618\pi\)
\(654\) 0.839439 0.373742i 0.0328246 0.0146145i
\(655\) 7.20968 22.1891i 0.281706 0.867001i
\(656\) −0.519185 0.899255i −0.0202708 0.0351100i
\(657\) −6.18270 + 10.7087i −0.241210 + 0.417788i
\(658\) 0.308551 + 0.342680i 0.0120286 + 0.0133591i
\(659\) −2.63699 8.11583i −0.102723 0.316148i 0.886467 0.462793i \(-0.153153\pi\)
−0.989189 + 0.146645i \(0.953153\pi\)
\(660\) −14.0470 + 15.6008i −0.546780 + 0.607261i
\(661\) 34.6089 + 15.4089i 1.34613 + 0.599337i 0.948082 0.318027i \(-0.103020\pi\)
0.398050 + 0.917364i \(0.369687\pi\)
\(662\) −21.8306 + 4.64023i −0.848469 + 0.180348i
\(663\) −0.359146 3.41705i −0.0139481 0.132707i
\(664\) 3.58369 34.0966i 0.139074 1.32320i
\(665\) 10.5188 + 2.23585i 0.407903 + 0.0867024i
\(666\) 12.6952 + 9.22360i 0.491929 + 0.357407i
\(667\) 13.0026 + 9.44697i 0.503464 + 0.365788i
\(668\) −16.8357 3.57854i −0.651393 0.138458i
\(669\) 0.888925 8.45756i 0.0343678 0.326988i
\(670\) −0.557633 5.30552i −0.0215432 0.204970i
\(671\) 9.32767 1.98266i 0.360091 0.0765397i
\(672\) 3.65481 + 1.62723i 0.140987 + 0.0627716i
\(673\) 4.76428 5.29127i 0.183650 0.203963i −0.644289 0.764782i \(-0.722847\pi\)
0.827939 + 0.560818i \(0.189513\pi\)
\(674\) −5.90910 18.1863i −0.227610 0.700512i
\(675\) 27.3848 + 30.4139i 1.05404 + 1.17063i
\(676\) −3.45577 + 5.98557i −0.132914 + 0.230214i
\(677\) −24.0305 41.6220i −0.923567 1.59966i −0.793850 0.608113i \(-0.791927\pi\)
−0.129716 0.991551i \(-0.541407\pi\)
\(678\) 1.22679 3.77566i 0.0471145 0.145004i
\(679\) −3.68060 + 1.63871i −0.141248 + 0.0628879i
\(680\) −9.53810 + 6.92984i −0.365769 + 0.265747i
\(681\) −19.6390 −0.752567
\(682\) 8.11717 + 13.5550i 0.310822 + 0.519049i
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) 10.2431 7.44202i 0.391653 0.284553i
\(685\) 43.1837 19.2266i 1.64997 0.734612i
\(686\) 2.18235 6.71657i 0.0833224 0.256440i
\(687\) 7.65051 + 13.2511i 0.291885 + 0.505560i
\(688\) 4.91537 8.51366i 0.187397 0.324580i
\(689\) −6.96191 7.73198i −0.265228 0.294565i
\(690\) −2.34024 7.20251i −0.0890913 0.274195i
\(691\) 18.2359 20.2530i 0.693725 0.770460i −0.288639 0.957438i \(-0.593203\pi\)
0.982364 + 0.186978i \(0.0598693\pi\)
\(692\) 28.7649 + 12.8069i 1.09348 + 0.486847i
\(693\) −6.71698 + 1.42774i −0.255157 + 0.0542353i
\(694\) −1.86781 17.7710i −0.0709012 0.674580i
\(695\) −7.25234 + 69.0014i −0.275097 + 2.61737i
\(696\) 10.5015 + 2.23217i 0.398059 + 0.0846101i
\(697\) −0.800258 0.581421i −0.0303119 0.0220229i
\(698\) 3.12036 + 2.26707i 0.118107 + 0.0858100i
\(699\) −8.68215 1.84545i −0.328389 0.0698012i
\(700\) 1.06398 10.1231i 0.0402146 0.382616i
\(701\) −0.887358 8.44265i −0.0335150 0.318874i −0.998416 0.0562607i \(-0.982082\pi\)
0.964901 0.262614i \(-0.0845845\pi\)
\(702\) −9.18321 + 1.95195i −0.346598 + 0.0736717i
\(703\) 36.1433 + 16.0920i 1.36317 + 0.606923i
\(704\) −3.46162 + 3.84452i −0.130465 + 0.144896i
\(705\) 0.905737 + 2.78757i 0.0341120 + 0.104986i
\(706\) −5.38361 5.97910i −0.202615 0.225026i
\(707\) −1.45328 + 2.51716i −0.0546564 + 0.0946676i
\(708\) −0.637869 1.10482i −0.0239726 0.0415217i
\(709\) −7.22670 + 22.2415i −0.271404 + 0.835297i 0.718744 + 0.695275i \(0.244717\pi\)
−0.990148 + 0.140022i \(0.955283\pi\)
\(710\) 18.0661 8.04354i 0.678008 0.301869i
\(711\) −24.9229 + 18.1076i −0.934683 + 0.679087i
\(712\) −10.7774 −0.403901
\(713\) 18.2764 0.291720i 0.684457 0.0109250i
\(714\) 0.621526 0.0232600
\(715\) −35.9197 + 26.0972i −1.34332 + 0.975978i
\(716\) 0.183378 0.0816452i 0.00685317 0.00305123i
\(717\) −0.164703 + 0.506903i −0.00615094 + 0.0189306i
\(718\) 9.03230 + 15.6444i 0.337083 + 0.583844i
\(719\) −6.48843 + 11.2383i −0.241978 + 0.419118i −0.961278 0.275582i \(-0.911129\pi\)
0.719300 + 0.694700i \(0.244463\pi\)
\(720\) −7.44802 8.27186i −0.277571 0.308274i
\(721\) −1.47337 4.53457i −0.0548712 0.168876i
\(722\) 2.10541 2.33830i 0.0783553 0.0870224i
\(723\) −12.6712 5.64156i −0.471245 0.209812i
\(724\) 11.5306 2.45090i 0.428531 0.0910870i
\(725\) −4.47545 42.5811i −0.166214 1.58142i
\(726\) −0.386215 + 3.67459i −0.0143338 + 0.136377i
\(727\) 12.1515 + 2.58289i 0.450676 + 0.0957941i 0.427657 0.903941i \(-0.359339\pi\)
0.0230186 + 0.999735i \(0.492672\pi\)
\(728\) 4.36719 + 3.17295i 0.161859 + 0.117597i
\(729\) −6.12163 4.44762i −0.226727 0.164727i
\(730\) −14.1462 3.00687i −0.523575 0.111289i
\(731\) 0.978905 9.31366i 0.0362061 0.344478i
\(732\) −0.333214 3.17032i −0.0123159 0.117178i
\(733\) 33.4109 7.10171i 1.23406 0.262308i 0.455705 0.890131i \(-0.349387\pi\)
0.778356 + 0.627823i \(0.216054\pi\)
\(734\) −17.0160 7.57603i −0.628074 0.279636i
\(735\) 14.3662 15.9553i 0.529904 0.588518i
\(736\) 5.89161 + 18.1325i 0.217168 + 0.668373i
\(737\) 5.74708 + 6.38278i 0.211697 + 0.235113i
\(738\) −0.569607 + 0.986589i −0.0209675 + 0.0363168i
\(739\) 6.18747 + 10.7170i 0.227610 + 0.394231i 0.957099 0.289761i \(-0.0935757\pi\)
−0.729490 + 0.683992i \(0.760242\pi\)
\(740\) 18.1881 55.9773i 0.668609 2.05777i
\(741\) −9.11416 + 4.05789i −0.334817 + 0.149070i
\(742\) 1.52264 1.10626i 0.0558979 0.0406122i
\(743\) −16.2455 −0.595990 −0.297995 0.954567i \(-0.596318\pi\)
−0.297995 + 0.954567i \(0.596318\pi\)
\(744\) 11.0738 5.14369i 0.405986 0.188577i
\(745\) −74.6520 −2.73504
\(746\) −6.92012 + 5.02776i −0.253364 + 0.184080i
\(747\) 28.1690 12.5417i 1.03065 0.458875i
\(748\) 2.53720 7.80871i 0.0927694 0.285515i
\(749\) −0.888356 1.53868i −0.0324598 0.0562220i
\(750\) −4.32029 + 7.48296i −0.157755 + 0.273239i
\(751\) −7.21876 8.01725i −0.263416 0.292554i 0.596898 0.802317i \(-0.296400\pi\)
−0.860315 + 0.509763i \(0.829733\pi\)
\(752\) −0.371861 1.14447i −0.0135604 0.0417346i
\(753\) 3.65404 4.05823i 0.133161 0.147890i
\(754\) 8.97273 + 3.99492i 0.326767 + 0.145486i
\(755\) −55.7482 + 11.8496i −2.02888 + 0.431253i
\(756\) 0.569303 + 5.41656i 0.0207054 + 0.196998i
\(757\) −4.29629 + 40.8765i −0.156151 + 1.48568i 0.583181 + 0.812342i \(0.301808\pi\)
−0.739333 + 0.673340i \(0.764859\pi\)
\(758\) −3.12867 0.665019i −0.113638 0.0241546i
\(759\) 9.86411 + 7.16670i 0.358045 + 0.260135i
\(760\) 27.6956 + 20.1221i 1.00463 + 0.729904i
\(761\) −19.2309 4.08765i −0.697119 0.148177i −0.154296 0.988025i \(-0.549311\pi\)
−0.542823 + 0.839847i \(0.682644\pi\)
\(762\) 0.0931346 0.886117i 0.00337391 <