Properties

Label 961.2.d.n.388.4
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-9,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 388.4
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.n.374.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.557811 - 0.405274i) q^{2} +(-0.730058 - 0.530418i) q^{3} +(-0.471127 + 1.44998i) q^{4} +3.70752 q^{5} -0.622199 q^{6} +(0.235902 - 0.726031i) q^{7} +(0.750969 + 2.31124i) q^{8} +(-0.675410 - 2.07870i) q^{9} +(2.06809 - 1.50256i) q^{10} +(1.27180 - 3.91419i) q^{11} +(1.11305 - 0.808675i) q^{12} +(-2.35404 - 1.71031i) q^{13} +(-0.162653 - 0.500593i) q^{14} +(-2.70670 - 1.96653i) q^{15} +(-1.11127 - 0.807384i) q^{16} +(-0.404356 - 1.24448i) q^{17} +(-1.21919 - 0.885796i) q^{18} +(3.07389 - 2.23331i) q^{19} +(-1.74671 + 5.37583i) q^{20} +(-0.557322 + 0.404918i) q^{21} +(-0.876895 - 2.69881i) q^{22} +(1.01449 + 3.12228i) q^{23} +(0.677675 - 2.08567i) q^{24} +8.74568 q^{25} -2.00625 q^{26} +(-1.44606 + 4.45052i) q^{27} +(0.941591 + 0.684106i) q^{28} +(3.96065 - 2.87758i) q^{29} -2.30681 q^{30} -5.80746 q^{32} +(-3.00464 + 2.18300i) q^{33} +(-0.729910 - 0.530310i) q^{34} +(0.874609 - 2.69177i) q^{35} +3.33228 q^{36} +10.4128 q^{37} +(0.809549 - 2.49154i) q^{38} +(0.811405 + 2.49725i) q^{39} +(2.78423 + 8.56898i) q^{40} +(-0.611573 + 0.444334i) q^{41} +(-0.146778 + 0.451736i) q^{42} +(-5.79005 + 4.20671i) q^{43} +(5.07632 + 3.68816i) q^{44} +(-2.50409 - 7.70681i) q^{45} +(1.83127 + 1.33050i) q^{46} +(0.708753 + 0.514939i) q^{47} +(0.383039 + 1.17887i) q^{48} +(5.19165 + 3.77195i) q^{49} +(4.87844 - 3.54439i) q^{50} +(-0.364891 + 1.12302i) q^{51} +(3.58897 - 2.60754i) q^{52} +(-1.10495 - 3.40070i) q^{53} +(0.997049 + 3.06860i) q^{54} +(4.71521 - 14.5119i) q^{55} +1.85519 q^{56} -3.42871 q^{57} +(1.04309 - 3.21029i) q^{58} +(-0.750177 - 0.545036i) q^{59} +(4.12664 - 2.99818i) q^{60} -2.31704 q^{61} -1.66853 q^{63} +(-1.01693 + 0.738843i) q^{64} +(-8.72763 - 6.34100i) q^{65} +(-0.791311 + 2.43540i) q^{66} -2.08690 q^{67} +1.99498 q^{68} +(0.915477 - 2.81755i) q^{69} +(-0.603037 - 1.85596i) q^{70} +(-2.39058 - 7.35745i) q^{71} +(4.29717 - 3.12207i) q^{72} +(1.74826 - 5.38058i) q^{73} +(5.80837 - 4.22003i) q^{74} +(-6.38485 - 4.63886i) q^{75} +(1.79007 + 5.50926i) q^{76} +(-2.54180 - 1.84673i) q^{77} +(1.46468 + 1.06415i) q^{78} +(4.35551 + 13.4049i) q^{79} +(-4.12005 - 2.99339i) q^{80} +(-1.88839 + 1.37200i) q^{81} +(-0.161066 + 0.495709i) q^{82} +(-11.4134 + 8.29231i) q^{83} +(-0.324554 - 0.998873i) q^{84} +(-1.49916 - 4.61393i) q^{85} +(-1.52488 + 4.69311i) q^{86} -4.41782 q^{87} +10.0017 q^{88} +(1.37043 - 4.21776i) q^{89} +(-4.52018 - 3.28410i) q^{90} +(-1.79706 + 1.30564i) q^{91} -5.00520 q^{92} +0.604042 q^{94} +(11.3965 - 8.28005i) q^{95} +(4.23978 + 3.08038i) q^{96} +(-1.63088 + 5.01933i) q^{97} +4.42463 q^{98} -8.99540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 9 q^{3} - 14 q^{4} + 6 q^{5} + 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} - 14 q^{11} - 5 q^{12} + q^{13} + 27 q^{14} - 14 q^{15} - 2 q^{16} + 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.557811 0.405274i 0.394432 0.286572i −0.372837 0.927897i \(-0.621615\pi\)
0.767269 + 0.641325i \(0.221615\pi\)
\(3\) −0.730058 0.530418i −0.421499 0.306237i 0.356742 0.934203i \(-0.383888\pi\)
−0.778241 + 0.627966i \(0.783888\pi\)
\(4\) −0.471127 + 1.44998i −0.235564 + 0.724990i
\(5\) 3.70752 1.65805 0.829026 0.559210i \(-0.188896\pi\)
0.829026 + 0.559210i \(0.188896\pi\)
\(6\) −0.622199 −0.254012
\(7\) 0.235902 0.726031i 0.0891625 0.274414i −0.896526 0.442991i \(-0.853917\pi\)
0.985688 + 0.168577i \(0.0539173\pi\)
\(8\) 0.750969 + 2.31124i 0.265508 + 0.817148i
\(9\) −0.675410 2.07870i −0.225137 0.692899i
\(10\) 2.06809 1.50256i 0.653989 0.475151i
\(11\) 1.27180 3.91419i 0.383461 1.18017i −0.554129 0.832431i \(-0.686949\pi\)
0.937590 0.347742i \(-0.113051\pi\)
\(12\) 1.11305 0.808675i 0.321309 0.233444i
\(13\) −2.35404 1.71031i −0.652893 0.474354i 0.211363 0.977408i \(-0.432210\pi\)
−0.864255 + 0.503053i \(0.832210\pi\)
\(14\) −0.162653 0.500593i −0.0434707 0.133789i
\(15\) −2.70670 1.96653i −0.698867 0.507757i
\(16\) −1.11127 0.807384i −0.277817 0.201846i
\(17\) −0.404356 1.24448i −0.0980708 0.301831i 0.889971 0.456017i \(-0.150724\pi\)
−0.988042 + 0.154186i \(0.950724\pi\)
\(18\) −1.21919 0.885796i −0.287367 0.208784i
\(19\) 3.07389 2.23331i 0.705200 0.512358i −0.176422 0.984315i \(-0.556452\pi\)
0.881621 + 0.471957i \(0.156452\pi\)
\(20\) −1.74671 + 5.37583i −0.390577 + 1.20207i
\(21\) −0.557322 + 0.404918i −0.121618 + 0.0883603i
\(22\) −0.876895 2.69881i −0.186955 0.575387i
\(23\) 1.01449 + 3.12228i 0.211536 + 0.651040i 0.999381 + 0.0351674i \(0.0111964\pi\)
−0.787846 + 0.615873i \(0.788804\pi\)
\(24\) 0.677675 2.08567i 0.138330 0.425735i
\(25\) 8.74568 1.74914
\(26\) −2.00625 −0.393458
\(27\) −1.44606 + 4.45052i −0.278295 + 0.856503i
\(28\) 0.941591 + 0.684106i 0.177944 + 0.129284i
\(29\) 3.96065 2.87758i 0.735474 0.534353i −0.155816 0.987786i \(-0.549801\pi\)
0.891290 + 0.453433i \(0.149801\pi\)
\(30\) −2.30681 −0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) −3.00464 + 2.18300i −0.523041 + 0.380012i
\(34\) −0.729910 0.530310i −0.125178 0.0909475i
\(35\) 0.874609 2.69177i 0.147836 0.454992i
\(36\) 3.33228 0.555379
\(37\) 10.4128 1.71185 0.855925 0.517099i \(-0.172988\pi\)
0.855925 + 0.517099i \(0.172988\pi\)
\(38\) 0.809549 2.49154i 0.131326 0.404181i
\(39\) 0.811405 + 2.49725i 0.129929 + 0.399880i
\(40\) 2.78423 + 8.56898i 0.440225 + 1.35487i
\(41\) −0.611573 + 0.444334i −0.0955117 + 0.0693933i −0.634516 0.772910i \(-0.718801\pi\)
0.539004 + 0.842303i \(0.318801\pi\)
\(42\) −0.146778 + 0.451736i −0.0226483 + 0.0697043i
\(43\) −5.79005 + 4.20671i −0.882974 + 0.641518i −0.934037 0.357178i \(-0.883739\pi\)
0.0510629 + 0.998695i \(0.483739\pi\)
\(44\) 5.07632 + 3.68816i 0.765284 + 0.556011i
\(45\) −2.50409 7.70681i −0.373288 1.14886i
\(46\) 1.83127 + 1.33050i 0.270006 + 0.196171i
\(47\) 0.708753 + 0.514939i 0.103382 + 0.0751116i 0.638275 0.769808i \(-0.279648\pi\)
−0.534893 + 0.844920i \(0.679648\pi\)
\(48\) 0.383039 + 1.17887i 0.0552870 + 0.170156i
\(49\) 5.19165 + 3.77195i 0.741664 + 0.538850i
\(50\) 4.87844 3.54439i 0.689915 0.501253i
\(51\) −0.364891 + 1.12302i −0.0510950 + 0.157254i
\(52\) 3.58897 2.60754i 0.497700 0.361600i
\(53\) −1.10495 3.40070i −0.151777 0.467122i 0.846043 0.533115i \(-0.178979\pi\)
−0.997820 + 0.0659929i \(0.978979\pi\)
\(54\) 0.997049 + 3.06860i 0.135681 + 0.417584i
\(55\) 4.71521 14.5119i 0.635799 1.95679i
\(56\) 1.85519 0.247910
\(57\) −3.42871 −0.454144
\(58\) 1.04309 3.21029i 0.136964 0.421532i
\(59\) −0.750177 0.545036i −0.0976647 0.0709576i 0.537881 0.843021i \(-0.319225\pi\)
−0.635546 + 0.772063i \(0.719225\pi\)
\(60\) 4.12664 2.99818i 0.532746 0.387063i
\(61\) −2.31704 −0.296666 −0.148333 0.988937i \(-0.547391\pi\)
−0.148333 + 0.988937i \(0.547391\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) −1.01693 + 0.738843i −0.127116 + 0.0923554i
\(65\) −8.72763 6.34100i −1.08253 0.786504i
\(66\) −0.791311 + 2.43540i −0.0974036 + 0.299778i
\(67\) −2.08690 −0.254955 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(68\) 1.99498 0.241926
\(69\) 0.915477 2.81755i 0.110210 0.339193i
\(70\) −0.603037 1.85596i −0.0720767 0.221829i
\(71\) −2.39058 7.35745i −0.283710 0.873169i −0.986782 0.162051i \(-0.948189\pi\)
0.703073 0.711118i \(-0.251811\pi\)
\(72\) 4.29717 3.12207i 0.506426 0.367940i
\(73\) 1.74826 5.38058i 0.204618 0.629749i −0.795111 0.606464i \(-0.792587\pi\)
0.999729 0.0232853i \(-0.00741261\pi\)
\(74\) 5.80837 4.22003i 0.675209 0.490568i
\(75\) −6.38485 4.63886i −0.737259 0.535650i
\(76\) 1.79007 + 5.50926i 0.205335 + 0.631956i
\(77\) −2.54180 1.84673i −0.289665 0.210454i
\(78\) 1.46468 + 1.06415i 0.165842 + 0.120492i
\(79\) 4.35551 + 13.4049i 0.490033 + 1.50817i 0.824557 + 0.565779i \(0.191424\pi\)
−0.334524 + 0.942387i \(0.608576\pi\)
\(80\) −4.12005 2.99339i −0.460635 0.334671i
\(81\) −1.88839 + 1.37200i −0.209822 + 0.152444i
\(82\) −0.161066 + 0.495709i −0.0177867 + 0.0547419i
\(83\) −11.4134 + 8.29231i −1.25278 + 0.910199i −0.998380 0.0568999i \(-0.981878\pi\)
−0.254401 + 0.967099i \(0.581878\pi\)
\(84\) −0.324554 0.998873i −0.0354117 0.108986i
\(85\) −1.49916 4.61393i −0.162606 0.500451i
\(86\) −1.52488 + 4.69311i −0.164432 + 0.506071i
\(87\) −4.41782 −0.473640
\(88\) 10.0017 1.06619
\(89\) 1.37043 4.21776i 0.145266 0.447081i −0.851780 0.523900i \(-0.824476\pi\)
0.997045 + 0.0768191i \(0.0244764\pi\)
\(90\) −4.52018 3.28410i −0.476469 0.346175i
\(91\) −1.79706 + 1.30564i −0.188383 + 0.136868i
\(92\) −5.00520 −0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) 11.3965 8.28005i 1.16926 0.849515i
\(96\) 4.23978 + 3.08038i 0.432721 + 0.314390i
\(97\) −1.63088 + 5.01933i −0.165591 + 0.509636i −0.999079 0.0429007i \(-0.986340\pi\)
0.833489 + 0.552537i \(0.186340\pi\)
\(98\) 4.42463 0.446955
\(99\) −8.99540 −0.904072
\(100\) −4.12033 + 12.6811i −0.412033 + 1.26811i
\(101\) 1.17656 + 3.62108i 0.117072 + 0.360311i 0.992374 0.123267i \(-0.0393371\pi\)
−0.875301 + 0.483578i \(0.839337\pi\)
\(102\) 0.251590 + 0.774314i 0.0249111 + 0.0766685i
\(103\) 5.05287 3.67113i 0.497874 0.361727i −0.310330 0.950629i \(-0.600440\pi\)
0.808204 + 0.588902i \(0.200440\pi\)
\(104\) 2.18513 6.72515i 0.214270 0.659455i
\(105\) −2.06628 + 1.50124i −0.201648 + 0.146506i
\(106\) −1.99457 1.44914i −0.193730 0.140753i
\(107\) 0.719201 + 2.21347i 0.0695278 + 0.213985i 0.979783 0.200063i \(-0.0641147\pi\)
−0.910255 + 0.414048i \(0.864115\pi\)
\(108\) −5.77189 4.19352i −0.555400 0.403522i
\(109\) −1.19478 0.868057i −0.114439 0.0831448i 0.529094 0.848563i \(-0.322532\pi\)
−0.643533 + 0.765419i \(0.722532\pi\)
\(110\) −3.25110 10.0059i −0.309980 0.954022i
\(111\) −7.60193 5.52313i −0.721543 0.524232i
\(112\) −0.848336 + 0.616352i −0.0801602 + 0.0582398i
\(113\) 1.97170 6.06826i 0.185482 0.570854i −0.814475 0.580199i \(-0.802975\pi\)
0.999956 + 0.00934524i \(0.00297473\pi\)
\(114\) −1.91257 + 1.38957i −0.179129 + 0.130145i
\(115\) 3.76124 + 11.5759i 0.350737 + 1.07946i
\(116\) 2.30647 + 7.09857i 0.214150 + 0.659086i
\(117\) −1.96527 + 6.04849i −0.181690 + 0.559183i
\(118\) −0.639346 −0.0588566
\(119\) −0.998919 −0.0915708
\(120\) 2.51249 7.73265i 0.229358 0.705891i
\(121\) −4.80423 3.49047i −0.436748 0.317316i
\(122\) −1.29247 + 0.939035i −0.117015 + 0.0850162i
\(123\) 0.682166 0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) −0.930724 + 0.676211i −0.0829155 + 0.0602417i
\(127\) −1.15852 0.841717i −0.102802 0.0746903i 0.535197 0.844728i \(-0.320238\pi\)
−0.637999 + 0.770037i \(0.720238\pi\)
\(128\) 3.32139 10.2222i 0.293572 0.903521i
\(129\) 6.45838 0.568629
\(130\) −7.43821 −0.652374
\(131\) 1.94461 5.98490i 0.169902 0.522903i −0.829462 0.558563i \(-0.811353\pi\)
0.999364 + 0.0356592i \(0.0113531\pi\)
\(132\) −1.74974 5.38514i −0.152295 0.468717i
\(133\) −0.896318 2.75858i −0.0777207 0.239200i
\(134\) −1.16410 + 0.845765i −0.100562 + 0.0730629i
\(135\) −5.36130 + 16.5004i −0.461427 + 1.42013i
\(136\) 2.57264 1.86913i 0.220602 0.160277i
\(137\) 10.3149 + 7.49421i 0.881261 + 0.640273i 0.933585 0.358357i \(-0.116663\pi\)
−0.0523242 + 0.998630i \(0.516663\pi\)
\(138\) −0.631214 1.94268i −0.0537325 0.165372i
\(139\) 15.1397 + 10.9997i 1.28414 + 0.932979i 0.999670 0.0257067i \(-0.00818361\pi\)
0.284466 + 0.958686i \(0.408184\pi\)
\(140\) 3.49096 + 2.53633i 0.295040 + 0.214359i
\(141\) −0.244298 0.751870i −0.0205736 0.0633189i
\(142\) −4.31528 3.13523i −0.362130 0.263103i
\(143\) −9.68833 + 7.03899i −0.810179 + 0.588630i
\(144\) −0.927746 + 2.85531i −0.0773122 + 0.237942i
\(145\) 14.6842 10.6687i 1.21945 0.885985i
\(146\) −1.20541 3.70987i −0.0997605 0.307031i
\(147\) −1.78949 5.50749i −0.147595 0.454250i
\(148\) −4.90575 + 15.0983i −0.403250 + 1.24108i
\(149\) −20.1353 −1.64955 −0.824774 0.565462i \(-0.808698\pi\)
−0.824774 + 0.565462i \(0.808698\pi\)
\(150\) −5.44155 −0.444301
\(151\) −4.75035 + 14.6201i −0.386578 + 1.18977i 0.548751 + 0.835986i \(0.315104\pi\)
−0.935329 + 0.353779i \(0.884896\pi\)
\(152\) 7.47013 + 5.42737i 0.605908 + 0.440218i
\(153\) −2.31379 + 1.68107i −0.187059 + 0.135906i
\(154\) −2.16628 −0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) −12.2544 + 8.90334i −0.978008 + 0.710564i −0.957262 0.289221i \(-0.906604\pi\)
−0.0207452 + 0.999785i \(0.506604\pi\)
\(158\) 7.86219 + 5.71222i 0.625483 + 0.454440i
\(159\) −0.997111 + 3.06879i −0.0790760 + 0.243371i
\(160\) −21.5313 −1.70220
\(161\) 2.50619 0.197515
\(162\) −0.497333 + 1.53063i −0.0390741 + 0.120258i
\(163\) −0.322882 0.993730i −0.0252901 0.0778349i 0.937615 0.347676i \(-0.113029\pi\)
−0.962905 + 0.269841i \(0.913029\pi\)
\(164\) −0.356147 1.09611i −0.0278104 0.0855916i
\(165\) −11.1398 + 8.09351i −0.867229 + 0.630079i
\(166\) −3.00586 + 9.25108i −0.233300 + 0.718023i
\(167\) −9.13332 + 6.63574i −0.706757 + 0.513489i −0.882126 0.471014i \(-0.843888\pi\)
0.175369 + 0.984503i \(0.443888\pi\)
\(168\) −1.35440 0.984026i −0.104494 0.0759192i
\(169\) −1.40088 4.31147i −0.107760 0.331652i
\(170\) −2.70615 1.96613i −0.207552 0.150796i
\(171\) −6.71853 4.88129i −0.513778 0.373282i
\(172\) −3.37181 10.3774i −0.257098 0.791266i
\(173\) 16.7084 + 12.1393i 1.27031 + 0.922937i 0.999215 0.0396145i \(-0.0126130\pi\)
0.271099 + 0.962552i \(0.412613\pi\)
\(174\) −2.46431 + 1.79043i −0.186819 + 0.135732i
\(175\) 2.06312 6.34963i 0.155957 0.479987i
\(176\) −4.57356 + 3.32289i −0.344745 + 0.250472i
\(177\) 0.258576 + 0.795815i 0.0194358 + 0.0598171i
\(178\) −0.944903 2.90811i −0.0708235 0.217972i
\(179\) 0.0406859 0.125218i 0.00304101 0.00935926i −0.949524 0.313693i \(-0.898434\pi\)
0.952566 + 0.304334i \(0.0984338\pi\)
\(180\) 12.3545 0.920848
\(181\) −7.73199 −0.574714 −0.287357 0.957824i \(-0.592777\pi\)
−0.287357 + 0.957824i \(0.592777\pi\)
\(182\) −0.473278 + 1.45660i −0.0350817 + 0.107970i
\(183\) 1.69157 + 1.22900i 0.125045 + 0.0908502i
\(184\) −6.45450 + 4.68947i −0.475832 + 0.345712i
\(185\) 38.6056 2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) −1.08056 + 0.785076i −0.0788083 + 0.0572576i
\(189\) 2.89009 + 2.09977i 0.210223 + 0.152736i
\(190\) 3.00142 9.23741i 0.217746 0.670152i
\(191\) −21.1027 −1.52694 −0.763468 0.645846i \(-0.776505\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(192\) 1.13431 0.0818620
\(193\) 1.75004 5.38606i 0.125970 0.387697i −0.868106 0.496378i \(-0.834663\pi\)
0.994077 + 0.108682i \(0.0346629\pi\)
\(194\) 1.12448 + 3.46079i 0.0807330 + 0.248471i
\(195\) 3.00830 + 9.25859i 0.215429 + 0.663021i
\(196\) −7.91519 + 5.75072i −0.565370 + 0.410766i
\(197\) −4.91794 + 15.1359i −0.350389 + 1.07839i 0.608246 + 0.793748i \(0.291873\pi\)
−0.958635 + 0.284638i \(0.908127\pi\)
\(198\) −5.01774 + 3.64560i −0.356595 + 0.259082i
\(199\) −3.44759 2.50482i −0.244393 0.177562i 0.458845 0.888516i \(-0.348263\pi\)
−0.703238 + 0.710954i \(0.748263\pi\)
\(200\) 6.56773 + 20.2134i 0.464409 + 1.42930i
\(201\) 1.52356 + 1.10693i 0.107463 + 0.0780767i
\(202\) 2.12383 + 1.54305i 0.149432 + 0.108569i
\(203\) −1.15489 3.55438i −0.0810572 0.249468i
\(204\) −1.45645 1.05817i −0.101972 0.0740868i
\(205\) −2.26742 + 1.64737i −0.158363 + 0.115058i
\(206\) 1.33074 4.09559i 0.0927170 0.285353i
\(207\) 5.80508 4.21764i 0.403481 0.293146i
\(208\) 1.23509 + 3.80123i 0.0856383 + 0.263568i
\(209\) −4.83225 14.8721i −0.334254 1.02873i
\(210\) −0.544181 + 1.67482i −0.0375521 + 0.115573i
\(211\) −11.5083 −0.792263 −0.396131 0.918194i \(-0.629648\pi\)
−0.396131 + 0.918194i \(0.629648\pi\)
\(212\) 5.45152 0.374412
\(213\) −2.15726 + 6.63937i −0.147813 + 0.454922i
\(214\) 1.29824 + 0.943228i 0.0887460 + 0.0644777i
\(215\) −21.4667 + 15.5965i −1.46402 + 1.06367i
\(216\) −11.3722 −0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) −4.13028 + 3.00083i −0.279099 + 0.202777i
\(220\) 18.8205 + 13.6739i 1.26888 + 0.921896i
\(221\) −1.17658 + 3.62113i −0.0791450 + 0.243583i
\(222\) −6.47882 −0.434830
\(223\) −9.42391 −0.631072 −0.315536 0.948914i \(-0.602184\pi\)
−0.315536 + 0.948914i \(0.602184\pi\)
\(224\) −1.36999 + 4.21640i −0.0915363 + 0.281720i
\(225\) −5.90692 18.1796i −0.393795 1.21197i
\(226\) −1.35947 4.18402i −0.0904307 0.278317i
\(227\) −17.6067 + 12.7920i −1.16859 + 0.849034i −0.990840 0.135041i \(-0.956883\pi\)
−0.177755 + 0.984075i \(0.556883\pi\)
\(228\) 1.61536 4.97156i 0.106980 0.329250i
\(229\) 13.7176 9.96642i 0.906485 0.658600i −0.0336385 0.999434i \(-0.510709\pi\)
0.940123 + 0.340834i \(0.110709\pi\)
\(230\) 6.78947 + 4.93284i 0.447684 + 0.325262i
\(231\) 0.876125 + 2.69644i 0.0576448 + 0.177412i
\(232\) 9.62511 + 6.99305i 0.631920 + 0.459117i
\(233\) 7.95758 + 5.78152i 0.521318 + 0.378760i 0.817100 0.576496i \(-0.195580\pi\)
−0.295782 + 0.955255i \(0.595580\pi\)
\(234\) 1.35504 + 4.17039i 0.0885819 + 0.272627i
\(235\) 2.62771 + 1.90915i 0.171413 + 0.124539i
\(236\) 1.14372 0.830961i 0.0744498 0.0540910i
\(237\) 3.93041 12.0966i 0.255308 0.785757i
\(238\) −0.557208 + 0.404836i −0.0361185 + 0.0262416i
\(239\) −0.182516 0.561727i −0.0118060 0.0363351i 0.944980 0.327128i \(-0.106081\pi\)
−0.956786 + 0.290793i \(0.906081\pi\)
\(240\) 1.42012 + 4.37069i 0.0916687 + 0.282127i
\(241\) −4.74973 + 14.6182i −0.305957 + 0.941639i 0.673361 + 0.739313i \(0.264850\pi\)
−0.979318 + 0.202325i \(0.935150\pi\)
\(242\) −4.09445 −0.263201
\(243\) 16.1450 1.03570
\(244\) 1.09162 3.35966i 0.0698838 0.215080i
\(245\) 19.2481 + 13.9846i 1.22972 + 0.893442i
\(246\) 0.380520 0.276464i 0.0242611 0.0176267i
\(247\) −11.0557 −0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) 7.74642 5.62810i 0.489926 0.355952i
\(251\) −4.89577 3.55698i −0.309018 0.224515i 0.422457 0.906383i \(-0.361168\pi\)
−0.731475 + 0.681868i \(0.761168\pi\)
\(252\) 0.786090 2.41933i 0.0495190 0.152404i
\(253\) 13.5114 0.849455
\(254\) −0.987363 −0.0619527
\(255\) −1.35284 + 4.16362i −0.0847182 + 0.260736i
\(256\) −3.06694 9.43906i −0.191684 0.589942i
\(257\) −1.39918 4.30623i −0.0872784 0.268615i 0.897886 0.440228i \(-0.145102\pi\)
−0.985165 + 0.171612i \(0.945102\pi\)
\(258\) 3.60256 2.61741i 0.224286 0.162953i
\(259\) 2.45639 7.56000i 0.152633 0.469756i
\(260\) 13.3061 9.66748i 0.825212 0.599552i
\(261\) −8.65668 6.28945i −0.535835 0.389307i
\(262\) −1.34080 4.12655i −0.0828347 0.254939i
\(263\) −2.02971 1.47467i −0.125157 0.0909322i 0.523445 0.852059i \(-0.324646\pi\)
−0.648603 + 0.761127i \(0.724646\pi\)
\(264\) −7.30184 5.30510i −0.449397 0.326506i
\(265\) −4.09663 12.6081i −0.251654 0.774512i
\(266\) −1.61796 1.17552i −0.0992034 0.0720755i
\(267\) −3.23767 + 2.35230i −0.198142 + 0.143959i
\(268\) 0.983194 3.02596i 0.0600581 0.184840i
\(269\) 10.7921 7.84092i 0.658006 0.478069i −0.207983 0.978132i \(-0.566690\pi\)
0.865989 + 0.500063i \(0.166690\pi\)
\(270\) 3.69658 + 11.3769i 0.224967 + 0.692376i
\(271\) −4.27190 13.1476i −0.259500 0.798658i −0.992910 0.118871i \(-0.962072\pi\)
0.733410 0.679787i \(-0.237928\pi\)
\(272\) −0.555425 + 1.70942i −0.0336776 + 0.103649i
\(273\) 2.00449 0.121317
\(274\) 8.79097 0.531082
\(275\) 11.1227 34.2322i 0.670726 2.06428i
\(276\) 3.65408 + 2.65485i 0.219950 + 0.159803i
\(277\) 9.36093 6.80111i 0.562444 0.408639i −0.269909 0.962886i \(-0.586994\pi\)
0.832353 + 0.554247i \(0.186994\pi\)
\(278\) 12.9030 0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) 12.4583 9.05151i 0.743202 0.539968i −0.150510 0.988608i \(-0.548092\pi\)
0.893712 + 0.448641i \(0.148092\pi\)
\(282\) −0.440985 0.320395i −0.0262603 0.0190792i
\(283\) −7.01336 + 21.5849i −0.416901 + 1.28309i 0.493638 + 0.869667i \(0.335667\pi\)
−0.910539 + 0.413422i \(0.864333\pi\)
\(284\) 11.7944 0.699871
\(285\) −12.7120 −0.752994
\(286\) −2.55155 + 7.85285i −0.150876 + 0.464349i
\(287\) 0.178329 + 0.548840i 0.0105264 + 0.0323970i
\(288\) 3.92242 + 12.0720i 0.231131 + 0.711347i
\(289\) 12.3681 8.98592i 0.727533 0.528584i
\(290\) 3.86726 11.9022i 0.227094 0.698922i
\(291\) 3.85298 2.79935i 0.225866 0.164101i
\(292\) 6.97809 + 5.06988i 0.408362 + 0.296692i
\(293\) 3.83208 + 11.7939i 0.223872 + 0.689008i 0.998404 + 0.0564732i \(0.0179855\pi\)
−0.774532 + 0.632535i \(0.782014\pi\)
\(294\) −3.23024 2.34690i −0.188391 0.136874i
\(295\) −2.78129 2.02073i −0.161933 0.117651i
\(296\) 7.81967 + 24.0665i 0.454509 + 1.39884i
\(297\) 15.5811 + 11.3203i 0.904106 + 0.656872i
\(298\) −11.2317 + 8.16031i −0.650635 + 0.472714i
\(299\) 2.95191 9.08505i 0.170714 0.525402i
\(300\) 9.73434 7.07241i 0.562012 0.408326i
\(301\) 1.68832 + 5.19612i 0.0973133 + 0.299499i
\(302\) 3.27533 + 10.0804i 0.188474 + 0.580064i
\(303\) 1.06173 3.26767i 0.0609947 0.187723i
\(304\) −5.21907 −0.299334
\(305\) −8.59046 −0.491888
\(306\) −0.609367 + 1.87544i −0.0348352 + 0.107212i
\(307\) −24.8530 18.0568i −1.41844 1.03055i −0.992027 0.126023i \(-0.959779\pi\)
−0.426408 0.904531i \(-0.640221\pi\)
\(308\) 3.87523 2.81552i 0.220812 0.160429i
\(309\) −5.63612 −0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) −5.16241 + 3.75071i −0.292264 + 0.212342i
\(313\) 8.69337 + 6.31610i 0.491378 + 0.357007i 0.805714 0.592305i \(-0.201782\pi\)
−0.314336 + 0.949312i \(0.601782\pi\)
\(314\) −3.22735 + 9.93277i −0.182130 + 0.560539i
\(315\) −6.18610 −0.348547
\(316\) −21.4888 −1.20884
\(317\) 2.70277 8.31827i 0.151803 0.467201i −0.846020 0.533151i \(-0.821008\pi\)
0.997823 + 0.0659501i \(0.0210078\pi\)
\(318\) 0.687501 + 2.11591i 0.0385531 + 0.118654i
\(319\) −6.22625 19.1624i −0.348603 1.07289i
\(320\) −3.77029 + 2.73927i −0.210765 + 0.153130i
\(321\) 0.649008 1.99744i 0.0362241 0.111486i
\(322\) 1.39798 1.01569i 0.0779065 0.0566024i
\(323\) −4.02226 2.92235i −0.223805 0.162604i
\(324\) −1.09970 3.38452i −0.0610943 0.188029i
\(325\) −20.5877 14.9578i −1.14200 0.829710i
\(326\) −0.582840 0.423458i −0.0322805 0.0234532i
\(327\) 0.411824 + 1.26746i 0.0227739 + 0.0700909i
\(328\) −1.48624 1.07981i −0.0820637 0.0596227i
\(329\) 0.541058 0.393101i 0.0298295 0.0216724i
\(330\) −2.93380 + 9.02930i −0.161500 + 0.497047i
\(331\) −26.1872 + 19.0261i −1.43938 + 1.04577i −0.451204 + 0.892421i \(0.649005\pi\)
−0.988172 + 0.153347i \(0.950995\pi\)
\(332\) −6.64653 20.4559i −0.364776 1.12266i
\(333\) −7.03290 21.6450i −0.385400 1.18614i
\(334\) −2.40538 + 7.40299i −0.131616 + 0.405073i
\(335\) −7.73721 −0.422729
\(336\) 0.946258 0.0516226
\(337\) −8.57021 + 26.3764i −0.466849 + 1.43681i 0.389792 + 0.920903i \(0.372547\pi\)
−0.856642 + 0.515912i \(0.827453\pi\)
\(338\) −2.52875 1.83725i −0.137546 0.0999331i
\(339\) −4.65817 + 3.38436i −0.252997 + 0.183813i
\(340\) 7.39640 0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) 8.28646 6.02047i 0.447427 0.325075i
\(344\) −14.0709 10.2231i −0.758651 0.551192i
\(345\) 3.39414 10.4461i 0.182735 0.562399i
\(346\) 14.2399 0.765540
\(347\) 25.9161 1.39125 0.695624 0.718407i \(-0.255128\pi\)
0.695624 + 0.718407i \(0.255128\pi\)
\(348\) 2.08136 6.40576i 0.111572 0.343385i
\(349\) 1.72862 + 5.32015i 0.0925309 + 0.284781i 0.986602 0.163144i \(-0.0521634\pi\)
−0.894071 + 0.447924i \(0.852163\pi\)
\(350\) −1.42251 4.37802i −0.0760362 0.234015i
\(351\) 11.0159 8.00348i 0.587983 0.427194i
\(352\) −7.38591 + 22.7315i −0.393671 + 1.21159i
\(353\) 9.44040 6.85885i 0.502462 0.365060i −0.307495 0.951550i \(-0.599491\pi\)
0.809957 + 0.586490i \(0.199491\pi\)
\(354\) 0.466759 + 0.339121i 0.0248080 + 0.0180241i
\(355\) −8.86312 27.2779i −0.470406 1.44776i
\(356\) 5.47002 + 3.97420i 0.289910 + 0.210632i
\(357\) 0.729269 + 0.529845i 0.0385970 + 0.0280424i
\(358\) −0.0280526 0.0863372i −0.00148263 0.00456306i
\(359\) −21.1961 15.3999i −1.11869 0.812775i −0.134679 0.990889i \(-0.543000\pi\)
−0.984010 + 0.178115i \(0.943000\pi\)
\(360\) 15.9318 11.5751i 0.839681 0.610064i
\(361\) −1.41019 + 4.34013i −0.0742207 + 0.228428i
\(362\) −4.31299 + 3.13357i −0.226686 + 0.164697i
\(363\) 1.65595 + 5.09650i 0.0869149 + 0.267497i
\(364\) −1.04651 3.22082i −0.0548519 0.168817i
\(365\) 6.48169 19.9486i 0.339267 1.04416i
\(366\) 1.44166 0.0753567
\(367\) −27.0146 −1.41015 −0.705076 0.709132i \(-0.749087\pi\)
−0.705076 + 0.709132i \(0.749087\pi\)
\(368\) 1.39351 4.28877i 0.0726416 0.223568i
\(369\) 1.33670 + 0.971168i 0.0695857 + 0.0505570i
\(370\) 21.5346 15.6458i 1.11953 0.813387i
\(371\) −2.72967 −0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) −3.00403 + 2.18256i −0.155335 + 0.112857i
\(375\) −10.1384 7.36600i −0.523546 0.380379i
\(376\) −0.657899 + 2.02480i −0.0339285 + 0.104421i
\(377\) −14.2451 −0.733658
\(378\) 2.46311 0.126688
\(379\) −1.43353 + 4.41196i −0.0736357 + 0.226627i −0.981100 0.193502i \(-0.938015\pi\)
0.907464 + 0.420129i \(0.138015\pi\)
\(380\) 6.63670 + 20.4257i 0.340456 + 1.04782i
\(381\) 0.399327 + 1.22900i 0.0204582 + 0.0629638i
\(382\) −11.7713 + 8.55236i −0.602273 + 0.437577i
\(383\) 1.55168 4.77557i 0.0792870 0.244020i −0.903554 0.428474i \(-0.859051\pi\)
0.982841 + 0.184453i \(0.0590515\pi\)
\(384\) −7.84683 + 5.70106i −0.400432 + 0.290931i
\(385\) −9.42378 6.84677i −0.480280 0.348944i
\(386\) −1.20664 3.71365i −0.0614162 0.189020i
\(387\) 12.6551 + 9.19450i 0.643297 + 0.467383i
\(388\) −6.50958 4.72949i −0.330474 0.240103i
\(389\) −5.74828 17.6914i −0.291450 0.896989i −0.984391 0.175996i \(-0.943686\pi\)
0.692941 0.720994i \(-0.256314\pi\)
\(390\) 5.43032 + 3.94536i 0.274975 + 0.199781i
\(391\) 3.47540 2.52503i 0.175758 0.127696i
\(392\) −4.81914 + 14.8318i −0.243403 + 0.749118i
\(393\) −4.59418 + 3.33787i −0.231746 + 0.168373i
\(394\) 3.39089 + 10.4361i 0.170830 + 0.525762i
\(395\) 16.1481 + 49.6988i 0.812500 + 2.50062i
\(396\) 4.23798 13.0432i 0.212966 0.655443i
\(397\) 32.5588 1.63408 0.817040 0.576581i \(-0.195614\pi\)
0.817040 + 0.576581i \(0.195614\pi\)
\(398\) −2.93824 −0.147281
\(399\) −0.808838 + 2.48935i −0.0404926 + 0.124623i
\(400\) −9.71880 7.06112i −0.485940 0.353056i
\(401\) −10.0239 + 7.28282i −0.500572 + 0.363687i −0.809235 0.587485i \(-0.800118\pi\)
0.308664 + 0.951171i \(0.400118\pi\)
\(402\) 1.29847 0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) −7.00125 + 5.08671i −0.347895 + 0.252760i
\(406\) −2.08471 1.51463i −0.103462 0.0751697i
\(407\) 13.2429 40.7576i 0.656429 2.02028i
\(408\) −2.86960 −0.142066
\(409\) 3.44808 0.170497 0.0852484 0.996360i \(-0.472832\pi\)
0.0852484 + 0.996360i \(0.472832\pi\)
\(410\) −0.597153 + 1.83785i −0.0294913 + 0.0907649i
\(411\) −3.55540 10.9424i −0.175375 0.539749i
\(412\) 2.94252 + 9.05613i 0.144967 + 0.446164i
\(413\) −0.572681 + 0.416077i −0.0281798 + 0.0204738i
\(414\) 1.52884 4.70529i 0.0751385 0.231252i
\(415\) −42.3153 + 30.7439i −2.07718 + 1.50916i
\(416\) 13.6710 + 9.93255i 0.670275 + 0.486983i
\(417\) −5.21846 16.0608i −0.255549 0.786500i
\(418\) −8.72276 6.33746i −0.426644 0.309975i
\(419\) 32.3988 + 23.5391i 1.58279 + 1.14996i 0.913412 + 0.407035i \(0.133437\pi\)
0.669374 + 0.742926i \(0.266563\pi\)
\(420\) −1.20329 3.70334i −0.0587144 0.180704i
\(421\) −17.5431 12.7458i −0.854997 0.621191i 0.0715226 0.997439i \(-0.477214\pi\)
−0.926519 + 0.376248i \(0.877214\pi\)
\(422\) −6.41945 + 4.66400i −0.312494 + 0.227040i
\(423\) 0.591704 1.82108i 0.0287696 0.0885439i
\(424\) 7.03006 5.10763i 0.341410 0.248049i
\(425\) −3.53637 10.8838i −0.171539 0.527943i
\(426\) 1.48742 + 4.57780i 0.0720656 + 0.221795i
\(427\) −0.546594 + 1.68224i −0.0264515 + 0.0814094i
\(428\) −3.54833 −0.171515
\(429\) 10.8066 0.521750
\(430\) −5.65353 + 17.3998i −0.272637 + 0.839091i
\(431\) 9.40132 + 6.83046i 0.452846 + 0.329012i 0.790718 0.612180i \(-0.209707\pi\)
−0.337873 + 0.941192i \(0.609707\pi\)
\(432\) 5.20024 3.77820i 0.250197 0.181779i
\(433\) −24.5964 −1.18203 −0.591015 0.806661i \(-0.701272\pi\)
−0.591015 + 0.806661i \(0.701272\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) 1.82156 1.32344i 0.0872368 0.0633813i
\(437\) 10.0915 + 7.33188i 0.482740 + 0.350731i
\(438\) −1.08776 + 3.34779i −0.0519753 + 0.159964i
\(439\) 18.1932 0.868316 0.434158 0.900837i \(-0.357046\pi\)
0.434158 + 0.900837i \(0.357046\pi\)
\(440\) 37.0816 1.76779
\(441\) 4.33426 13.3395i 0.206393 0.635214i
\(442\) 0.811240 + 2.49674i 0.0385868 + 0.118758i
\(443\) 5.48825 + 16.8911i 0.260754 + 0.802520i 0.992641 + 0.121093i \(0.0386400\pi\)
−0.731887 + 0.681426i \(0.761360\pi\)
\(444\) 11.5899 8.42056i 0.550032 0.399622i
\(445\) 5.08090 15.6374i 0.240858 0.741284i
\(446\) −5.25676 + 3.81926i −0.248915 + 0.180847i
\(447\) 14.6999 + 10.6801i 0.695283 + 0.505153i
\(448\) 0.296527 + 0.912617i 0.0140096 + 0.0431171i
\(449\) −7.44180 5.40679i −0.351200 0.255162i 0.398172 0.917311i \(-0.369645\pi\)
−0.749372 + 0.662149i \(0.769645\pi\)
\(450\) −10.6627 7.74688i −0.502643 0.365192i
\(451\) 0.961410 + 2.95892i 0.0452710 + 0.139330i
\(452\) 7.86994 + 5.71785i 0.370171 + 0.268945i
\(453\) 11.2228 8.15383i 0.527292 0.383100i
\(454\) −4.63694 + 14.2710i −0.217622 + 0.669773i
\(455\) −6.66262 + 4.84068i −0.312349 + 0.226935i
\(456\) −2.57485 7.92459i −0.120579 0.371103i
\(457\) 9.64130 + 29.6729i 0.451001 + 1.38804i 0.875767 + 0.482735i \(0.160356\pi\)
−0.424766 + 0.905303i \(0.639644\pi\)
\(458\) 3.61271 11.1188i 0.168811 0.519546i
\(459\) 6.12331 0.285812
\(460\) −18.5568 −0.865218
\(461\) 2.06067 6.34209i 0.0959750 0.295381i −0.891532 0.452959i \(-0.850369\pi\)
0.987507 + 0.157578i \(0.0503685\pi\)
\(462\) 1.58151 + 1.14903i 0.0735784 + 0.0534578i
\(463\) 28.5732 20.7597i 1.32791 0.964784i 0.328114 0.944638i \(-0.393587\pi\)
0.999797 0.0201457i \(-0.00641301\pi\)
\(464\) −6.72466 −0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) −29.0789 + 21.1270i −1.34561 + 0.977642i −0.346391 + 0.938090i \(0.612593\pi\)
−0.999218 + 0.0395520i \(0.987407\pi\)
\(468\) −7.84430 5.69922i −0.362603 0.263447i
\(469\) −0.492303 + 1.51515i −0.0227324 + 0.0699632i
\(470\) 2.23949 0.103300
\(471\) 13.6689 0.629830
\(472\) 0.696351 2.14315i 0.0320521 0.0986463i
\(473\) 9.10211 + 28.0134i 0.418516 + 1.28806i
\(474\) −2.70999 8.34050i −0.124474 0.383092i
\(475\) 26.8833 19.5318i 1.23349 0.896183i
\(476\) 0.470618 1.44841i 0.0215707 0.0663879i
\(477\) −6.32273 + 4.59373i −0.289498 + 0.210332i
\(478\) −0.329463 0.239369i −0.0150693 0.0109485i
\(479\) 10.2731 + 31.6173i 0.469389 + 1.44463i 0.853377 + 0.521294i \(0.174550\pi\)
−0.383988 + 0.923338i \(0.625450\pi\)
\(480\) 15.7191 + 11.4206i 0.717474 + 0.521275i
\(481\) −24.5121 17.8091i −1.11765 0.812024i
\(482\) 3.27490 + 10.0791i 0.149168 + 0.459091i
\(483\) −1.82966 1.32933i −0.0832526 0.0604865i
\(484\) 7.32452 5.32158i 0.332933 0.241890i
\(485\) −6.04652 + 18.6093i −0.274558 + 0.845003i
\(486\) 9.00588 6.54316i 0.408515 0.296804i
\(487\) −8.81173 27.1197i −0.399298 1.22891i −0.925564 0.378592i \(-0.876408\pi\)
0.526266 0.850320i \(-0.323592\pi\)
\(488\) −1.74002 5.35524i −0.0787672 0.242420i
\(489\) −0.291369 + 0.896743i −0.0131762 + 0.0405521i
\(490\) 16.4044 0.741075
\(491\) 27.9636 1.26198 0.630991 0.775790i \(-0.282649\pi\)
0.630991 + 0.775790i \(0.282649\pi\)
\(492\) −0.321387 + 0.989128i −0.0144892 + 0.0445933i
\(493\) −5.18260 3.76538i −0.233413 0.169584i
\(494\) −6.16701 + 4.48059i −0.277467 + 0.201591i
\(495\) −33.3506 −1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) 7.10139 5.15946i 0.318221 0.231201i
\(499\) −33.4164 24.2784i −1.49592 1.08685i −0.971970 0.235106i \(-0.924456\pi\)
−0.523955 0.851746i \(-0.675544\pi\)
\(500\) −6.54262 + 20.1361i −0.292595 + 0.900514i
\(501\) 10.1876 0.455147
\(502\) −4.17247 −0.186226
\(503\) −7.90652 + 24.3338i −0.352534 + 1.08499i 0.604891 + 0.796308i \(0.293217\pi\)
−0.957425 + 0.288681i \(0.906783\pi\)
\(504\) −1.25301 3.85638i −0.0558136 0.171777i
\(505\) 4.36212 + 13.4252i 0.194112 + 0.597414i
\(506\) 7.53682 5.47582i 0.335053 0.243430i
\(507\) −1.26416 + 3.89068i −0.0561432 + 0.172791i
\(508\) 1.76629 1.28328i 0.0783662 0.0569364i
\(509\) −19.7949 14.3818i −0.877392 0.637462i 0.0551686 0.998477i \(-0.482430\pi\)
−0.932560 + 0.361015i \(0.882430\pi\)
\(510\) 0.932774 + 2.87078i 0.0413039 + 0.127120i
\(511\) −3.49405 2.53858i −0.154568 0.112300i
\(512\) 11.8548 + 8.61304i 0.523915 + 0.380646i
\(513\) 5.49437 + 16.9099i 0.242583 + 0.746592i
\(514\) −2.52568 1.83501i −0.111403 0.0809390i
\(515\) 18.7336 13.6108i 0.825501 0.599762i
\(516\) −3.04272 + 9.36453i −0.133948 + 0.412250i
\(517\) 2.91696 2.11929i 0.128288 0.0932065i
\(518\) −1.69367 5.21257i −0.0744154 0.229027i
\(519\) −5.75915 17.7248i −0.252799 0.778034i
\(520\) 8.10141 24.9336i 0.355270 1.09341i
\(521\) 14.9656 0.655654 0.327827 0.944738i \(-0.393684\pi\)
0.327827 + 0.944738i \(0.393684\pi\)
\(522\) −7.37774 −0.322915
\(523\) 6.47873 19.9395i 0.283295 0.871893i −0.703609 0.710587i \(-0.748429\pi\)
0.986904 0.161306i \(-0.0515706\pi\)
\(524\) 7.76183 + 5.63930i 0.339077 + 0.246354i
\(525\) −4.87415 + 3.54128i −0.212726 + 0.154554i
\(526\) −1.72984 −0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) 9.88796 7.18402i 0.429911 0.312349i
\(530\) −7.39489 5.37271i −0.321214 0.233375i
\(531\) −0.626287 + 1.92751i −0.0271786 + 0.0836470i
\(532\) 4.42217 0.191726
\(533\) 2.19961 0.0952759
\(534\) −0.852681 + 2.62428i −0.0368991 + 0.113564i
\(535\) 2.66645 + 8.20649i 0.115281 + 0.354798i
\(536\) −1.56719 4.82333i −0.0676925 0.208336i
\(537\) −0.0961211 + 0.0698361i −0.00414793 + 0.00301365i
\(538\) 2.84224 8.74751i 0.122538 0.377132i
\(539\) 21.3669 15.5239i 0.920336 0.668663i
\(540\) −21.3994 15.5476i −0.920883 0.669060i
\(541\) 0.535002 + 1.64657i 0.0230015 + 0.0707914i 0.961898 0.273407i \(-0.0881507\pi\)
−0.938897 + 0.344199i \(0.888151\pi\)
\(542\) −7.71128 5.60257i −0.331228 0.240651i
\(543\) 5.64480 + 4.10118i 0.242241 + 0.175999i
\(544\) 2.34828 + 7.22727i 0.100682 + 0.309867i
\(545\) −4.42966 3.21834i −0.189746 0.137858i
\(546\) 1.11813 0.812367i 0.0478514 0.0347661i
\(547\) −4.05474 + 12.4792i −0.173368 + 0.533573i −0.999555 0.0298233i \(-0.990506\pi\)
0.826187 + 0.563396i \(0.190506\pi\)
\(548\) −15.7261 + 11.4257i −0.671785 + 0.488080i
\(549\) 1.56495 + 4.81643i 0.0667905 + 0.205560i
\(550\) −7.66904 23.6029i −0.327009 1.00643i
\(551\) 5.74807 17.6908i 0.244876 0.753651i
\(552\) 7.19953 0.306432
\(553\) 10.7598 0.457554
\(554\) 2.46532 7.58748i 0.104741 0.322361i
\(555\) −28.1843 20.4771i −1.19636 0.869204i
\(556\) −23.0820 + 16.7701i −0.978897 + 0.711210i
\(557\) 28.0246 1.18744 0.593721 0.804671i \(-0.297658\pi\)
0.593721 + 0.804671i \(0.297658\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) −3.14522 + 2.28514i −0.132910 + 0.0965646i
\(561\) 3.93165 + 2.85651i 0.165994 + 0.120602i
\(562\) 3.28106 10.0981i 0.138403 0.425961i
\(563\) 22.6519 0.954662 0.477331 0.878723i \(-0.341604\pi\)
0.477331 + 0.878723i \(0.341604\pi\)
\(564\) 1.20529 0.0507520
\(565\) 7.31010 22.4982i 0.307538 0.946505i
\(566\) 4.83566 + 14.8826i 0.203258 + 0.625564i
\(567\) 0.550638 + 1.69469i 0.0231246 + 0.0711702i
\(568\) 15.2096 11.0504i 0.638181 0.463666i
\(569\) 14.3514 44.1690i 0.601641 1.85166i 0.0832264 0.996531i \(-0.473478\pi\)
0.518414 0.855130i \(-0.326522\pi\)
\(570\) −7.09090 + 5.15184i −0.297005 + 0.215787i
\(571\) −10.1114 7.34635i −0.423148 0.307435i 0.355755 0.934579i \(-0.384224\pi\)
−0.778903 + 0.627144i \(0.784224\pi\)
\(572\) −5.64195 17.3642i −0.235902 0.726032i
\(573\) 15.4062 + 11.1932i 0.643602 + 0.467604i
\(574\) 0.321904 + 0.233877i 0.0134360 + 0.00976184i
\(575\) 8.87240 + 27.3064i 0.370005 + 1.13876i
\(576\) 2.22268 + 1.61487i 0.0926115 + 0.0672862i
\(577\) 24.6623 17.9182i 1.02671 0.745945i 0.0590589 0.998255i \(-0.481190\pi\)
0.967647 + 0.252309i \(0.0811900\pi\)
\(578\) 3.25729 10.0249i 0.135485 0.416981i
\(579\) −4.13449 + 3.00388i −0.171823 + 0.124837i
\(580\) 8.55126 + 26.3181i 0.355072 + 1.09280i
\(581\) 3.32803 + 10.2426i 0.138070 + 0.424936i
\(582\) 1.01473 3.12302i 0.0420620 0.129453i
\(583\) −14.7162 −0.609485
\(584\) 13.7487 0.568926
\(585\) −7.28629 + 22.4249i −0.301251 + 0.927155i
\(586\) 6.91734 + 5.02574i 0.285753 + 0.207612i
\(587\) 27.2300 19.7837i 1.12390 0.816562i 0.139105 0.990278i \(-0.455577\pi\)
0.984796 + 0.173716i \(0.0555774\pi\)
\(588\) 8.82883 0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) 11.6187 8.44150i 0.477930 0.347237i
\(592\) −11.5714 8.40712i −0.475582 0.345530i
\(593\) −13.8711 + 42.6909i −0.569619 + 1.75311i 0.0841933 + 0.996449i \(0.473169\pi\)
−0.653812 + 0.756657i \(0.726831\pi\)
\(594\) 13.2791 0.544850
\(595\) −3.70351 −0.151829
\(596\) 9.48629 29.1958i 0.388574 1.19591i
\(597\) 1.18834 + 3.65733i 0.0486354 + 0.149684i
\(598\) −2.03532 6.26408i −0.0832305 0.256157i
\(599\) 15.8443 11.5115i 0.647380 0.470349i −0.214998 0.976615i \(-0.568974\pi\)
0.862378 + 0.506265i \(0.168974\pi\)
\(600\) 5.92673 18.2406i 0.241958 0.744669i
\(601\) 24.6422 17.9036i 1.00518 0.730304i 0.0419852 0.999118i \(-0.486632\pi\)
0.963192 + 0.268814i \(0.0866318\pi\)
\(602\) 3.04762 + 2.21422i 0.124212 + 0.0902450i
\(603\) 1.40951 + 4.33803i 0.0573997 + 0.176658i
\(604\) −18.9608 13.7758i −0.771504 0.560531i
\(605\) −17.8117 12.9410i −0.724150 0.526126i
\(606\) −0.732055 2.25303i −0.0297377 0.0915232i
\(607\) 10.8203 + 7.86137i 0.439180 + 0.319083i 0.785309 0.619104i \(-0.212504\pi\)
−0.346129 + 0.938187i \(0.612504\pi\)
\(608\) −17.8515 + 12.9699i −0.723975 + 0.525998i
\(609\) −1.04217 + 3.20747i −0.0422309 + 0.129973i
\(610\) −4.79186 + 3.48149i −0.194017 + 0.140961i
\(611\) −0.787726 2.42437i −0.0318680 0.0980796i
\(612\) −1.34743 4.14695i −0.0544665 0.167631i
\(613\) 1.60541 4.94093i 0.0648418 0.199562i −0.913387 0.407093i \(-0.866543\pi\)
0.978229 + 0.207530i \(0.0665426\pi\)
\(614\) −21.1812 −0.854804
\(615\) 2.52914 0.101985
\(616\) 2.35942 7.26156i 0.0950639 0.292577i
\(617\) 24.2811 + 17.6412i 0.977520 + 0.710210i 0.957153 0.289583i \(-0.0935166\pi\)
0.0203666 + 0.999793i \(0.493517\pi\)
\(618\) −3.14389 + 2.28417i −0.126466 + 0.0918828i
\(619\) −18.3260 −0.736584 −0.368292 0.929710i \(-0.620057\pi\)
−0.368292 + 0.929710i \(0.620057\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) 1.32838 0.965124i 0.0532631 0.0386979i
\(623\) −2.73893 1.98995i −0.109733 0.0797257i
\(624\) 1.11455 3.43023i 0.0446177 0.137319i
\(625\) 7.75849 0.310339
\(626\) 7.40901 0.296123
\(627\) −4.36062 + 13.4206i −0.174147 + 0.535968i
\(628\) −7.13629 21.9632i −0.284769 0.876429i
\(629\) −4.21047 12.9585i −0.167883 0.516689i
\(630\) −3.45068 + 2.50706i −0.137478 + 0.0998838i
\(631\) −3.19376 + 9.82937i −0.127141 + 0.391301i −0.994285 0.106757i \(-0.965953\pi\)
0.867144 + 0.498058i \(0.165953\pi\)
\(632\) −27.7111 + 20.1333i −1.10229 + 0.800859i
\(633\) 8.40171 + 6.10420i 0.333938 + 0.242620i
\(634\) −1.86354 5.73539i −0.0740106 0.227781i
\(635\) −4.29525 3.12068i −0.170452 0.123840i
\(636\) −3.97992 2.89158i −0.157814 0.114659i
\(637\) −5.77013 17.7586i −0.228621 0.703623i
\(638\) −11.2391 8.16569i −0.444960 0.323283i
\(639\) −13.6793 + 9.93860i −0.541145 + 0.393165i
\(640\) 12.3141 37.8989i 0.486757 1.49809i
\(641\) 0.0819146 0.0595144i 0.00323543 0.00235068i −0.586166 0.810191i \(-0.699364\pi\)
0.589402 + 0.807840i \(0.299364\pi\)
\(642\) −0.447486 1.37722i −0.0176609 0.0543546i
\(643\) 4.23719 + 13.0407i 0.167098 + 0.514276i 0.999185 0.0403701i \(-0.0128537\pi\)
−0.832086 + 0.554646i \(0.812854\pi\)
\(644\) −1.18073 + 3.63393i −0.0465275 + 0.143197i
\(645\) 23.9446 0.942816
\(646\) −3.42801 −0.134873
\(647\) 3.34800 10.3041i 0.131624 0.405096i −0.863426 0.504476i \(-0.831686\pi\)
0.995050 + 0.0993798i \(0.0316859\pi\)
\(648\) −4.58915 3.33421i −0.180279 0.130980i
\(649\) −3.08745 + 2.24316i −0.121193 + 0.0880518i
\(650\) −17.5460 −0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) 19.6204 14.2551i 0.767807 0.557844i −0.133488 0.991050i \(-0.542618\pi\)
0.901295 + 0.433206i \(0.142618\pi\)
\(654\) 0.743389 + 0.540104i 0.0290688 + 0.0211197i
\(655\) 7.20968 22.1891i 0.281706 0.867001i
\(656\) 1.03837 0.0405415
\(657\) −12.3654 −0.482420
\(658\) 0.142494 0.438553i 0.00555501 0.0170966i
\(659\) −2.63699 8.11583i −0.102723 0.316148i 0.886467 0.462793i \(-0.153153\pi\)
−0.989189 + 0.146645i \(0.953153\pi\)
\(660\) −6.48719 19.9655i −0.252513 0.777156i
\(661\) −30.6490 + 22.2678i −1.19211 + 0.866116i −0.993485 0.113960i \(-0.963646\pi\)
−0.198621 + 0.980076i \(0.563646\pi\)
\(662\) −6.89672 + 21.2259i −0.268049 + 0.824969i
\(663\) 2.77968 2.01956i 0.107954 0.0784330i
\(664\) −27.7366 20.1518i −1.07639 0.782043i
\(665\) −3.32311 10.2275i −0.128865 0.396605i
\(666\) −12.6952 9.22360i −0.491929 0.357407i
\(667\) 13.0026 + 9.44697i 0.503464 + 0.365788i
\(668\) −5.31875 16.3694i −0.205788 0.633352i
\(669\) 6.88000 + 4.99861i 0.265996 + 0.193257i
\(670\) −4.31590 + 3.13569i −0.166738 + 0.121142i
\(671\) −2.94680 + 9.06933i −0.113760 + 0.350118i
\(672\) 3.23662 2.35154i 0.124855 0.0907128i
\(673\) −2.20023 6.77162i −0.0848128 0.261027i 0.899652 0.436607i \(-0.143820\pi\)
−0.984465 + 0.175580i \(0.943820\pi\)
\(674\) 5.90910 + 18.1863i 0.227610 + 0.700512i
\(675\) −12.6468 + 38.9228i −0.486775 + 1.49814i
\(676\) 6.91154 0.265829
\(677\) −48.0610 −1.84713 −0.923567 0.383438i \(-0.874740\pi\)
−0.923567 + 0.383438i \(0.874740\pi\)
\(678\) −1.22679 + 3.77566i −0.0471145 + 0.145004i
\(679\) 3.25946 + 2.36814i 0.125087 + 0.0908808i
\(680\) 9.53810 6.92984i 0.365769 0.265747i
\(681\) 19.6390 0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) 10.2431 7.44202i 0.391653 0.284553i
\(685\) 38.2426 + 27.7849i 1.46118 + 1.06161i
\(686\) 2.18235 6.71657i 0.0833224 0.256440i
\(687\) −15.3010 −0.583770
\(688\) 9.83073 0.374793
\(689\) −3.21514 + 9.89518i −0.122487 + 0.376976i
\(690\) −2.34024 7.20251i −0.0890913 0.274195i
\(691\) 8.42167 + 25.9192i 0.320375 + 0.986014i 0.973485 + 0.228750i \(0.0734640\pi\)
−0.653110 + 0.757263i \(0.726536\pi\)
\(692\) −25.4736 + 18.5076i −0.968360 + 0.703555i
\(693\) −2.12203 + 6.53094i −0.0806093 + 0.248090i
\(694\) 14.4563 10.5031i 0.548753 0.398692i
\(695\) 56.1308 + 40.7814i 2.12916 + 1.54693i
\(696\) −3.31765 10.2107i −0.125755 0.387034i
\(697\) 0.800258 + 0.581421i 0.0303119 + 0.0220229i
\(698\) 3.12036 + 2.26707i 0.118107 + 0.0858100i
\(699\) −2.74287 8.44168i −0.103745 0.319294i
\(700\) 8.23485 + 5.98297i 0.311248 + 0.226135i
\(701\) −6.86787 + 4.98980i −0.259396 + 0.188462i −0.709881 0.704322i \(-0.751251\pi\)
0.450485 + 0.892784i \(0.351251\pi\)
\(702\) 2.90117 8.92887i 0.109497 0.336998i
\(703\) 32.0078 23.2550i 1.20720 0.877080i
\(704\) 1.59864 + 4.92012i 0.0602511 + 0.185434i
\(705\) −0.905737 2.78757i −0.0341120 0.104986i
\(706\) 2.48625 7.65189i 0.0935712 0.287983i
\(707\) 2.90657 0.109313
\(708\) −1.27574 −0.0479452
\(709\) 7.22670 22.2415i 0.271404 0.835297i −0.718744 0.695275i \(-0.755283\pi\)
0.990148 0.140022i \(-0.0447174\pi\)
\(710\) −15.9990 11.6239i −0.600430 0.436238i
\(711\) 24.9229 18.1076i 0.934683 0.679087i
\(712\) 10.7774 0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) −35.9197 + 26.0972i −1.34332 + 0.975978i
\(716\) 0.162396 + 0.117988i 0.00606902 + 0.00440940i
\(717\) −0.164703 + 0.506903i −0.00615094 + 0.0189306i
\(718\) −18.0646 −0.674165
\(719\) −12.9769 −0.483956 −0.241978 0.970282i \(-0.577796\pi\)
−0.241978 + 0.970282i \(0.577796\pi\)
\(720\) −3.43963 + 10.5861i −0.128188 + 0.394521i
\(721\) −1.47337 4.53457i −0.0548712 0.168876i
\(722\) 0.972318 + 2.99249i 0.0361859 + 0.111369i
\(723\) 11.2213 8.15276i 0.417325 0.303204i
\(724\) 3.64275 11.2112i 0.135382 0.416662i
\(725\) 34.6386 25.1664i 1.28644 0.934656i
\(726\) 2.98918 + 2.17177i 0.110939 + 0.0806019i
\(727\) −3.83892 11.8150i −0.142378 0.438194i 0.854287 0.519802i \(-0.173994\pi\)
−0.996664 + 0.0816083i \(0.973994\pi\)
\(728\) −4.36719 3.17295i −0.161859 0.117597i
\(729\) −6.12163 4.44762i −0.226727 0.164727i
\(730\) −4.46908 13.7544i −0.165408 0.509074i
\(731\) 7.57641 + 5.50459i 0.280224 + 0.203594i
\(732\) −2.57897 + 1.87373i −0.0953215 + 0.0692551i
\(733\) −10.5552 + 32.4856i −0.389865 + 1.19988i 0.543024 + 0.839717i \(0.317279\pi\)
−0.932889 + 0.360164i \(0.882721\pi\)
\(734\) −15.0691 + 10.9483i −0.556209 + 0.404110i
\(735\) −6.63457 20.4191i −0.244720 0.753170i
\(736\) −5.89161 18.1325i −0.217168 0.668373i
\(737\) −2.65411 + 8.16851i −0.0977654 + 0.300891i
\(738\) 1.13921 0.0419351
\(739\) 12.3749 0.455219 0.227610 0.973752i \(-0.426909\pi\)
0.227610 + 0.973752i \(0.426909\pi\)
\(740\) −18.1881 + 55.9773i −0.668609 + 2.05777i
\(741\) 8.07131 + 5.86415i 0.296507 + 0.215425i
\(742\) −1.52264 + 1.10626i −0.0558979 + 0.0406122i
\(743\) 16.2455 0.595990 0.297995 0.954567i \(-0.403682\pi\)
0.297995 + 0.954567i \(0.403682\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) −6.92012 + 5.02776i −0.253364 + 0.184080i
\(747\) 24.9459 + 18.1243i 0.912723 + 0.663132i
\(748\) 2.53720 7.80871i 0.0927694 0.285515i
\(749\) 1.77671 0.0649196
\(750\) −8.64058 −0.315509
\(751\) −3.33376 + 10.2603i −0.121651 + 0.374402i −0.993276 0.115771i \(-0.963066\pi\)
0.871625 + 0.490173i \(0.163066\pi\)
\(752\) −0.371861 1.14447i −0.0135604 0.0417346i
\(753\) 1.68750 + 5.19361i 0.0614961 + 0.189266i
\(754\) −7.94606 + 5.77315i −0.289378 + 0.210246i
\(755\) −17.6120 + 54.2042i −0.640966 + 1.97269i
\(756\) −4.40623 + 3.20131i −0.160253 + 0.116431i
\(757\) 33.2519 + 24.1590i 1.20856 + 0.878072i 0.995099 0.0988790i \(-0.0315257\pi\)
0.213463 + 0.976951i \(0.431526\pi\)
\(758\) 0.988411 + 3.04202i 0.0359007 + 0.110491i
\(759\) −9.86411 7.16670i −0.358045 0.260135i
\(760\) 27.6956 + 20.1221i 1.00463 + 0.729904i
\(761\) −6.07543 18.6983i −0.220234 0.677811i −0.998740 0.0501745i \(-0.984022\pi\)
0.778506 0.627637i \(-0.215978\pi\)
\(762\) 0.720832 + 0.523715i 0.0261130 + 0.0189722i
\(763\) −0.912086 + 0.662669i −0.0330197 + 0.0239902i
\(764\) 9.94205 30.5985i 0.359691 1.10701i
\(765\) −8.57842 + 6.23259i −0.310154 + 0.225340i
\(766\) −1.06987 3.29272i −0.0386560 0.118971i
\(767\) 0.833766 + 2.56607i 0.0301056 + 0.0926554i
\(768\) −2.76761 + 8.51782i −0.0998674 + 0.307360i
\(769\) 3.78834 0.136611 0.0683055 0.997664i \(-0.478241\pi\)
0.0683055 + 0.997664i \(0.478241\pi\)
\(770\) −8.03151 −0.289435
\(771\) −1.26262 + 3.88595i −0.0454722 + 0.139949i
\(772\) 6.98519 + 5.07504i 0.251402 + 0.182655i
\(773\) −20.5244 + 14.9119i −0.738212 + 0.536342i −0.892151 0.451738i \(-0.850804\pi\)
0.153939 + 0.988080i \(0.450804\pi\)
\(774\) 10.7855 0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) −5.80327 + 4.21632i −0.208191 + 0.151260i
\(778\) −10.3763 7.53883i −0.372009 0.270280i
\(779\) −0.887573 + 2.73167i −0.0318006 + 0.0978722i
\(780\) −14.8421 −0.531431
\(781\) −31.8388 −1.13928
\(782\) 0.915291 2.81698i 0.0327307 0.100735i
\(783\) 7.07939 + 21.7881i 0.252997 + 0.778644i
\(784\) −2.72390 8.38331i −0.0972822 0.299404i
\(785\) −45.4334 + 33.0093i −1.62159 + 1.17815i
\(786\) −1.20994 + 3.72380i −0.0431570 + 0.132824i
\(787\) −20.9912 + 15.2510i −0.748257 + 0.543640i −0.895286 0.445492i \(-0.853029\pi\)
0.147029 + 0.989132i \(0.453029\pi\)
\(788\) −19.6297 14.2618i −0.699281 0.508057i
\(789\) 0.699615 + 2.15319i 0.0249069 + 0.0766557i
\(790\) 29.1492 + 21.1781i 1.03708 + 0.753484i
\(791\) −3.94062 2.86303i −0.140112 0.101797i
\(792\) −6.75527 20.7906i −0.240038 0.738761i
\(793\) 5.45440 + 3.96285i 0.193691 + 0.140725i
\(794\) 18.1617 13.1952i 0.644534 0.468281i
\(795\) −3.69680 + 11.3776i −0.131112 + 0.403522i
\(796\) 5.25619 3.81885i 0.186301 0.135355i
\(797\) 5.71762 + 17.5970i 0.202529 + 0.623319i 0.999806 + 0.0197056i \(0.00627291\pi\)
−0.797277 + 0.603613i \(0.793727\pi\)
\(798\) 0.557688 + 1.71639i 0.0197419 + 0.0607595i
\(799\) 0.354243 1.09025i 0.0125322 0.0385702i
\(800\) −50.7902 −1.79570
\(801\) −9.69305 −0.342487
\(802\) −2.63993 + 8.12488i −0.0932192 + 0.286899i
\(803\) −18.8372 13.6860i −0.664750 0.482969i
\(804\) −2.32281 + 1.68762i −0.0819193 + 0.0595178i
\(805\) 9.29174 0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) −7.48564 + 5.43864i −0.263344 + 0.191331i
\(809\) 29.7296 + 21.5998i 1.04524 + 0.759410i 0.971301 0.237853i \(-0.0764437\pi\)
0.0739368 + 0.997263i \(0.476444\pi\)
\(810\) −1.84387 + 5.67484i −0.0647869 + 0.199394i
\(811\) −39.4301 −1.38458 −0.692289 0.721620i \(-0.743398\pi\)
−0.692289 + 0.721620i \(0.743398\pi\)
\(812\) 5.69788 0.199956
\(813\) −3.85497 + 11.8644i −0.135200 + 0.416102i
\(814\) −9.13092 28.1021i −0.320039 0.984977i
\(815\) −1.19709 3.68427i −0.0419323 0.129054i
\(816\) 1.31220 0.953370i 0.0459362 0.0333746i
\(817\) −8.40307 + 25.8620i −0.293986 + 0.904796i
\(818\) 1.92338 1.39742i 0.0672494 0.0488595i
\(819\) 3.92778 + 2.85370i 0.137248 + 0.0997163i
\(820\) −1.32042 4.06383i −0.0461111 0.141915i
\(821\) 1.19782 + 0.870264i 0.0418041 + 0.0303724i 0.608491 0.793561i \(-0.291775\pi\)
−0.566687 + 0.823933i \(0.691775\pi\)
\(822\) −6.41791 4.66289i −0.223850 0.162637i
\(823\) 12.0100 + 36.9630i 0.418643 + 1.28845i 0.908952 + 0.416901i \(0.136884\pi\)
−0.490309 + 0.871549i \(0.663116\pi\)
\(824\) 12.2794 + 8.92152i 0.427774 + 0.310796i
\(825\) −26.2776 + 19.0918i −0.914870 + 0.664692i
\(826\) −0.150823 + 0.464185i −0.00524780 + 0.0161511i
\(827\) 27.4550 19.9472i 0.954705 0.693634i 0.00279002 0.999996i \(-0.499112\pi\)
0.951915 + 0.306362i \(0.0991119\pi\)
\(828\) 3.38056 + 10.4043i 0.117483 + 0.361574i
\(829\) −5.10827 15.7216i −0.177417 0.546035i 0.822318 0.569028i \(-0.192680\pi\)
−0.999736 + 0.0229933i \(0.992680\pi\)
\(830\) −11.1443 + 34.2985i −0.386823 + 1.19052i
\(831\) −10.4415 −0.362210
\(832\) 3.65754 0.126802
\(833\) 2.59485 7.98612i 0.0899061 0.276703i
\(834\) −9.41993 6.84398i −0.326185 0.236988i
\(835\) −33.8619 + 24.6021i −1.17184 + 0.851392i
\(836\) 23.8409 0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) 43.7501 31.7863i 1.51042 1.09738i 0.544430 0.838806i \(-0.316746\pi\)
0.965990 0.258579i \(-0.0832542\pi\)
\(840\) −5.02144 3.64829i −0.173256 0.125878i
\(841\) −1.55522 + 4.78647i −0.0536282 + 0.165051i
\(842\) −14.9512 −0.515254
\(843\) −13.8964 −0.478617
\(844\) 5.42187 16.6868i 0.186628 0.574383i
\(845\) −5.19379 15.9848i −0.178672 0.549896i
\(846\) −0.407976 1.25562i −0.0140265 0.0431691i
\(847\) −3.66752 + 2.66461i −0.126017 + 0.0915570i
\(848\) −1.51777 + 4.67121i −0.0521204 + 0.160410i
\(849\) 16.5692 12.0382i 0.568653 0.413150i
\(850\) −6.38355 4.63792i −0.218954 0.159079i
\(851\) 10.5637 + 32.5116i 0.362118 + 1.11448i
\(852\) −8.61062 6.25598i −0.294995 0.214326i
\(853\) −32.0178 23.2623i −1.09627 0.796487i −0.115823 0.993270i \(-0.536950\pi\)
−0.980447 + 0.196783i \(0.936950\pi\)
\(854\) 0.376872 + 1.15989i 0.0128963 + 0.0396907i
\(855\) −24.9090 18.0975i −0.851871 0.618921i
\(856\) −4.57578 + 3.32450i −0.156397 + 0.113629i
\(857\) 3.93225 12.1022i 0.134323 0.413404i −0.861161 0.508333i \(-0.830262\pi\)
0.995484 + 0.0949280i \(0.0302621\pi\)
\(858\) 6.02807 4.37965i 0.205795 0.149519i
\(859\) 6.53705 + 20.1190i 0.223041 + 0.686451i 0.998485 + 0.0550332i \(0.0175265\pi\)
−0.775443 + 0.631417i \(0.782474\pi\)
\(860\) −12.5010 38.4742i −0.426281 1.31196i
\(861\) 0.160924 0.495274i 0.00548428 0.0168789i
\(862\) 8.01237 0.272902
\(863\) −9.33974 −0.317928 −0.158964 0.987284i \(-0.550815\pi\)
−0.158964 + 0.987284i \(0.550815\pi\)
\(864\) 8.39795 25.8462i 0.285704 0.879307i
\(865\) 61.9466 + 45.0068i 2.10625 + 1.53028i
\(866\) −13.7202 + 9.96829i −0.466230 + 0.338736i
\(867\) −13.7957 −0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) −9.13647 + 6.63804i −0.309755 + 0.225051i
\(871\) 4.91264 + 3.56924i 0.166458 + 0.120939i
\(872\) 1.10905 3.41331i 0.0375572 0.115589i
\(873\) 11.5352 0.390407
\(874\) 8.60055 0.290918
\(875\) 3.27600 10.0825i 0.110749 0.340851i
\(876\) −2.40525 7.40260i −0.0812659 0.250111i
\(877\) 6.93287 + 21.3372i 0.234107 + 0.720506i 0.997239 + 0.0742633i \(0.0236605\pi\)
−0.763132 + 0.646242i \(0.776339\pi\)
\(878\) 10.1484 7.37324i 0.342492 0.248835i
\(879\) 3.45807 10.6428i 0.116638 0.358974i
\(880\) −16.9566 + 12.3197i −0.571606 + 0.415296i
\(881\) −37.5639 27.2917i −1.26556 0.919482i −0.266542 0.963823i \(-0.585881\pi\)
−0.999016 + 0.0443414i \(0.985881\pi\)
\(882\) −2.98844 9.19748i −0.100626 0.309695i
\(883\) 29.5611 + 21.4774i 0.994811 + 0.722773i 0.960969 0.276654i \(-0.0892257\pi\)
0.0338419 + 0.999427i \(0.489226\pi\)
\(884\) −4.69625 3.41202i −0.157952 0.114759i
\(885\) 0.958674 + 2.95050i 0.0322255 + 0.0991799i
\(886\) 9.90692 + 7.19780i 0.332829 + 0.241815i
\(887\) −23.2067 + 16.8606i −0.779204 + 0.566125i −0.904740 0.425964i \(-0.859935\pi\)
0.125536 + 0.992089i \(0.459935\pi\)
\(888\) 7.05648 21.7176i 0.236800 0.728796i
\(889\) −0.884410 + 0.642561i −0.0296622 + 0.0215508i
\(890\) −3.50324 10.7819i −0.117429 0.361409i
\(891\) 2.96861 + 9.13643i 0.0994521 + 0.306082i
\(892\) 4.43986 13.6645i 0.148658 0.457521i
\(893\) 3.32865 0.111389
\(894\) 12.5282 0.419005
\(895\) 0.150844 0.464249i 0.00504215 0.0155181i
\(896\) −6.63810 4.82286i −0.221763 0.161120i
\(897\) −6.97394 + 5.06687i −0.232853 + 0.169178i
\(898\) −6.34235 −0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) −3.78531 + 2.75019i −0.126107 + 0.0916220i
\(902\) 1.73546 + 1.26088i 0.0577844 + 0.0419828i
\(903\) 1.52354 4.68898i 0.0507004 0.156040i
\(904\) 15.5059 0.515719
\(905\) −28.6665 −0.952906
\(906\) 2.95566 9.09660i 0.0981953 0.302214i
\(907\) −6.85697 21.1036i −0.227682 0.700733i −0.998008 0.0630831i \(-0.979907\pi\)
0.770326 0.637650i \(-0.220093\pi\)
\(908\) −10.2532 31.5560i −0.340263 1.04722i
\(909\) 6.73247 4.89143i 0.223302 0.162238i
\(910\) −1.75469 + 5.40037i −0.0581673 + 0.179021i
\(911\) −23.3259 + 16.9473i −0.772822 + 0.561488i −0.902816 0.430026i \(-0.858504\pi\)
0.129994 + 0.991515i \(0.458504\pi\)
\(912\) 3.81022 + 2.76829i 0.126169 + 0.0916671i
\(913\) 17.9422 + 55.2203i 0.593799 + 1.82752i
\(914\) 17.4037 + 12.6445i 0.575662 + 0.418243i
\(915\) 6.27153 + 4.55653i 0.207330 + 0.150634i
\(916\) 7.98838 + 24.5857i 0.263944 + 0.812335i
\(917\) −3.88649 2.82370i −0.128343 0.0932467i
\(918\) 3.41565 2.48162i 0.112733 0.0819056i
\(919\) 14.8521 45.7100i 0.489925 1.50783i −0.334794 0.942291i \(-0.608667\pi\)
0.824719 0.565543i \(-0.191333\pi\)
\(920\) −23.9302 + 17.3863i −0.788954 + 0.573209i
\(921\) 8.56649 + 26.3649i 0.282275 + 0.868755i
\(922\) −1.42082 4.37283i −0.0467921 0.144011i
\(923\) −6.95600 + 21.4084i −0.228959 + 0.704665i
\(924\) −4.32255 −0.142201
\(925\) 91.0668 2.99426
\(926\) 7.52513 23.1600i 0.247291 0.761084i
\(927\) −11.0439 8.02388i −0.362730 0.263539i
\(928\) −23.0013 + 16.7114i −0.755055 + 0.548580i
\(929\) −7.01617 −0.230193 −0.115097 0.993354i \(-0.536718\pi\)
−0.115097 + 0.993354i \(0.536718\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) −12.1321 + 8.81450i −0.397401 + 0.288729i
\(933\) −1.73857 1.26314i −0.0569182 0.0413535i
\(934\) −7.65829 + 23.5698i −0.250587 + 0.771227i
\(935\) −19.9664 −0.652972
\(936\) −15.4554 −0.505176
\(937\) −3.98034 + 12.2502i −0.130032 + 0.400197i −0.994784 0.102001i \(-0.967475\pi\)
0.864752 + 0.502199i \(0.167475\pi\)
\(938\) 0.339439 + 1.04469i 0.0110831 + 0.0341102i
\(939\) −2.99649 9.22223i −0.0977866 0.300956i
\(940\) −4.00621 + 2.91068i −0.130668 + 0.0949360i
\(941\) 15.4630 47.5901i 0.504079 1.55139i −0.298235 0.954492i \(-0.596398\pi\)
0.802314 0.596902i \(-0.203602\pi\)
\(942\) 7.62467 5.53965i 0.248425 0.180492i
\(943\) −2.00777 1.45873i −0.0653819 0.0475028i
\(944\) 0.393595 + 1.21136i 0.0128104 + 0.0394265i
\(945\) 10.7150 + 7.78494i 0.348560 + 0.253244i
\(946\) 16.4304 + 11.9374i 0.534197 + 0.388117i
\(947\) −16.0281 49.3293i −0.520842 1.60299i −0.772394 0.635144i \(-0.780941\pi\)
0.251551 0.967844i \(-0.419059\pi\)
\(948\) 15.6881 + 11.3980i 0.509525 + 0.370191i
\(949\) −13.3179 + 9.67603i −0.432318 + 0.314097i
\(950\) 7.08006 21.7902i 0.229707 0.706967i
\(951\) −6.38534 + 4.63922i −0.207059 + 0.150437i
\(952\) −0.750157 2.30875i −0.0243127 0.0748269i
\(953\) −5.78950 17.8183i −0.187540 0.577190i 0.812443 0.583041i \(-0.198137\pi\)
−0.999983 + 0.00585146i \(0.998137\pi\)
\(954\) −1.66517 + 5.12487i −0.0539119 + 0.165924i
\(955\) −78.2385 −2.53174
\(956\) 0.900482 0.0291237
\(957\) −5.61857 + 17.2922i −0.181623 + 0.558977i
\(958\) 18.5441 + 13.4731i 0.599133 + 0.435296i
\(959\) 7.87432 5.72103i 0.254275 0.184742i
\(960\) 4.20549 0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) 4.11539 2.99001i 0.132617 0.0963516i
\(964\) −18.9583 13.7740i −0.610606 0.443632i
\(965\) 6.48829 19.9689i 0.208865 0.642821i
\(966\) −1.55935 −0.0501712
\(967\) 47.7846 1.53665 0.768324 0.640061i \(-0.221091\pi\)
0.768324 + 0.640061i \(0.221091\pi\)
\(968\) 4.45952 13.7250i 0.143334 0.441137i
\(969\) 1.38642 + 4.26696i 0.0445382 + 0.137075i
\(970\) 4.16903 + 12.8309i 0.133859 + 0.411977i
\(971\) 25.1610 18.2805i 0.807454 0.586649i −0.105638 0.994405i \(-0.533688\pi\)
0.913091 + 0.407755i \(0.133688\pi\)
\(972\) −7.60637 + 23.4100i −0.243974 + 0.750876i
\(973\) 11.5576 8.39708i 0.370519 0.269198i
\(974\) −15.9062 11.5565i −0.509667 0.370295i
\(975\) 7.09629 + 21.8401i 0.227263 + 0.699444i
\(976\) 2.57485 + 1.87074i 0.0824191 + 0.0598810i
\(977\) 17.8624 + 12.9778i 0.571469 + 0.415197i 0.835639 0.549280i \(-0.185098\pi\)
−0.264170 + 0.964476i \(0.585098\pi\)
\(978\) 0.200897 + 0.618298i 0.00642398 + 0.0197710i
\(979\) −14.7662 10.7283i −0.471929 0.342877i
\(980\) −29.3457 + 21.3209i −0.937413 + 0.681071i
\(981\) −0.997464 + 3.06988i −0.0318466 + 0.0980136i
\(982\) 15.5984 11.3329i 0.497766 0.361648i
\(983\) 11.6119 + 35.7377i 0.370362 + 1.13986i 0.946555 + 0.322543i \(0.104538\pi\)
−0.576193 + 0.817314i \(0.695462\pi\)
\(984\) 0.512285 + 1.57665i 0.0163311 + 0.0502618i
\(985\) −18.2334 + 56.1165i −0.580963 + 1.78802i
\(986\) −4.41693 −0.140664
\(987\) −0.603511 −0.0192100
\(988\) 5.20865 16.0306i 0.165709 0.510001i
\(989\) −19.0085 13.8105i −0.604434 0.439147i
\(990\) −18.6033 + 13.5161i −0.591253 + 0.429571i
\(991\) 6.77397 0.215182 0.107591 0.994195i \(-0.465686\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) −3.29426 + 2.39342i −0.104487 + 0.0759146i
\(995\) −12.7820 9.28666i −0.405216 0.294407i
\(996\) −5.99783 + 18.4594i −0.190049 + 0.584909i
\(997\) −29.5733 −0.936595 −0.468298 0.883571i \(-0.655132\pi\)
−0.468298 + 0.883571i \(0.655132\pi\)
\(998\) −28.4795 −0.901502
\(999\) −15.0575 + 46.3423i −0.476399 + 1.46621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.n.388.4 16
31.2 even 5 inner 961.2.d.n.374.4 16
31.3 odd 30 961.2.g.t.547.1 16
31.4 even 5 961.2.d.q.628.1 16
31.5 even 3 961.2.g.j.338.2 16
31.6 odd 6 31.2.g.a.18.2 16
31.7 even 15 961.2.g.m.846.1 16
31.8 even 5 961.2.a.j.1.3 8
31.9 even 15 961.2.c.i.521.3 16
31.10 even 15 961.2.g.l.732.2 16
31.11 odd 30 961.2.g.t.448.1 16
31.12 odd 30 961.2.g.k.816.2 16
31.13 odd 30 961.2.g.s.844.1 16
31.14 even 15 961.2.c.i.439.3 16
31.15 odd 10 961.2.d.p.531.1 16
31.16 even 5 961.2.d.q.531.1 16
31.17 odd 30 961.2.c.j.439.3 16
31.18 even 15 961.2.g.m.844.1 16
31.19 even 15 961.2.g.j.816.2 16
31.20 even 15 961.2.g.n.448.1 16
31.21 odd 30 31.2.g.a.19.2 yes 16
31.22 odd 30 961.2.c.j.521.3 16
31.23 odd 10 961.2.a.i.1.3 8
31.24 odd 30 961.2.g.s.846.1 16
31.25 even 3 961.2.g.l.235.2 16
31.26 odd 6 961.2.g.k.338.2 16
31.27 odd 10 961.2.d.p.628.1 16
31.28 even 15 961.2.g.n.547.1 16
31.29 odd 10 961.2.d.o.374.4 16
31.30 odd 2 961.2.d.o.388.4 16
93.8 odd 10 8649.2.a.be.1.6 8
93.23 even 10 8649.2.a.bf.1.6 8
93.68 even 6 279.2.y.c.235.1 16
93.83 even 30 279.2.y.c.19.1 16
124.83 even 30 496.2.bg.c.81.1 16
124.99 even 6 496.2.bg.c.49.1 16
155.37 even 12 775.2.ck.a.49.3 32
155.52 even 60 775.2.ck.a.174.2 32
155.68 even 12 775.2.ck.a.49.2 32
155.83 even 60 775.2.ck.a.174.3 32
155.99 odd 6 775.2.bl.a.576.1 16
155.114 odd 30 775.2.bl.a.701.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.6 odd 6
31.2.g.a.19.2 yes 16 31.21 odd 30
279.2.y.c.19.1 16 93.83 even 30
279.2.y.c.235.1 16 93.68 even 6
496.2.bg.c.49.1 16 124.99 even 6
496.2.bg.c.81.1 16 124.83 even 30
775.2.bl.a.576.1 16 155.99 odd 6
775.2.bl.a.701.1 16 155.114 odd 30
775.2.ck.a.49.2 32 155.68 even 12
775.2.ck.a.49.3 32 155.37 even 12
775.2.ck.a.174.2 32 155.52 even 60
775.2.ck.a.174.3 32 155.83 even 60
961.2.a.i.1.3 8 31.23 odd 10
961.2.a.j.1.3 8 31.8 even 5
961.2.c.i.439.3 16 31.14 even 15
961.2.c.i.521.3 16 31.9 even 15
961.2.c.j.439.3 16 31.17 odd 30
961.2.c.j.521.3 16 31.22 odd 30
961.2.d.n.374.4 16 31.2 even 5 inner
961.2.d.n.388.4 16 1.1 even 1 trivial
961.2.d.o.374.4 16 31.29 odd 10
961.2.d.o.388.4 16 31.30 odd 2
961.2.d.p.531.1 16 31.15 odd 10
961.2.d.p.628.1 16 31.27 odd 10
961.2.d.q.531.1 16 31.16 even 5
961.2.d.q.628.1 16 31.4 even 5
961.2.g.j.338.2 16 31.5 even 3
961.2.g.j.816.2 16 31.19 even 15
961.2.g.k.338.2 16 31.26 odd 6
961.2.g.k.816.2 16 31.12 odd 30
961.2.g.l.235.2 16 31.25 even 3
961.2.g.l.732.2 16 31.10 even 15
961.2.g.m.844.1 16 31.18 even 15
961.2.g.m.846.1 16 31.7 even 15
961.2.g.n.448.1 16 31.20 even 15
961.2.g.n.547.1 16 31.28 even 15
961.2.g.s.844.1 16 31.13 odd 30
961.2.g.s.846.1 16 31.24 odd 30
961.2.g.t.448.1 16 31.11 odd 30
961.2.g.t.547.1 16 31.3 odd 30
8649.2.a.be.1.6 8 93.8 odd 10
8649.2.a.bf.1.6 8 93.23 even 10