Properties

Label 496.2.bg.c.81.1
Level $496$
Weight $2$
Character 496.81
Analytic conductor $3.961$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [496,2,Mod(49,496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("496.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(496, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 0, 26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 496.bg (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.96057994026\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 81.1
Root \(-1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 496.81
Dual form 496.2.bg.c.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.824384 + 0.367040i) q^{3} +(-1.85376 + 3.21080i) q^{5} +(-0.510810 + 0.567312i) q^{7} +(-1.46250 - 1.62427i) q^{9} +(-4.02569 - 0.855686i) q^{11} +(0.304152 + 2.89381i) q^{13} +(-2.70670 + 1.96653i) q^{15} +(-1.27993 + 0.272057i) q^{17} +(-0.397160 + 3.77873i) q^{19} +(-0.629330 + 0.280196i) q^{21} +(1.01449 - 3.12228i) q^{23} +(-4.37284 - 7.57398i) q^{25} +(-1.44606 - 4.45052i) q^{27} +(-3.96065 - 2.87758i) q^{29} +(1.63580 + 5.32204i) q^{31} +(-3.00464 - 2.18300i) q^{33} +(-0.874609 - 2.69177i) q^{35} +(5.20639 + 9.01773i) q^{37} +(-0.811405 + 2.49725i) q^{39} +(0.690591 - 0.307471i) q^{41} +(-0.748099 + 7.11768i) q^{43} +(7.92634 - 1.68480i) q^{45} +(-0.708753 + 0.514939i) q^{47} +(0.670783 + 6.38208i) q^{49} +(-1.15501 - 0.245505i) q^{51} +(2.39261 + 2.65727i) q^{53} +(10.2101 - 11.3395i) q^{55} +(-1.71435 + 2.96935i) q^{57} +(-0.847103 - 0.377155i) q^{59} +2.31704 q^{61} +1.66853 q^{63} +(-9.85528 - 4.38785i) q^{65} +(-1.04345 + 1.80731i) q^{67} +(1.98233 - 2.20160i) q^{69} +(5.17645 + 5.74903i) q^{71} +(5.53385 + 1.17626i) q^{73} +(-0.824950 - 7.84887i) q^{75} +(2.54180 - 1.84673i) q^{77} +(-13.7867 + 2.93046i) q^{79} +(-0.243989 + 2.32140i) q^{81} +(12.8880 - 5.73812i) q^{83} +(1.49916 - 4.61393i) q^{85} +(-2.20891 - 3.82595i) q^{87} +(-1.37043 - 4.21776i) q^{89} +(-1.79706 - 1.30564i) q^{91} +(-0.604868 + 4.98781i) q^{93} +(-11.3965 - 8.28005i) q^{95} +(-1.63088 - 5.01933i) q^{97} +(4.49770 + 7.79025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{3} - 3 q^{5} - 2 q^{7} - 10 q^{9} + 7 q^{11} - 7 q^{13} - 14 q^{15} - 6 q^{17} - 16 q^{19} + 9 q^{21} - q^{23} - 13 q^{25} - 9 q^{27} - 14 q^{29} - 15 q^{31} - 13 q^{33} + 9 q^{35} - 8 q^{37}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.824384 + 0.367040i 0.475958 + 0.211910i 0.630673 0.776049i \(-0.282779\pi\)
−0.154714 + 0.987959i \(0.549446\pi\)
\(4\) 0 0
\(5\) −1.85376 + 3.21080i −0.829026 + 1.43591i 0.0697774 + 0.997563i \(0.477771\pi\)
−0.898803 + 0.438352i \(0.855562\pi\)
\(6\) 0 0
\(7\) −0.510810 + 0.567312i −0.193068 + 0.214424i −0.831905 0.554919i \(-0.812749\pi\)
0.638836 + 0.769343i \(0.279416\pi\)
\(8\) 0 0
\(9\) −1.46250 1.62427i −0.487500 0.541424i
\(10\) 0 0
\(11\) −4.02569 0.855686i −1.21379 0.257999i −0.443842 0.896105i \(-0.646385\pi\)
−0.769948 + 0.638106i \(0.779718\pi\)
\(12\) 0 0
\(13\) 0.304152 + 2.89381i 0.0843565 + 0.802599i 0.952141 + 0.305658i \(0.0988766\pi\)
−0.867785 + 0.496940i \(0.834457\pi\)
\(14\) 0 0
\(15\) −2.70670 + 1.96653i −0.698867 + 0.507757i
\(16\) 0 0
\(17\) −1.27993 + 0.272057i −0.310429 + 0.0659836i −0.360492 0.932762i \(-0.617391\pi\)
0.0500631 + 0.998746i \(0.484058\pi\)
\(18\) 0 0
\(19\) −0.397160 + 3.77873i −0.0911148 + 0.866900i 0.849538 + 0.527528i \(0.176881\pi\)
−0.940652 + 0.339371i \(0.889786\pi\)
\(20\) 0 0
\(21\) −0.629330 + 0.280196i −0.137331 + 0.0611437i
\(22\) 0 0
\(23\) 1.01449 3.12228i 0.211536 0.651040i −0.787846 0.615873i \(-0.788804\pi\)
0.999381 0.0351674i \(-0.0111964\pi\)
\(24\) 0 0
\(25\) −4.37284 7.57398i −0.874568 1.51480i
\(26\) 0 0
\(27\) −1.44606 4.45052i −0.278295 0.856503i
\(28\) 0 0
\(29\) −3.96065 2.87758i −0.735474 0.534353i 0.155816 0.987786i \(-0.450199\pi\)
−0.891290 + 0.453433i \(0.850199\pi\)
\(30\) 0 0
\(31\) 1.63580 + 5.32204i 0.293799 + 0.955867i
\(32\) 0 0
\(33\) −3.00464 2.18300i −0.523041 0.380012i
\(34\) 0 0
\(35\) −0.874609 2.69177i −0.147836 0.454992i
\(36\) 0 0
\(37\) 5.20639 + 9.01773i 0.855925 + 1.48251i 0.875784 + 0.482704i \(0.160345\pi\)
−0.0198583 + 0.999803i \(0.506321\pi\)
\(38\) 0 0
\(39\) −0.811405 + 2.49725i −0.129929 + 0.399880i
\(40\) 0 0
\(41\) 0.690591 0.307471i 0.107852 0.0480189i −0.352101 0.935962i \(-0.614533\pi\)
0.459953 + 0.887943i \(0.347866\pi\)
\(42\) 0 0
\(43\) −0.748099 + 7.11768i −0.114084 + 1.08544i 0.776343 + 0.630311i \(0.217072\pi\)
−0.890427 + 0.455126i \(0.849594\pi\)
\(44\) 0 0
\(45\) 7.92634 1.68480i 1.18159 0.251154i
\(46\) 0 0
\(47\) −0.708753 + 0.514939i −0.103382 + 0.0751116i −0.638275 0.769808i \(-0.720352\pi\)
0.534893 + 0.844920i \(0.320352\pi\)
\(48\) 0 0
\(49\) 0.670783 + 6.38208i 0.0958262 + 0.911725i
\(50\) 0 0
\(51\) −1.15501 0.245505i −0.161734 0.0343776i
\(52\) 0 0
\(53\) 2.39261 + 2.65727i 0.328651 + 0.365004i 0.884712 0.466138i \(-0.154355\pi\)
−0.556062 + 0.831141i \(0.687688\pi\)
\(54\) 0 0
\(55\) 10.2101 11.3395i 1.37673 1.52901i
\(56\) 0 0
\(57\) −1.71435 + 2.96935i −0.227072 + 0.393300i
\(58\) 0 0
\(59\) −0.847103 0.377155i −0.110283 0.0491014i 0.350853 0.936430i \(-0.385892\pi\)
−0.461137 + 0.887329i \(0.652558\pi\)
\(60\) 0 0
\(61\) 2.31704 0.296666 0.148333 0.988937i \(-0.452609\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(62\) 0 0
\(63\) 1.66853 0.210215
\(64\) 0 0
\(65\) −9.85528 4.38785i −1.22240 0.544246i
\(66\) 0 0
\(67\) −1.04345 + 1.80731i −0.127478 + 0.220798i −0.922699 0.385522i \(-0.874021\pi\)
0.795221 + 0.606320i \(0.207355\pi\)
\(68\) 0 0
\(69\) 1.98233 2.20160i 0.238644 0.265041i
\(70\) 0 0
\(71\) 5.17645 + 5.74903i 0.614332 + 0.682284i 0.967383 0.253320i \(-0.0815224\pi\)
−0.353051 + 0.935604i \(0.614856\pi\)
\(72\) 0 0
\(73\) 5.53385 + 1.17626i 0.647688 + 0.137670i 0.520030 0.854148i \(-0.325921\pi\)
0.127658 + 0.991818i \(0.459254\pi\)
\(74\) 0 0
\(75\) −0.824950 7.84887i −0.0952570 0.906310i
\(76\) 0 0
\(77\) 2.54180 1.84673i 0.289665 0.210454i
\(78\) 0 0
\(79\) −13.7867 + 2.93046i −1.55113 + 0.329702i −0.902257 0.431198i \(-0.858091\pi\)
−0.648869 + 0.760900i \(0.724758\pi\)
\(80\) 0 0
\(81\) −0.243989 + 2.32140i −0.0271098 + 0.257933i
\(82\) 0 0
\(83\) 12.8880 5.73812i 1.41465 0.629841i 0.449913 0.893072i \(-0.351455\pi\)
0.964733 + 0.263231i \(0.0847883\pi\)
\(84\) 0 0
\(85\) 1.49916 4.61393i 0.162606 0.500451i
\(86\) 0 0
\(87\) −2.20891 3.82595i −0.236820 0.410184i
\(88\) 0 0
\(89\) −1.37043 4.21776i −0.145266 0.447081i 0.851780 0.523900i \(-0.175524\pi\)
−0.997045 + 0.0768191i \(0.975524\pi\)
\(90\) 0 0
\(91\) −1.79706 1.30564i −0.188383 0.136868i
\(92\) 0 0
\(93\) −0.604868 + 4.98781i −0.0627219 + 0.517212i
\(94\) 0 0
\(95\) −11.3965 8.28005i −1.16926 0.849515i
\(96\) 0 0
\(97\) −1.63088 5.01933i −0.165591 0.509636i 0.833489 0.552537i \(-0.186340\pi\)
−0.999079 + 0.0429007i \(0.986340\pi\)
\(98\) 0 0
\(99\) 4.49770 + 7.79025i 0.452036 + 0.782949i
\(100\) 0 0
\(101\) 1.17656 3.62108i 0.117072 0.360311i −0.875301 0.483578i \(-0.839337\pi\)
0.992374 + 0.123267i \(0.0393371\pi\)
\(102\) 0 0
\(103\) 5.70573 2.54035i 0.562202 0.250308i −0.105902 0.994377i \(-0.533773\pi\)
0.668104 + 0.744068i \(0.267106\pi\)
\(104\) 0 0
\(105\) 0.266972 2.54007i 0.0260538 0.247885i
\(106\) 0 0
\(107\) 2.27653 0.483890i 0.220080 0.0467795i −0.0965518 0.995328i \(-0.530781\pi\)
0.316632 + 0.948548i \(0.397448\pi\)
\(108\) 0 0
\(109\) −1.19478 + 0.868057i −0.114439 + 0.0831448i −0.643533 0.765419i \(-0.722532\pi\)
0.529094 + 0.848563i \(0.322532\pi\)
\(110\) 0 0
\(111\) 0.982202 + 9.34503i 0.0932265 + 0.886991i
\(112\) 0 0
\(113\) −6.24112 1.32659i −0.587115 0.124795i −0.0952299 0.995455i \(-0.530359\pi\)
−0.491885 + 0.870660i \(0.663692\pi\)
\(114\) 0 0
\(115\) 8.14440 + 9.04528i 0.759470 + 0.843476i
\(116\) 0 0
\(117\) 4.25551 4.72623i 0.393422 0.436940i
\(118\) 0 0
\(119\) 0.499460 0.865089i 0.0457854 0.0793026i
\(120\) 0 0
\(121\) 5.42495 + 2.41534i 0.493178 + 0.219577i
\(122\) 0 0
\(123\) 0.682166 0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 0 0
\(127\) 1.30821 + 0.582453i 0.116085 + 0.0516843i 0.463957 0.885858i \(-0.346429\pi\)
−0.347872 + 0.937542i \(0.613096\pi\)
\(128\) 0 0
\(129\) −3.22919 + 5.59312i −0.284314 + 0.492447i
\(130\) 0 0
\(131\) −4.21077 + 4.67654i −0.367897 + 0.408591i −0.898461 0.439054i \(-0.855314\pi\)
0.530564 + 0.847645i \(0.321980\pi\)
\(132\) 0 0
\(133\) −1.94084 2.15553i −0.168293 0.186908i
\(134\) 0 0
\(135\) 16.9704 + 3.60717i 1.46058 + 0.310456i
\(136\) 0 0
\(137\) −1.33273 12.6801i −0.113863 1.08333i −0.891001 0.454001i \(-0.849996\pi\)
0.777139 0.629330i \(-0.216670\pi\)
\(138\) 0 0
\(139\) 15.1397 10.9997i 1.28414 0.932979i 0.284466 0.958686i \(-0.408184\pi\)
0.999670 + 0.0257067i \(0.00818361\pi\)
\(140\) 0 0
\(141\) −0.773288 + 0.164367i −0.0651226 + 0.0138422i
\(142\) 0 0
\(143\) 1.25177 11.9098i 0.104679 0.995950i
\(144\) 0 0
\(145\) 16.5814 7.38253i 1.37701 0.613086i
\(146\) 0 0
\(147\) −1.78949 + 5.50749i −0.147595 + 0.454250i
\(148\) 0 0
\(149\) 10.0677 + 17.4377i 0.824774 + 1.42855i 0.902092 + 0.431545i \(0.142031\pi\)
−0.0773172 + 0.997007i \(0.524635\pi\)
\(150\) 0 0
\(151\) −4.75035 14.6201i −0.386578 1.18977i −0.935329 0.353779i \(-0.884896\pi\)
0.548751 0.835986i \(-0.315104\pi\)
\(152\) 0 0
\(153\) 2.31379 + 1.68107i 0.187059 + 0.135906i
\(154\) 0 0
\(155\) −20.1204 4.61353i −1.61611 0.370568i
\(156\) 0 0
\(157\) −12.2544 8.90334i −0.978008 0.710564i −0.0207452 0.999785i \(-0.506604\pi\)
−0.957262 + 0.289221i \(0.906604\pi\)
\(158\) 0 0
\(159\) 0.997111 + 3.06879i 0.0790760 + 0.243371i
\(160\) 0 0
\(161\) 1.25310 + 2.17042i 0.0987577 + 0.171053i
\(162\) 0 0
\(163\) 0.322882 0.993730i 0.0252901 0.0778349i −0.937615 0.347676i \(-0.886971\pi\)
0.962905 + 0.269841i \(0.0869710\pi\)
\(164\) 0 0
\(165\) 12.5791 5.60056i 0.979279 0.436003i
\(166\) 0 0
\(167\) −1.18006 + 11.2276i −0.0913161 + 0.868815i 0.848973 + 0.528437i \(0.177222\pi\)
−0.940289 + 0.340378i \(0.889445\pi\)
\(168\) 0 0
\(169\) 4.43428 0.942536i 0.341099 0.0725028i
\(170\) 0 0
\(171\) 6.71853 4.88129i 0.513778 0.373282i
\(172\) 0 0
\(173\) 2.15879 + 20.5395i 0.164130 + 1.56159i 0.698045 + 0.716054i \(0.254054\pi\)
−0.533915 + 0.845538i \(0.679280\pi\)
\(174\) 0 0
\(175\) 6.53050 + 1.38810i 0.493660 + 0.104931i
\(176\) 0 0
\(177\) −0.559908 0.621841i −0.0420853 0.0467404i
\(178\) 0 0
\(179\) 0.0880993 0.0978442i 0.00658485 0.00731322i −0.739843 0.672779i \(-0.765100\pi\)
0.746428 + 0.665466i \(0.231767\pi\)
\(180\) 0 0
\(181\) −3.86599 + 6.69610i −0.287357 + 0.497717i −0.973178 0.230053i \(-0.926110\pi\)
0.685821 + 0.727770i \(0.259443\pi\)
\(182\) 0 0
\(183\) 1.91013 + 0.850445i 0.141201 + 0.0628667i
\(184\) 0 0
\(185\) −38.6056 −2.83834
\(186\) 0 0
\(187\) 5.38539 0.393819
\(188\) 0 0
\(189\) 3.26350 + 1.45300i 0.237385 + 0.105690i
\(190\) 0 0
\(191\) −10.5513 + 18.2755i −0.763468 + 1.32237i 0.177585 + 0.984106i \(0.443172\pi\)
−0.941053 + 0.338260i \(0.890162\pi\)
\(192\) 0 0
\(193\) 3.78944 4.20860i 0.272770 0.302942i −0.591159 0.806555i \(-0.701330\pi\)
0.863929 + 0.503613i \(0.167996\pi\)
\(194\) 0 0
\(195\) −6.51402 7.23456i −0.466479 0.518077i
\(196\) 0 0
\(197\) −15.5670 3.30887i −1.10910 0.235747i −0.383283 0.923631i \(-0.625207\pi\)
−0.725821 + 0.687883i \(0.758540\pi\)
\(198\) 0 0
\(199\) −0.445443 4.23811i −0.0315766 0.300432i −0.998900 0.0468866i \(-0.985070\pi\)
0.967324 0.253545i \(-0.0815966\pi\)
\(200\) 0 0
\(201\) −1.52356 + 1.10693i −0.107463 + 0.0780767i
\(202\) 0 0
\(203\) 3.65563 0.777027i 0.256575 0.0545366i
\(204\) 0 0
\(205\) −0.292960 + 2.78733i −0.0204612 + 0.194675i
\(206\) 0 0
\(207\) −6.55512 + 2.91853i −0.455612 + 0.202852i
\(208\) 0 0
\(209\) 4.83225 14.8721i 0.334254 1.02873i
\(210\) 0 0
\(211\) −5.75414 9.96646i −0.396131 0.686120i 0.597113 0.802157i \(-0.296314\pi\)
−0.993245 + 0.116037i \(0.962981\pi\)
\(212\) 0 0
\(213\) 2.15726 + 6.63937i 0.147813 + 0.454922i
\(214\) 0 0
\(215\) −21.4667 15.5965i −1.46402 1.06367i
\(216\) 0 0
\(217\) −3.85485 1.79054i −0.261684 0.121550i
\(218\) 0 0
\(219\) 4.13028 + 3.00083i 0.279099 + 0.202777i
\(220\) 0 0
\(221\) −1.17658 3.62113i −0.0791450 0.243583i
\(222\) 0 0
\(223\) 4.71196 + 8.16135i 0.315536 + 0.546524i 0.979551 0.201195i \(-0.0644824\pi\)
−0.664015 + 0.747719i \(0.731149\pi\)
\(224\) 0 0
\(225\) −5.90692 + 18.1796i −0.393795 + 1.21197i
\(226\) 0 0
\(227\) −19.8815 + 8.85182i −1.31958 + 0.587516i −0.941111 0.338097i \(-0.890217\pi\)
−0.378471 + 0.925613i \(0.623550\pi\)
\(228\) 0 0
\(229\) −1.77237 + 16.8630i −0.117122 + 1.11434i 0.765233 + 0.643754i \(0.222624\pi\)
−0.882355 + 0.470585i \(0.844043\pi\)
\(230\) 0 0
\(231\) 2.77324 0.589471i 0.182466 0.0387844i
\(232\) 0 0
\(233\) 7.95758 5.78152i 0.521318 0.378760i −0.295782 0.955255i \(-0.595580\pi\)
0.817100 + 0.576496i \(0.195580\pi\)
\(234\) 0 0
\(235\) −0.339512 3.23024i −0.0221473 0.210718i
\(236\) 0 0
\(237\) −12.4411 2.64445i −0.808139 0.171775i
\(238\) 0 0
\(239\) −0.395212 0.438927i −0.0255641 0.0283919i 0.730227 0.683204i \(-0.239414\pi\)
−0.755791 + 0.654813i \(0.772748\pi\)
\(240\) 0 0
\(241\) 10.2848 11.4225i 0.662504 0.735786i −0.314440 0.949277i \(-0.601817\pi\)
0.976945 + 0.213491i \(0.0684836\pi\)
\(242\) 0 0
\(243\) −8.07252 + 13.9820i −0.517852 + 0.896946i
\(244\) 0 0
\(245\) −21.7351 9.67707i −1.38860 0.618245i
\(246\) 0 0
\(247\) −11.0557 −0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) 0 0
\(251\) 5.52832 + 2.46137i 0.348945 + 0.155360i 0.573722 0.819050i \(-0.305499\pi\)
−0.224778 + 0.974410i \(0.572166\pi\)
\(252\) 0 0
\(253\) −6.75571 + 11.7012i −0.424728 + 0.735650i
\(254\) 0 0
\(255\) 2.92938 3.25340i 0.183445 0.203736i
\(256\) 0 0
\(257\) −3.02972 3.36484i −0.188988 0.209893i 0.641203 0.767371i \(-0.278436\pi\)
−0.830192 + 0.557478i \(0.811769\pi\)
\(258\) 0 0
\(259\) −7.77535 1.65270i −0.483137 0.102694i
\(260\) 0 0
\(261\) 1.11848 + 10.6416i 0.0692322 + 0.658700i
\(262\) 0 0
\(263\) −2.02971 + 1.47467i −0.125157 + 0.0909322i −0.648603 0.761127i \(-0.724646\pi\)
0.523445 + 0.852059i \(0.324646\pi\)
\(264\) 0 0
\(265\) −12.9673 + 2.75628i −0.796574 + 0.169317i
\(266\) 0 0
\(267\) 0.418321 3.98005i 0.0256008 0.243575i
\(268\) 0 0
\(269\) 12.1865 5.42577i 0.743023 0.330815i −7.27860e−5 1.00000i \(-0.500023\pi\)
0.743096 + 0.669185i \(0.233357\pi\)
\(270\) 0 0
\(271\) −4.27190 + 13.1476i −0.259500 + 0.798658i 0.733410 + 0.679787i \(0.237928\pi\)
−0.992910 + 0.118871i \(0.962072\pi\)
\(272\) 0 0
\(273\) −1.00225 1.73594i −0.0606586 0.105064i
\(274\) 0 0
\(275\) 11.1227 + 34.2322i 0.670726 + 2.06428i
\(276\) 0 0
\(277\) −9.36093 6.80111i −0.562444 0.408639i 0.269909 0.962886i \(-0.413006\pi\)
−0.832353 + 0.554247i \(0.813006\pi\)
\(278\) 0 0
\(279\) 6.25208 10.4405i 0.374302 0.625055i
\(280\) 0 0
\(281\) 12.4583 + 9.05151i 0.743202 + 0.539968i 0.893712 0.448641i \(-0.148092\pi\)
−0.150510 + 0.988608i \(0.548092\pi\)
\(282\) 0 0
\(283\) 7.01336 + 21.5849i 0.416901 + 1.28309i 0.910539 + 0.413422i \(0.135667\pi\)
−0.493638 + 0.869667i \(0.664333\pi\)
\(284\) 0 0
\(285\) −6.35600 11.0089i −0.376497 0.652112i
\(286\) 0 0
\(287\) −0.178329 + 0.548840i −0.0105264 + 0.0323970i
\(288\) 0 0
\(289\) −13.9661 + 6.21809i −0.821533 + 0.365770i
\(290\) 0 0
\(291\) 0.497822 4.73646i 0.0291828 0.277656i
\(292\) 0 0
\(293\) −12.1299 + 2.57828i −0.708635 + 0.150625i −0.548109 0.836407i \(-0.684652\pi\)
−0.160525 + 0.987032i \(0.551319\pi\)
\(294\) 0 0
\(295\) 2.78129 2.02073i 0.161933 0.117651i
\(296\) 0 0
\(297\) 2.01314 + 19.1538i 0.116814 + 1.11142i
\(298\) 0 0
\(299\) 9.34384 + 1.98610i 0.540368 + 0.114859i
\(300\) 0 0
\(301\) −3.65581 4.06019i −0.210718 0.234026i
\(302\) 0 0
\(303\) 2.29902 2.55332i 0.132075 0.146684i
\(304\) 0 0
\(305\) −4.29523 + 7.43956i −0.245944 + 0.425988i
\(306\) 0 0
\(307\) −28.0641 12.4949i −1.60170 0.713124i −0.605152 0.796110i \(-0.706888\pi\)
−0.996551 + 0.0829855i \(0.973554\pi\)
\(308\) 0 0
\(309\) 5.63612 0.320628
\(310\) 0 0
\(311\) −2.38141 −0.135037 −0.0675187 0.997718i \(-0.521508\pi\)
−0.0675187 + 0.997718i \(0.521508\pi\)
\(312\) 0 0
\(313\) 9.81659 + 4.37063i 0.554866 + 0.247042i 0.664960 0.746879i \(-0.268449\pi\)
−0.110094 + 0.993921i \(0.535115\pi\)
\(314\) 0 0
\(315\) −3.09305 + 5.35732i −0.174274 + 0.301851i
\(316\) 0 0
\(317\) 5.85245 6.49980i 0.328706 0.365065i −0.556026 0.831165i \(-0.687674\pi\)
0.884732 + 0.466100i \(0.154341\pi\)
\(318\) 0 0
\(319\) 13.4820 + 14.9733i 0.754849 + 0.838344i
\(320\) 0 0
\(321\) 2.05434 + 0.436663i 0.114662 + 0.0243722i
\(322\) 0 0
\(323\) −0.519694 4.94456i −0.0289165 0.275122i
\(324\) 0 0
\(325\) 20.5877 14.9578i 1.14200 0.829710i
\(326\) 0 0
\(327\) −1.30357 + 0.277082i −0.0720874 + 0.0153227i
\(328\) 0 0
\(329\) 0.0699070 0.665120i 0.00385410 0.0366693i
\(330\) 0 0
\(331\) 29.5706 13.1657i 1.62535 0.723652i 0.626889 0.779109i \(-0.284328\pi\)
0.998461 + 0.0554567i \(0.0176615\pi\)
\(332\) 0 0
\(333\) 7.03290 21.6450i 0.385400 1.18614i
\(334\) 0 0
\(335\) −3.86860 6.70062i −0.211364 0.366094i
\(336\) 0 0
\(337\) 8.57021 + 26.3764i 0.466849 + 1.43681i 0.856642 + 0.515912i \(0.172547\pi\)
−0.389792 + 0.920903i \(0.627453\pi\)
\(338\) 0 0
\(339\) −4.65817 3.38436i −0.252997 0.183813i
\(340\) 0 0
\(341\) −2.03124 22.8246i −0.109998 1.23602i
\(342\) 0 0
\(343\) −8.28646 6.02047i −0.447427 0.325075i
\(344\) 0 0
\(345\) 3.39414 + 10.4461i 0.182735 + 0.562399i
\(346\) 0 0
\(347\) −12.9580 22.4440i −0.695624 1.20486i −0.969970 0.243224i \(-0.921795\pi\)
0.274347 0.961631i \(-0.411538\pi\)
\(348\) 0 0
\(349\) 1.72862 5.32015i 0.0925309 0.284781i −0.894071 0.447924i \(-0.852163\pi\)
0.986602 + 0.163144i \(0.0521634\pi\)
\(350\) 0 0
\(351\) 12.4391 5.53827i 0.663953 0.295611i
\(352\) 0 0
\(353\) −1.21974 + 11.6051i −0.0649202 + 0.617675i 0.912893 + 0.408198i \(0.133843\pi\)
−0.977814 + 0.209477i \(0.932824\pi\)
\(354\) 0 0
\(355\) −28.0549 + 5.96325i −1.48900 + 0.316497i
\(356\) 0 0
\(357\) 0.729269 0.529845i 0.0385970 0.0280424i
\(358\) 0 0
\(359\) 2.73863 + 26.0563i 0.144539 + 1.37520i 0.790796 + 0.612080i \(0.209667\pi\)
−0.646257 + 0.763120i \(0.723666\pi\)
\(360\) 0 0
\(361\) 4.46376 + 0.948801i 0.234935 + 0.0499369i
\(362\) 0 0
\(363\) 3.58572 + 3.98234i 0.188201 + 0.209019i
\(364\) 0 0
\(365\) −14.0351 + 15.5876i −0.734633 + 0.815893i
\(366\) 0 0
\(367\) 13.5073 23.3953i 0.705076 1.22123i −0.261589 0.965179i \(-0.584246\pi\)
0.966664 0.256047i \(-0.0824203\pi\)
\(368\) 0 0
\(369\) −1.50941 0.672031i −0.0785765 0.0349845i
\(370\) 0 0
\(371\) −2.72967 −0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 0 0
\(375\) 11.4484 + 5.09714i 0.591191 + 0.263215i
\(376\) 0 0
\(377\) 7.12253 12.3366i 0.366829 0.635367i
\(378\) 0 0
\(379\) 3.10411 3.44746i 0.159447 0.177084i −0.658128 0.752906i \(-0.728651\pi\)
0.817575 + 0.575822i \(0.195318\pi\)
\(380\) 0 0
\(381\) 0.864685 + 0.960330i 0.0442991 + 0.0491992i
\(382\) 0 0
\(383\) −4.91161 1.04399i −0.250971 0.0533456i 0.0807080 0.996738i \(-0.474282\pi\)
−0.331679 + 0.943392i \(0.607615\pi\)
\(384\) 0 0
\(385\) 1.21759 + 11.5846i 0.0620542 + 0.590407i
\(386\) 0 0
\(387\) 12.6551 9.19450i 0.643297 0.467383i
\(388\) 0 0
\(389\) −18.1953 + 3.86754i −0.922540 + 0.196092i −0.644612 0.764510i \(-0.722981\pi\)
−0.277928 + 0.960602i \(0.589648\pi\)
\(390\) 0 0
\(391\) −0.449036 + 4.27230i −0.0227087 + 0.216059i
\(392\) 0 0
\(393\) −5.18777 + 2.30974i −0.261688 + 0.116511i
\(394\) 0 0
\(395\) 16.1481 49.6988i 0.812500 2.50062i
\(396\) 0 0
\(397\) −16.2794 28.1968i −0.817040 1.41515i −0.907854 0.419287i \(-0.862280\pi\)
0.0908142 0.995868i \(-0.471053\pi\)
\(398\) 0 0
\(399\) −0.808838 2.48935i −0.0404926 0.124623i
\(400\) 0 0
\(401\) 10.0239 + 7.28282i 0.500572 + 0.363687i 0.809235 0.587485i \(-0.199882\pi\)
−0.308664 + 0.951171i \(0.599882\pi\)
\(402\) 0 0
\(403\) −14.9035 + 6.35242i −0.742394 + 0.316437i
\(404\) 0 0
\(405\) −7.00125 5.08671i −0.347895 0.252760i
\(406\) 0 0
\(407\) −13.2429 40.7576i −0.656429 2.02028i
\(408\) 0 0
\(409\) 1.72404 + 2.98613i 0.0852484 + 0.147654i 0.905497 0.424353i \(-0.139498\pi\)
−0.820249 + 0.572007i \(0.806165\pi\)
\(410\) 0 0
\(411\) 3.55540 10.9424i 0.175375 0.539749i
\(412\) 0 0
\(413\) 0.646673 0.287918i 0.0318207 0.0141675i
\(414\) 0 0
\(415\) −5.46732 + 52.0180i −0.268380 + 2.55347i
\(416\) 0 0
\(417\) 16.5183 3.51107i 0.808903 0.171938i
\(418\) 0 0
\(419\) −32.3988 + 23.5391i −1.58279 + 1.14996i −0.669374 + 0.742926i \(0.733437\pi\)
−0.913412 + 0.407035i \(0.866563\pi\)
\(420\) 0 0
\(421\) −2.26664 21.5656i −0.110469 1.05104i −0.899569 0.436779i \(-0.856119\pi\)
0.789100 0.614265i \(-0.210548\pi\)
\(422\) 0 0
\(423\) 1.87295 + 0.398108i 0.0910660 + 0.0193567i
\(424\) 0 0
\(425\) 7.65748 + 8.50450i 0.371442 + 0.412529i
\(426\) 0 0
\(427\) −1.18357 + 1.31448i −0.0572768 + 0.0636124i
\(428\) 0 0
\(429\) 5.40332 9.35883i 0.260875 0.451849i
\(430\) 0 0
\(431\) 10.6160 + 4.72655i 0.511355 + 0.227670i 0.646160 0.763202i \(-0.276374\pi\)
−0.134805 + 0.990872i \(0.543041\pi\)
\(432\) 0 0
\(433\) 24.5964 1.18203 0.591015 0.806661i \(-0.298728\pi\)
0.591015 + 0.806661i \(0.298728\pi\)
\(434\) 0 0
\(435\) 16.3791 0.785320
\(436\) 0 0
\(437\) 11.3953 + 5.07353i 0.545112 + 0.242700i
\(438\) 0 0
\(439\) 9.09662 15.7558i 0.434158 0.751984i −0.563068 0.826410i \(-0.690379\pi\)
0.997227 + 0.0744265i \(0.0237126\pi\)
\(440\) 0 0
\(441\) 9.38520 10.4233i 0.446914 0.496349i
\(442\) 0 0
\(443\) −11.8840 13.1985i −0.564625 0.627080i 0.391451 0.920199i \(-0.371973\pi\)
−0.956076 + 0.293119i \(0.905307\pi\)
\(444\) 0 0
\(445\) 16.0828 + 3.41851i 0.762400 + 0.162053i
\(446\) 0 0
\(447\) 1.89929 + 18.0706i 0.0898336 + 0.854709i
\(448\) 0 0
\(449\) 7.44180 5.40679i 0.351200 0.255162i −0.398172 0.917311i \(-0.630355\pi\)
0.749372 + 0.662149i \(0.230355\pi\)
\(450\) 0 0
\(451\) −3.04320 + 0.646852i −0.143299 + 0.0304591i
\(452\) 0 0
\(453\) 1.45003 13.7961i 0.0681284 0.648199i
\(454\) 0 0
\(455\) 7.52346 3.34966i 0.352705 0.157035i
\(456\) 0 0
\(457\) −9.64130 + 29.6729i −0.451001 + 1.38804i 0.424766 + 0.905303i \(0.360356\pi\)
−0.875767 + 0.482735i \(0.839644\pi\)
\(458\) 0 0
\(459\) 3.06166 + 5.30294i 0.142906 + 0.247520i
\(460\) 0 0
\(461\) −2.06067 6.34209i −0.0959750 0.295381i 0.891532 0.452959i \(-0.149631\pi\)
−0.987507 + 0.157578i \(0.949631\pi\)
\(462\) 0 0
\(463\) 28.5732 + 20.7597i 1.32791 + 0.964784i 0.999797 + 0.0201457i \(0.00641301\pi\)
0.328114 + 0.944638i \(0.393587\pi\)
\(464\) 0 0
\(465\) −14.8936 11.1883i −0.690675 0.518846i
\(466\) 0 0
\(467\) 29.0789 + 21.1270i 1.34561 + 0.977642i 0.999218 + 0.0395520i \(0.0125931\pi\)
0.346391 + 0.938090i \(0.387407\pi\)
\(468\) 0 0
\(469\) −0.492303 1.51515i −0.0227324 0.0699632i
\(470\) 0 0
\(471\) −6.83446 11.8376i −0.314915 0.545449i
\(472\) 0 0
\(473\) 9.10211 28.0134i 0.418516 1.28806i
\(474\) 0 0
\(475\) 30.3567 13.5157i 1.39286 0.620142i
\(476\) 0 0
\(477\) 0.816923 7.77251i 0.0374043 0.355879i
\(478\) 0 0
\(479\) 32.5179 6.91190i 1.48578 0.315813i 0.607640 0.794212i \(-0.292116\pi\)
0.878142 + 0.478400i \(0.158783\pi\)
\(480\) 0 0
\(481\) −24.5121 + 17.8091i −1.11765 + 0.812024i
\(482\) 0 0
\(483\) 0.236400 + 2.24920i 0.0107566 + 0.102342i
\(484\) 0 0
\(485\) 19.1393 + 4.06819i 0.869073 + 0.184727i
\(486\) 0 0
\(487\) −19.0805 21.1910i −0.864620 0.960258i 0.134912 0.990858i \(-0.456925\pi\)
−0.999532 + 0.0305999i \(0.990258\pi\)
\(488\) 0 0
\(489\) 0.630917 0.700705i 0.0285311 0.0316870i
\(490\) 0 0
\(491\) −13.9818 + 24.2172i −0.630991 + 1.09291i 0.356359 + 0.934349i \(0.384018\pi\)
−0.987350 + 0.158559i \(0.949315\pi\)
\(492\) 0 0
\(493\) 5.85222 + 2.60558i 0.263571 + 0.117349i
\(494\) 0 0
\(495\) −33.3506 −1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) 0 0
\(499\) 37.7340 + 16.8002i 1.68920 + 0.752082i 0.999611 + 0.0278849i \(0.00887720\pi\)
0.689593 + 0.724197i \(0.257789\pi\)
\(500\) 0 0
\(501\) −5.09378 + 8.82269i −0.227573 + 0.394169i
\(502\) 0 0
\(503\) 17.1204 19.0141i 0.763361 0.847798i −0.228708 0.973495i \(-0.573450\pi\)
0.992069 + 0.125697i \(0.0401167\pi\)
\(504\) 0 0
\(505\) 9.44552 + 10.4903i 0.420320 + 0.466813i
\(506\) 0 0
\(507\) 4.00150 + 0.850545i 0.177713 + 0.0377741i
\(508\) 0 0
\(509\) 2.55758 + 24.3337i 0.113363 + 1.07857i 0.892291 + 0.451461i \(0.149097\pi\)
−0.778928 + 0.627113i \(0.784236\pi\)
\(510\) 0 0
\(511\) −3.49405 + 2.53858i −0.154568 + 0.112300i
\(512\) 0 0
\(513\) 17.3916 3.69670i 0.767859 0.163213i
\(514\) 0 0
\(515\) −2.42046 + 23.0292i −0.106658 + 1.01479i
\(516\) 0 0
\(517\) 3.29384 1.46651i 0.144863 0.0644972i
\(518\) 0 0
\(519\) −5.75915 + 17.7248i −0.252799 + 0.778034i
\(520\) 0 0
\(521\) −7.48279 12.9606i −0.327827 0.567813i 0.654253 0.756275i \(-0.272983\pi\)
−0.982080 + 0.188462i \(0.939650\pi\)
\(522\) 0 0
\(523\) 6.47873 + 19.9395i 0.283295 + 0.871893i 0.986904 + 0.161306i \(0.0515706\pi\)
−0.703609 + 0.710587i \(0.748429\pi\)
\(524\) 0 0
\(525\) 4.87415 + 3.54128i 0.212726 + 0.154554i
\(526\) 0 0
\(527\) −3.54162 6.36681i −0.154275 0.277342i
\(528\) 0 0
\(529\) 9.88796 + 7.18402i 0.429911 + 0.312349i
\(530\) 0 0
\(531\) 0.626287 + 1.92751i 0.0271786 + 0.0836470i
\(532\) 0 0
\(533\) 1.09981 + 1.90492i 0.0476379 + 0.0825113i
\(534\) 0 0
\(535\) −2.66645 + 8.20649i −0.115281 + 0.354798i
\(536\) 0 0
\(537\) 0.108540 0.0483253i 0.00468386 0.00208539i
\(538\) 0 0
\(539\) 2.76069 26.2662i 0.118911 1.13137i
\(540\) 0 0
\(541\) −1.69347 + 0.359958i −0.0728079 + 0.0154758i −0.244172 0.969732i \(-0.578516\pi\)
0.171364 + 0.985208i \(0.445183\pi\)
\(542\) 0 0
\(543\) −5.64480 + 4.10118i −0.242241 + 0.175999i
\(544\) 0 0
\(545\) −0.572331 5.44536i −0.0245160 0.233254i
\(546\) 0 0
\(547\) −12.8347 2.72810i −0.548772 0.116645i −0.0748220 0.997197i \(-0.523839\pi\)
−0.473950 + 0.880552i \(0.657172\pi\)
\(548\) 0 0
\(549\) −3.38867 3.76350i −0.144625 0.160622i
\(550\) 0 0
\(551\) 12.4466 13.8234i 0.530243 0.588895i
\(552\) 0 0
\(553\) 5.37991 9.31828i 0.228777 0.396254i
\(554\) 0 0
\(555\) −31.8258 14.1698i −1.35093 0.601473i
\(556\) 0 0
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) 0 0
\(559\) −20.8248 −0.880794
\(560\) 0 0
\(561\) 4.43963 + 1.97665i 0.187441 + 0.0834543i
\(562\) 0 0
\(563\) 11.3259 19.6171i 0.477331 0.826762i −0.522331 0.852743i \(-0.674938\pi\)
0.999662 + 0.0259808i \(0.00827088\pi\)
\(564\) 0 0
\(565\) 15.8289 17.5798i 0.665928 0.739589i
\(566\) 0 0
\(567\) −1.19232 1.32421i −0.0500729 0.0556116i
\(568\) 0 0
\(569\) 45.4271 + 9.65584i 1.90441 + 0.404794i 0.999771 0.0213953i \(-0.00681086\pi\)
0.904634 + 0.426189i \(0.140144\pi\)
\(570\) 0 0
\(571\) −1.30643 12.4299i −0.0546726 0.520175i −0.987247 0.159197i \(-0.949110\pi\)
0.932574 0.360978i \(-0.117557\pi\)
\(572\) 0 0
\(573\) −15.4062 + 11.1932i −0.643602 + 0.467604i
\(574\) 0 0
\(575\) −28.0843 + 5.96950i −1.17120 + 0.248945i
\(576\) 0 0
\(577\) 3.18648 30.3173i 0.132655 1.26213i −0.702330 0.711852i \(-0.747857\pi\)
0.834984 0.550274i \(-0.185477\pi\)
\(578\) 0 0
\(579\) 4.66868 2.07863i 0.194024 0.0863850i
\(580\) 0 0
\(581\) −3.32803 + 10.2426i −0.138070 + 0.424936i
\(582\) 0 0
\(583\) −7.35812 12.7446i −0.304742 0.527829i
\(584\) 0 0
\(585\) 7.28629 + 22.4249i 0.301251 + 0.927155i
\(586\) 0 0
\(587\) 27.2300 + 19.7837i 1.12390 + 0.816562i 0.984796 0.173716i \(-0.0555774\pi\)
0.139105 + 0.990278i \(0.455577\pi\)
\(588\) 0 0
\(589\) −20.7602 + 4.06756i −0.855410 + 0.167601i
\(590\) 0 0
\(591\) −11.6187 8.44150i −0.477930 0.347237i
\(592\) 0 0
\(593\) −13.8711 42.6909i −0.569619 1.75311i −0.653812 0.756657i \(-0.726831\pi\)
0.0841933 0.996449i \(-0.473169\pi\)
\(594\) 0 0
\(595\) 1.85175 + 3.20733i 0.0759145 + 0.131488i
\(596\) 0 0
\(597\) 1.18834 3.65733i 0.0486354 0.149684i
\(598\) 0 0
\(599\) 17.8914 7.96578i 0.731024 0.325473i −0.00724987 0.999974i \(-0.502308\pi\)
0.738274 + 0.674501i \(0.235641\pi\)
\(600\) 0 0
\(601\) −3.18388 + 30.2926i −0.129873 + 1.23566i 0.714396 + 0.699742i \(0.246702\pi\)
−0.844269 + 0.535919i \(0.819965\pi\)
\(602\) 0 0
\(603\) 4.46160 0.948342i 0.181690 0.0386195i
\(604\) 0 0
\(605\) −17.8117 + 12.9410i −0.724150 + 0.526126i
\(606\) 0 0
\(607\) −1.39802 13.3013i −0.0567440 0.539883i −0.985558 0.169337i \(-0.945837\pi\)
0.928814 0.370546i \(-0.120829\pi\)
\(608\) 0 0
\(609\) 3.29884 + 0.701190i 0.133676 + 0.0284137i
\(610\) 0 0
\(611\) −1.70570 1.89438i −0.0690054 0.0766383i
\(612\) 0 0
\(613\) −3.47627 + 3.86079i −0.140405 + 0.155936i −0.809246 0.587470i \(-0.800124\pi\)
0.668841 + 0.743406i \(0.266791\pi\)
\(614\) 0 0
\(615\) −1.26457 + 2.19030i −0.0509924 + 0.0883215i
\(616\) 0 0
\(617\) −27.4183 12.2074i −1.10382 0.491452i −0.227790 0.973710i \(-0.573150\pi\)
−0.876029 + 0.482258i \(0.839817\pi\)
\(618\) 0 0
\(619\) −18.3260 −0.736584 −0.368292 0.929710i \(-0.620057\pi\)
−0.368292 + 0.929710i \(0.620057\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) 0 0
\(623\) 3.09282 + 1.37701i 0.123911 + 0.0551687i
\(624\) 0 0
\(625\) −3.87924 + 6.71905i −0.155170 + 0.268762i
\(626\) 0 0
\(627\) 9.44229 10.4867i 0.377089 0.418799i
\(628\) 0 0
\(629\) −9.11716 10.1256i −0.363525 0.403735i
\(630\) 0 0
\(631\) 10.1094 + 2.14881i 0.402447 + 0.0855428i 0.404688 0.914455i \(-0.367380\pi\)
−0.00224100 + 0.999997i \(0.500713\pi\)
\(632\) 0 0
\(633\) −1.08554 10.3282i −0.0431462 0.410509i
\(634\) 0 0
\(635\) −4.29525 + 3.12068i −0.170452 + 0.123840i
\(636\) 0 0
\(637\) −18.2645 + 3.88224i −0.723666 + 0.153820i
\(638\) 0 0
\(639\) 1.76742 16.8159i 0.0699182 0.665228i
\(640\) 0 0
\(641\) 0.0924983 0.0411829i 0.00365346 0.00162663i −0.404909 0.914357i \(-0.632697\pi\)
0.408563 + 0.912730i \(0.366030\pi\)
\(642\) 0 0
\(643\) 4.23719 13.0407i 0.167098 0.514276i −0.832086 0.554646i \(-0.812854\pi\)
0.999185 + 0.0403701i \(0.0128537\pi\)
\(644\) 0 0
\(645\) −11.9723 20.7366i −0.471408 0.816503i
\(646\) 0 0
\(647\) 3.34800 + 10.3041i 0.131624 + 0.405096i 0.995050 0.0993798i \(-0.0316859\pi\)
−0.863426 + 0.504476i \(0.831686\pi\)
\(648\) 0 0
\(649\) 3.08745 + 2.24316i 0.121193 + 0.0880518i
\(650\) 0 0
\(651\) −2.52067 2.89098i −0.0987930 0.113306i
\(652\) 0 0
\(653\) 19.6204 + 14.2551i 0.767807 + 0.557844i 0.901295 0.433206i \(-0.142618\pi\)
−0.133488 + 0.991050i \(0.542618\pi\)
\(654\) 0 0
\(655\) −7.20968 22.1891i −0.281706 0.867001i
\(656\) 0 0
\(657\) −6.18270 10.7087i −0.241210 0.417788i
\(658\) 0 0
\(659\) 2.63699 8.11583i 0.102723 0.316148i −0.886467 0.462793i \(-0.846847\pi\)
0.989189 + 0.146645i \(0.0468474\pi\)
\(660\) 0 0
\(661\) 34.6089 15.4089i 1.34613 0.599337i 0.398050 0.917364i \(-0.369687\pi\)
0.948082 + 0.318027i \(0.103020\pi\)
\(662\) 0 0
\(663\) 0.359146 3.41705i 0.0139481 0.132707i
\(664\) 0 0
\(665\) 10.5188 2.23585i 0.407903 0.0867024i
\(666\) 0 0
\(667\) −13.0026 + 9.44697i −0.503464 + 0.365788i
\(668\) 0 0
\(669\) 0.888925 + 8.45756i 0.0343678 + 0.326988i
\(670\) 0 0
\(671\) −9.32767 1.98266i −0.360091 0.0765397i
\(672\) 0 0
\(673\) 4.76428 + 5.29127i 0.183650 + 0.203963i 0.827939 0.560818i \(-0.189513\pi\)
−0.644289 + 0.764782i \(0.722847\pi\)
\(674\) 0 0
\(675\) −27.3848 + 30.4139i −1.05404 + 1.17063i
\(676\) 0 0
\(677\) −24.0305 + 41.6220i −0.923567 + 1.59966i −0.129716 + 0.991551i \(0.541407\pi\)
−0.793850 + 0.608113i \(0.791927\pi\)
\(678\) 0 0
\(679\) 3.68060 + 1.63871i 0.141248 + 0.0628879i
\(680\) 0 0
\(681\) −19.6390 −0.752567
\(682\) 0 0
\(683\) −32.5731 −1.24638 −0.623188 0.782072i \(-0.714163\pi\)
−0.623188 + 0.782072i \(0.714163\pi\)
\(684\) 0 0
\(685\) 43.1837 + 19.2266i 1.64997 + 0.734612i
\(686\) 0 0
\(687\) −7.65051 + 13.2511i −0.291885 + 0.505560i
\(688\) 0 0
\(689\) −6.96191 + 7.73198i −0.265228 + 0.294565i
\(690\) 0 0
\(691\) −18.2359 20.2530i −0.693725 0.770460i 0.288639 0.957438i \(-0.406797\pi\)
−0.982364 + 0.186978i \(0.940131\pi\)
\(692\) 0 0
\(693\) −6.71698 1.42774i −0.255157 0.0542353i
\(694\) 0 0
\(695\) 7.25234 + 69.0014i 0.275097 + 2.61737i
\(696\) 0 0
\(697\) −0.800258 + 0.581421i −0.0303119 + 0.0220229i
\(698\) 0 0
\(699\) 8.68215 1.84545i 0.328389 0.0698012i
\(700\) 0 0
\(701\) −0.887358 + 8.44265i −0.0335150 + 0.318874i 0.964901 + 0.262614i \(0.0845845\pi\)
−0.998416 + 0.0562607i \(0.982082\pi\)
\(702\) 0 0
\(703\) −36.1433 + 16.0920i −1.36317 + 0.606923i
\(704\) 0 0
\(705\) 0.905737 2.78757i 0.0341120 0.104986i
\(706\) 0 0
\(707\) 1.45328 + 2.51716i 0.0546564 + 0.0946676i
\(708\) 0 0
\(709\) −7.22670 22.2415i −0.271404 0.835297i −0.990148 0.140022i \(-0.955283\pi\)
0.718744 0.695275i \(-0.244717\pi\)
\(710\) 0 0
\(711\) 24.9229 + 18.1076i 0.934683 + 0.679087i
\(712\) 0 0
\(713\) 18.2764 + 0.291720i 0.684457 + 0.0109250i
\(714\) 0 0
\(715\) 35.9197 + 26.0972i 1.34332 + 0.975978i
\(716\) 0 0
\(717\) −0.164703 0.506903i −0.00615094 0.0189306i
\(718\) 0 0
\(719\) 6.48843 + 11.2383i 0.241978 + 0.419118i 0.961278 0.275582i \(-0.0888706\pi\)
−0.719300 + 0.694700i \(0.755537\pi\)
\(720\) 0 0
\(721\) −1.47337 + 4.53457i −0.0548712 + 0.168876i
\(722\) 0 0
\(723\) 12.6712 5.64156i 0.471245 0.209812i
\(724\) 0 0
\(725\) −4.47545 + 42.5811i −0.166214 + 1.58142i
\(726\) 0 0
\(727\) −12.1515 + 2.58289i −0.450676 + 0.0957941i −0.427657 0.903941i \(-0.640661\pi\)
−0.0230186 + 0.999735i \(0.507328\pi\)
\(728\) 0 0
\(729\) −6.12163 + 4.44762i −0.226727 + 0.164727i
\(730\) 0 0
\(731\) −0.978905 9.31366i −0.0362061 0.344478i
\(732\) 0 0
\(733\) 33.4109 + 7.10171i 1.23406 + 0.262308i 0.778356 0.627823i \(-0.216054\pi\)
0.455705 + 0.890131i \(0.349387\pi\)
\(734\) 0 0
\(735\) −14.3662 15.9553i −0.529904 0.588518i
\(736\) 0 0
\(737\) 5.74708 6.38278i 0.211697 0.235113i
\(738\) 0 0
\(739\) −6.18747 + 10.7170i −0.227610 + 0.394231i −0.957099 0.289761i \(-0.906424\pi\)
0.729490 + 0.683992i \(0.239758\pi\)
\(740\) 0 0
\(741\) −9.11416 4.05789i −0.334817 0.149070i
\(742\) 0 0
\(743\) 16.2455 0.595990 0.297995 0.954567i \(-0.403682\pi\)
0.297995 + 0.954567i \(0.403682\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 0 0
\(747\) −28.1690 12.5417i −1.03065 0.458875i
\(748\) 0 0
\(749\) −0.888356 + 1.53868i −0.0324598 + 0.0562220i
\(750\) 0 0
\(751\) 7.21876 8.01725i 0.263416 0.292554i −0.596898 0.802317i \(-0.703600\pi\)
0.860315 + 0.509763i \(0.170267\pi\)
\(752\) 0 0
\(753\) 3.65404 + 4.05823i 0.133161 + 0.147890i
\(754\) 0 0
\(755\) 55.7482 + 11.8496i 2.02888 + 0.431253i
\(756\) 0 0
\(757\) −4.29629 40.8765i −0.156151 1.48568i −0.739333 0.673340i \(-0.764859\pi\)
0.583181 0.812342i \(-0.301808\pi\)
\(758\) 0 0
\(759\) −9.86411 + 7.16670i −0.358045 + 0.260135i
\(760\) 0 0
\(761\) −19.2309 + 4.08765i −0.697119 + 0.148177i −0.542823 0.839847i \(-0.682644\pi\)
−0.154296 + 0.988025i \(0.549311\pi\)
\(762\) 0 0
\(763\) 0.117845 1.12122i 0.00426629 0.0405911i
\(764\) 0 0
\(765\) −9.68679 + 4.31284i −0.350227 + 0.155931i
\(766\) 0 0
\(767\) 0.833766 2.56607i 0.0301056 0.0926554i
\(768\) 0 0
\(769\) −1.89417 3.28080i −0.0683055 0.118309i 0.829850 0.557986i \(-0.188426\pi\)
−0.898155 + 0.439678i \(0.855093\pi\)
\(770\) 0 0
\(771\) −1.26262 3.88595i −0.0454722 0.139949i
\(772\) 0 0
\(773\) 20.5244 + 14.9119i 0.738212 + 0.536342i 0.892151 0.451738i \(-0.149196\pi\)
−0.153939 + 0.988080i \(0.549196\pi\)
\(774\) 0 0
\(775\) 33.1559 35.6620i 1.19100 1.28102i
\(776\) 0 0
\(777\) −5.80327 4.21632i −0.208191 0.151260i
\(778\) 0 0
\(779\) 0.887573 + 2.73167i 0.0318006 + 0.0978722i
\(780\) 0 0
\(781\) −15.9194 27.5732i −0.569641 0.986647i
\(782\) 0 0
\(783\) −7.07939 + 21.7881i −0.252997 + 0.778644i
\(784\) 0 0
\(785\) 51.3036 22.8418i 1.83110 0.815260i
\(786\) 0 0
\(787\) −2.71216 + 25.8045i −0.0966780 + 0.919829i 0.833450 + 0.552594i \(0.186362\pi\)
−0.930128 + 0.367235i \(0.880305\pi\)
\(788\) 0 0
\(789\) −2.21453 + 0.470712i −0.0788392 + 0.0167578i
\(790\) 0 0
\(791\) 3.94062 2.86303i 0.140112 0.101797i
\(792\) 0 0
\(793\) 0.704732 + 6.70507i 0.0250258 + 0.238104i
\(794\) 0 0
\(795\) −11.7017 2.48727i −0.415016 0.0882144i
\(796\) 0 0
\(797\) −12.3807 13.7501i −0.438546 0.487054i 0.482837 0.875710i \(-0.339606\pi\)
−0.921383 + 0.388656i \(0.872940\pi\)
\(798\) 0 0
\(799\) 0.767061 0.851907i 0.0271367 0.0301383i
\(800\) 0 0
\(801\) −4.84652 + 8.39442i −0.171243 + 0.296602i
\(802\) 0 0
\(803\) −21.2710 9.47047i −0.750638 0.334206i
\(804\) 0 0
\(805\) −9.29174 −0.327491
\(806\) 0 0
\(807\) 12.0378 0.423751
\(808\) 0 0
\(809\) 33.5708 + 14.9467i 1.18029 + 0.525498i 0.900623 0.434600i \(-0.143110\pi\)
0.279664 + 0.960098i \(0.409777\pi\)
\(810\) 0 0
\(811\) −19.7151 + 34.1475i −0.692289 + 1.19908i 0.278797 + 0.960350i \(0.410064\pi\)
−0.971086 + 0.238730i \(0.923269\pi\)
\(812\) 0 0
\(813\) −8.34737 + 9.27069i −0.292755 + 0.325137i
\(814\) 0 0
\(815\) 2.59213 + 2.87885i 0.0907982 + 0.100842i
\(816\) 0 0
\(817\) −26.5987 5.65372i −0.930570 0.197799i
\(818\) 0 0
\(819\) 0.507486 + 4.82841i 0.0177330 + 0.168718i
\(820\) 0 0
\(821\) −1.19782 + 0.870264i −0.0418041 + 0.0303724i −0.608491 0.793561i \(-0.708225\pi\)
0.566687 + 0.823933i \(0.308225\pi\)
\(822\) 0 0
\(823\) −38.0159 + 8.08053i −1.32515 + 0.281670i −0.815523 0.578725i \(-0.803551\pi\)
−0.509629 + 0.860394i \(0.670217\pi\)
\(824\) 0 0
\(825\) −3.39518 + 32.3030i −0.118205 + 1.12465i
\(826\) 0 0
\(827\) −31.0023 + 13.8031i −1.07806 + 0.479982i −0.867417 0.497582i \(-0.834221\pi\)
−0.210640 + 0.977564i \(0.567555\pi\)
\(828\) 0 0
\(829\) 5.10827 15.7216i 0.177417 0.546035i −0.822318 0.569028i \(-0.807320\pi\)
0.999736 + 0.0229933i \(0.00731965\pi\)
\(830\) 0 0
\(831\) −5.22073 9.04256i −0.181105 0.313683i
\(832\) 0 0
\(833\) −2.59485 7.98612i −0.0899061 0.276703i
\(834\) 0 0
\(835\) −33.8619 24.6021i −1.17184 0.851392i
\(836\) 0 0
\(837\) 21.3204 14.9762i 0.736941 0.517653i
\(838\) 0 0
\(839\) −43.7501 31.7863i −1.51042 1.09738i −0.965990 0.258579i \(-0.916746\pi\)
−0.544430 0.838806i \(-0.683254\pi\)
\(840\) 0 0
\(841\) −1.55522 4.78647i −0.0536282 0.165051i
\(842\) 0 0
\(843\) 6.94819 + 12.0346i 0.239308 + 0.414494i
\(844\) 0 0
\(845\) −5.19379 + 15.9848i −0.178672 + 0.549896i
\(846\) 0 0
\(847\) −4.14138 + 1.84386i −0.142299 + 0.0633558i
\(848\) 0 0
\(849\) −2.14081 + 20.3684i −0.0734724 + 0.699043i
\(850\) 0 0
\(851\) 33.4377 7.10741i 1.14623 0.243639i
\(852\) 0 0
\(853\) −32.0178 + 23.2623i −1.09627 + 0.796487i −0.980447 0.196783i \(-0.936950\pi\)
−0.115823 + 0.993270i \(0.536950\pi\)
\(854\) 0 0
\(855\) 3.21836 + 30.6206i 0.110065 + 1.04720i
\(856\) 0 0
\(857\) −12.4470 2.64569i −0.425180 0.0903749i −0.00964843 0.999953i \(-0.503071\pi\)
−0.415532 + 0.909579i \(0.636405\pi\)
\(858\) 0 0
\(859\) 14.1550 + 15.7207i 0.482963 + 0.536385i 0.934545 0.355845i \(-0.115807\pi\)
−0.451582 + 0.892230i \(0.649140\pi\)
\(860\) 0 0
\(861\) −0.348457 + 0.387001i −0.0118754 + 0.0131890i
\(862\) 0 0
\(863\) 4.66987 8.08845i 0.158964 0.275334i −0.775531 0.631309i \(-0.782518\pi\)
0.934495 + 0.355975i \(0.115851\pi\)
\(864\) 0 0
\(865\) −69.9503 31.1439i −2.37838 1.05892i
\(866\) 0 0
\(867\) −13.7957 −0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 0 0
\(871\) −5.54737 2.46985i −0.187965 0.0836876i
\(872\) 0 0
\(873\) −5.76760 + 9.98977i −0.195204 + 0.338102i
\(874\) 0 0
\(875\) −7.09370 + 7.87836i −0.239811 + 0.266337i
\(876\) 0 0
\(877\) 15.0121 + 16.6726i 0.506923 + 0.562995i 0.941228 0.337771i \(-0.109673\pi\)
−0.434305 + 0.900766i \(0.643006\pi\)
\(878\) 0 0
\(879\) −10.9460 2.32665i −0.369200 0.0784758i
\(880\) 0 0
\(881\) 4.85341 + 46.1771i 0.163516 + 1.55575i 0.701425 + 0.712744i \(0.252548\pi\)
−0.537909 + 0.843003i \(0.680786\pi\)
\(882\) 0 0
\(883\) 29.5611 21.4774i 0.994811 0.722773i 0.0338419 0.999427i \(-0.489226\pi\)
0.960969 + 0.276654i \(0.0892257\pi\)
\(884\) 0 0
\(885\) 3.03454 0.645012i 0.102005 0.0216818i
\(886\) 0 0
\(887\) 2.99840 28.5279i 0.100677 0.957873i −0.821266 0.570546i \(-0.806732\pi\)
0.921942 0.387327i \(-0.126602\pi\)
\(888\) 0 0
\(889\) −0.998680 + 0.444641i −0.0334946 + 0.0149128i
\(890\) 0 0
\(891\) 2.96861 9.13643i 0.0994521 0.306082i
\(892\) 0 0
\(893\) −1.66433 2.88270i −0.0556945 0.0964658i
\(894\) 0 0
\(895\) 0.150844 + 0.464249i 0.00504215 + 0.0155181i
\(896\) 0 0
\(897\) 6.97394 + 5.06687i 0.232853 + 0.169178i
\(898\) 0 0
\(899\) 8.83576 25.7859i 0.294689 0.860008i
\(900\) 0 0
\(901\) −3.78531 2.75019i −0.126107 0.0916220i
\(902\) 0 0
\(903\) −1.52354 4.68898i −0.0507004 0.156040i
\(904\) 0 0
\(905\) −14.3332 24.8259i −0.476453 0.825240i
\(906\) 0 0
\(907\) 6.85697 21.1036i 0.227682 0.700733i −0.770326 0.637650i \(-0.779907\pi\)
0.998008 0.0630831i \(-0.0200933\pi\)
\(908\) 0 0
\(909\) −7.60234 + 3.38478i −0.252154 + 0.112266i
\(910\) 0 0
\(911\) −3.01381 + 28.6745i −0.0998520 + 0.950028i 0.823822 + 0.566849i \(0.191838\pi\)
−0.923674 + 0.383179i \(0.874829\pi\)
\(912\) 0 0
\(913\) −56.7932 + 12.0718i −1.87958 + 0.399517i
\(914\) 0 0
\(915\) −6.27153 + 4.55653i −0.207330 + 0.150634i
\(916\) 0 0
\(917\) −0.502151 4.77764i −0.0165825 0.157772i
\(918\) 0 0
\(919\) 47.0121 + 9.99272i 1.55078 + 0.329629i 0.902134 0.431456i \(-0.142000\pi\)
0.648651 + 0.761086i \(0.275333\pi\)
\(920\) 0 0
\(921\) −18.5495 20.6013i −0.611226 0.678835i
\(922\) 0 0
\(923\) −15.0622 + 16.7282i −0.495778 + 0.550617i
\(924\) 0 0
\(925\) 45.5334 78.8662i 1.49713 2.59310i
\(926\) 0 0
\(927\) −12.4708 5.55238i −0.409596 0.182364i
\(928\) 0 0
\(929\) 7.01617 0.230193 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(930\) 0 0
\(931\) −24.3825 −0.799105
\(932\) 0 0
\(933\) −1.96320 0.874072i −0.0642722 0.0286158i
\(934\) 0 0
\(935\) −9.98321 + 17.2914i −0.326486 + 0.565490i
\(936\) 0 0
\(937\) −8.61884 + 9.57219i −0.281565 + 0.312710i −0.867293 0.497798i \(-0.834142\pi\)
0.585728 + 0.810508i \(0.300809\pi\)
\(938\) 0 0
\(939\) 6.48845 + 7.20615i 0.211742 + 0.235164i
\(940\) 0 0
\(941\) 48.9458 + 10.4037i 1.59559 + 0.339152i 0.918089 0.396373i \(-0.129731\pi\)
0.677497 + 0.735526i \(0.263065\pi\)
\(942\) 0 0
\(943\) −0.259412 2.46814i −0.00844763 0.0803738i
\(944\) 0 0
\(945\) −10.7150 + 7.78494i −0.348560 + 0.253244i
\(946\) 0 0
\(947\) 50.7345 10.7840i 1.64865 0.350431i 0.712402 0.701772i \(-0.247607\pi\)
0.936248 + 0.351340i \(0.114274\pi\)
\(948\) 0 0
\(949\) −1.72073 + 16.3717i −0.0558573 + 0.531447i
\(950\) 0 0
\(951\) 7.21035 3.21026i 0.233812 0.104100i
\(952\) 0 0
\(953\) 5.78950 17.8183i 0.187540 0.577190i −0.812443 0.583041i \(-0.801863\pi\)
0.999983 + 0.00585146i \(0.00186259\pi\)
\(954\) 0 0
\(955\) −39.1193 67.7565i −1.26587 2.19255i
\(956\) 0 0
\(957\) 5.61857 + 17.2922i 0.181623 + 0.558977i
\(958\) 0 0
\(959\) 7.87432 + 5.72103i 0.254275 + 0.184742i
\(960\) 0 0
\(961\) −25.6483 + 17.4116i −0.827364 + 0.561666i
\(962\) 0 0
\(963\) −4.11539 2.99001i −0.132617 0.0963516i
\(964\) 0 0
\(965\) 6.48829 + 19.9689i 0.208865 + 0.642821i
\(966\) 0 0
\(967\) −23.8923 41.3827i −0.768324 1.33078i −0.938471 0.345358i \(-0.887757\pi\)
0.170146 0.985419i \(-0.445576\pi\)
\(968\) 0 0
\(969\) 1.38642 4.26696i 0.0445382 0.137075i
\(970\) 0 0
\(971\) 28.4119 12.6498i 0.911780 0.405951i 0.103419 0.994638i \(-0.467022\pi\)
0.808361 + 0.588687i \(0.200355\pi\)
\(972\) 0 0
\(973\) −1.49329 + 14.2077i −0.0478727 + 0.455478i
\(974\) 0 0
\(975\) 22.4622 4.77450i 0.719368 0.152906i
\(976\) 0 0
\(977\) 17.8624 12.9778i 0.571469 0.415197i −0.264170 0.964476i \(-0.585098\pi\)
0.835639 + 0.549280i \(0.185098\pi\)
\(978\) 0 0
\(979\) 1.90785 + 18.1520i 0.0609753 + 0.580141i
\(980\) 0 0
\(981\) 3.15732 + 0.671110i 0.100806 + 0.0214269i
\(982\) 0 0
\(983\) 25.1438 + 27.9251i 0.801964 + 0.890671i 0.995911 0.0903411i \(-0.0287957\pi\)
−0.193947 + 0.981012i \(0.562129\pi\)
\(984\) 0 0
\(985\) 39.4816 43.8488i 1.25799 1.39714i
\(986\) 0 0
\(987\) 0.301756 0.522656i 0.00960499 0.0166363i
\(988\) 0 0
\(989\) 21.4645 + 9.55659i 0.682530 + 0.303882i
\(990\) 0 0
\(991\) 6.77397 0.215182 0.107591 0.994195i \(-0.465686\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 0 0
\(995\) 14.4335 + 6.42620i 0.457572 + 0.203724i
\(996\) 0 0
\(997\) 14.7866 25.6112i 0.468298 0.811115i −0.531046 0.847343i \(-0.678201\pi\)
0.999344 + 0.0362278i \(0.0115342\pi\)
\(998\) 0 0
\(999\) 32.6049 36.2114i 1.03157 1.14568i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.2.bg.c.81.1 16
4.3 odd 2 31.2.g.a.19.2 yes 16
12.11 even 2 279.2.y.c.19.1 16
20.3 even 4 775.2.ck.a.174.3 32
20.7 even 4 775.2.ck.a.174.2 32
20.19 odd 2 775.2.bl.a.701.1 16
31.18 even 15 inner 496.2.bg.c.49.1 16
124.3 even 30 961.2.d.n.388.4 16
124.7 odd 30 961.2.a.i.1.3 8
124.11 even 30 961.2.c.i.439.3 16
124.15 even 10 961.2.g.j.338.2 16
124.19 odd 30 961.2.d.p.628.1 16
124.23 even 10 961.2.g.m.844.1 16
124.27 even 10 961.2.c.i.521.3 16
124.35 odd 10 961.2.c.j.521.3 16
124.39 odd 10 961.2.g.s.844.1 16
124.43 even 30 961.2.d.q.628.1 16
124.47 odd 10 961.2.g.k.338.2 16
124.51 odd 30 961.2.c.j.439.3 16
124.55 even 30 961.2.a.j.1.3 8
124.59 odd 30 961.2.d.o.388.4 16
124.67 odd 6 961.2.g.k.816.2 16
124.71 odd 30 961.2.g.t.547.1 16
124.75 even 30 961.2.g.l.235.2 16
124.79 even 30 961.2.d.q.531.1 16
124.83 even 30 961.2.g.m.846.1 16
124.87 odd 6 961.2.d.o.374.4 16
124.91 even 10 961.2.g.n.448.1 16
124.95 odd 10 961.2.g.t.448.1 16
124.99 even 6 961.2.d.n.374.4 16
124.103 odd 30 961.2.g.s.846.1 16
124.107 odd 30 961.2.d.p.531.1 16
124.111 odd 30 31.2.g.a.18.2 16
124.115 even 30 961.2.g.n.547.1 16
124.119 even 6 961.2.g.j.816.2 16
124.123 even 2 961.2.g.l.732.2 16
372.131 even 30 8649.2.a.bf.1.6 8
372.179 odd 30 8649.2.a.be.1.6 8
372.359 even 30 279.2.y.c.235.1 16
620.359 odd 30 775.2.bl.a.576.1 16
620.483 even 60 775.2.ck.a.49.2 32
620.607 even 60 775.2.ck.a.49.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 124.111 odd 30
31.2.g.a.19.2 yes 16 4.3 odd 2
279.2.y.c.19.1 16 12.11 even 2
279.2.y.c.235.1 16 372.359 even 30
496.2.bg.c.49.1 16 31.18 even 15 inner
496.2.bg.c.81.1 16 1.1 even 1 trivial
775.2.bl.a.576.1 16 620.359 odd 30
775.2.bl.a.701.1 16 20.19 odd 2
775.2.ck.a.49.2 32 620.483 even 60
775.2.ck.a.49.3 32 620.607 even 60
775.2.ck.a.174.2 32 20.7 even 4
775.2.ck.a.174.3 32 20.3 even 4
961.2.a.i.1.3 8 124.7 odd 30
961.2.a.j.1.3 8 124.55 even 30
961.2.c.i.439.3 16 124.11 even 30
961.2.c.i.521.3 16 124.27 even 10
961.2.c.j.439.3 16 124.51 odd 30
961.2.c.j.521.3 16 124.35 odd 10
961.2.d.n.374.4 16 124.99 even 6
961.2.d.n.388.4 16 124.3 even 30
961.2.d.o.374.4 16 124.87 odd 6
961.2.d.o.388.4 16 124.59 odd 30
961.2.d.p.531.1 16 124.107 odd 30
961.2.d.p.628.1 16 124.19 odd 30
961.2.d.q.531.1 16 124.79 even 30
961.2.d.q.628.1 16 124.43 even 30
961.2.g.j.338.2 16 124.15 even 10
961.2.g.j.816.2 16 124.119 even 6
961.2.g.k.338.2 16 124.47 odd 10
961.2.g.k.816.2 16 124.67 odd 6
961.2.g.l.235.2 16 124.75 even 30
961.2.g.l.732.2 16 124.123 even 2
961.2.g.m.844.1 16 124.23 even 10
961.2.g.m.846.1 16 124.83 even 30
961.2.g.n.448.1 16 124.91 even 10
961.2.g.n.547.1 16 124.115 even 30
961.2.g.s.844.1 16 124.39 odd 10
961.2.g.s.846.1 16 124.103 odd 30
961.2.g.t.448.1 16 124.95 odd 10
961.2.g.t.547.1 16 124.71 odd 30
8649.2.a.be.1.6 8 372.179 odd 30
8649.2.a.bf.1.6 8 372.131 even 30