Properties

Label 961.2.g.n.448.1
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,6,-3,-11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.1
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.n.547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213065 + 0.655747i) q^{2} +(0.603824 - 0.670615i) q^{3} +(1.23343 + 0.896137i) q^{4} +(-1.85376 + 3.21080i) q^{5} +(0.311099 + 0.538840i) q^{6} +(-0.0797964 + 0.759212i) q^{7} +(-1.96606 + 1.42843i) q^{8} +(0.228465 + 2.17370i) q^{9} +(-1.71050 - 1.89971i) q^{10} +(3.75981 - 1.67397i) q^{11} +(1.34574 - 0.286045i) q^{12} +(-2.84617 - 0.604971i) q^{13} +(-0.480849 - 0.214088i) q^{14} +(1.03387 + 3.18192i) q^{15} +(0.424467 + 1.30637i) q^{16} +(-1.19540 - 0.532225i) q^{17} +(-1.47407 - 0.313324i) q^{18} +(3.71651 - 0.789969i) q^{19} +(-5.16380 + 2.29907i) q^{20} +(0.460956 + 0.511943i) q^{21} +(0.296620 + 2.82215i) q^{22} +(-2.65597 + 1.92967i) q^{23} +(-0.229231 + 2.18099i) q^{24} +(-4.37284 - 7.57398i) q^{25} +(1.00313 - 1.73747i) q^{26} +(3.78584 + 2.75057i) q^{27} +(-0.778781 + 0.864924i) q^{28} +(-1.51283 + 4.65602i) q^{29} -2.30681 q^{30} -5.80746 q^{32} +(1.14767 - 3.53217i) q^{33} +(0.603702 - 0.670478i) q^{34} +(-2.28976 - 1.66361i) q^{35} +(-1.66614 + 2.88584i) q^{36} +(-5.20639 - 9.01773i) q^{37} +(-0.273839 + 2.60541i) q^{38} +(-2.12429 + 1.54338i) q^{39} +(-0.941797 - 8.96060i) q^{40} +(0.505826 + 0.561777i) q^{41} +(-0.433918 + 0.193193i) q^{42} +(-7.00049 + 1.48800i) q^{43} +(6.13756 + 1.30458i) q^{44} +(-7.40284 - 3.29596i) q^{45} +(-0.699483 - 2.15279i) q^{46} +(-0.270719 - 0.833189i) q^{47} +(1.13238 + 0.504167i) q^{48} +(6.27700 + 1.33422i) q^{49} +(5.89831 - 1.25372i) q^{50} +(-1.07873 + 0.480280i) q^{51} +(-2.96840 - 3.29674i) q^{52} +(0.373763 + 3.55612i) q^{53} +(-2.61031 + 1.89650i) q^{54} +(-1.59497 + 15.1751i) q^{55} +(-0.927595 - 1.60664i) q^{56} +(1.71435 - 2.96935i) q^{57} +(-2.73084 - 1.98407i) q^{58} +(0.620465 - 0.689096i) q^{59} +(-1.57623 + 4.85115i) q^{60} -2.31704 q^{61} -1.66853 q^{63} +(0.388433 - 1.19547i) q^{64} +(7.21855 - 8.01701i) q^{65} +(2.07168 + 1.50516i) q^{66} +(1.04345 - 1.80731i) q^{67} +(-0.997488 - 1.72770i) q^{68} +(-0.309670 + 2.94632i) q^{69} +(1.57877 - 1.14704i) q^{70} +(0.808641 + 7.69371i) q^{71} +(-3.55415 - 3.94728i) q^{72} +(5.16836 - 2.30110i) q^{73} +(7.02265 - 1.49271i) q^{74} +(-7.71965 - 1.64086i) q^{75} +(5.29197 + 2.35614i) q^{76} +(0.970882 + 2.98807i) q^{77} +(-0.559458 - 1.72183i) q^{78} +(12.8762 + 5.73284i) q^{79} +(-4.98137 - 1.05882i) q^{80} +(-2.28318 + 0.485304i) q^{81} +(-0.476157 + 0.211999i) q^{82} +(9.43990 + 10.4841i) q^{83} +(0.109784 + 1.04452i) q^{84} +(3.92484 - 2.85157i) q^{85} +(0.515809 - 4.90759i) q^{86} +(2.20891 + 3.82595i) q^{87} +(-5.00086 + 8.66175i) q^{88} +(-3.58784 - 2.60672i) q^{89} +(3.73860 - 4.15213i) q^{90} +(0.686415 - 2.11257i) q^{91} -5.00520 q^{92} +0.604042 q^{94} +(-4.35308 + 13.3974i) q^{95} +(-3.50669 + 3.89457i) q^{96} +(4.26970 + 3.10212i) q^{97} +(-2.21232 + 3.83184i) q^{98} +(4.49770 + 7.79025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 6 q^{4} - 3 q^{5} - 11 q^{6} + 12 q^{7} - 8 q^{8} + 5 q^{9} - 12 q^{10} + 2 q^{11} - 25 q^{12} - 18 q^{13} + 24 q^{14} - 4 q^{15} - 2 q^{16} + q^{17} - 8 q^{18} + 11 q^{19} - 18 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213065 + 0.655747i −0.150660 + 0.463683i −0.997695 0.0678533i \(-0.978385\pi\)
0.847036 + 0.531536i \(0.178385\pi\)
\(3\) 0.603824 0.670615i 0.348618 0.387179i −0.543178 0.839618i \(-0.682779\pi\)
0.891796 + 0.452438i \(0.149446\pi\)
\(4\) 1.23343 + 0.896137i 0.616714 + 0.448069i
\(5\) −1.85376 + 3.21080i −0.829026 + 1.43591i 0.0697774 + 0.997563i \(0.477771\pi\)
−0.898803 + 0.438352i \(0.855562\pi\)
\(6\) 0.311099 + 0.538840i 0.127006 + 0.219981i
\(7\) −0.0797964 + 0.759212i −0.0301602 + 0.286955i 0.969038 + 0.246913i \(0.0794160\pi\)
−0.999198 + 0.0400426i \(0.987251\pi\)
\(8\) −1.96606 + 1.42843i −0.695108 + 0.505025i
\(9\) 0.228465 + 2.17370i 0.0761550 + 0.724566i
\(10\) −1.71050 1.89971i −0.540908 0.600740i
\(11\) 3.75981 1.67397i 1.13362 0.504722i 0.247832 0.968803i \(-0.420282\pi\)
0.885793 + 0.464081i \(0.153615\pi\)
\(12\) 1.34574 0.286045i 0.388480 0.0825741i
\(13\) −2.84617 0.604971i −0.789384 0.167789i −0.204458 0.978875i \(-0.565543\pi\)
−0.584926 + 0.811086i \(0.698877\pi\)
\(14\) −0.480849 0.214088i −0.128512 0.0572173i
\(15\) 1.03387 + 3.18192i 0.266943 + 0.821568i
\(16\) 0.424467 + 1.30637i 0.106117 + 0.326594i
\(17\) −1.19540 0.532225i −0.289926 0.129083i 0.256620 0.966512i \(-0.417391\pi\)
−0.546546 + 0.837429i \(0.684058\pi\)
\(18\) −1.47407 0.313324i −0.347443 0.0738512i
\(19\) 3.71651 0.789969i 0.852626 0.181231i 0.239187 0.970973i \(-0.423119\pi\)
0.613439 + 0.789742i \(0.289786\pi\)
\(20\) −5.16380 + 2.29907i −1.15466 + 0.514088i
\(21\) 0.460956 + 0.511943i 0.100589 + 0.111715i
\(22\) 0.296620 + 2.82215i 0.0632395 + 0.601684i
\(23\) −2.65597 + 1.92967i −0.553808 + 0.402365i −0.829187 0.558971i \(-0.811196\pi\)
0.275380 + 0.961336i \(0.411196\pi\)
\(24\) −0.229231 + 2.18099i −0.0467916 + 0.445192i
\(25\) −4.37284 7.57398i −0.874568 1.51480i
\(26\) 1.00313 1.73747i 0.196729 0.340745i
\(27\) 3.78584 + 2.75057i 0.728585 + 0.529348i
\(28\) −0.778781 + 0.864924i −0.147176 + 0.163455i
\(29\) −1.51283 + 4.65602i −0.280926 + 0.864602i 0.706664 + 0.707549i \(0.250199\pi\)
−0.987590 + 0.157052i \(0.949801\pi\)
\(30\) −2.30681 −0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) 1.14767 3.53217i 0.199784 0.614872i
\(34\) 0.603702 0.670478i 0.103534 0.114986i
\(35\) −2.28976 1.66361i −0.387040 0.281201i
\(36\) −1.66614 + 2.88584i −0.277690 + 0.480973i
\(37\) −5.20639 9.01773i −0.855925 1.48251i −0.875784 0.482704i \(-0.839655\pi\)
0.0198583 0.999803i \(-0.493679\pi\)
\(38\) −0.273839 + 2.60541i −0.0444226 + 0.422653i
\(39\) −2.12429 + 1.54338i −0.340158 + 0.247139i
\(40\) −0.941797 8.96060i −0.148911 1.41679i
\(41\) 0.505826 + 0.561777i 0.0789968 + 0.0877349i 0.781347 0.624096i \(-0.214533\pi\)
−0.702351 + 0.711831i \(0.747866\pi\)
\(42\) −0.433918 + 0.193193i −0.0669551 + 0.0298103i
\(43\) −7.00049 + 1.48800i −1.06757 + 0.226918i −0.708008 0.706205i \(-0.750406\pi\)
−0.359558 + 0.933123i \(0.617072\pi\)
\(44\) 6.13756 + 1.30458i 0.925272 + 0.196673i
\(45\) −7.40284 3.29596i −1.10355 0.491332i
\(46\) −0.699483 2.15279i −0.103133 0.317411i
\(47\) −0.270719 0.833189i −0.0394885 0.121533i 0.929369 0.369152i \(-0.120352\pi\)
−0.968857 + 0.247619i \(0.920352\pi\)
\(48\) 1.13238 + 0.504167i 0.163445 + 0.0727702i
\(49\) 6.27700 + 1.33422i 0.896714 + 0.190602i
\(50\) 5.89831 1.25372i 0.834147 0.177303i
\(51\) −1.07873 + 0.480280i −0.151052 + 0.0672527i
\(52\) −2.96840 3.29674i −0.411643 0.457176i
\(53\) 0.373763 + 3.55612i 0.0513403 + 0.488470i 0.989736 + 0.142908i \(0.0456452\pi\)
−0.938396 + 0.345562i \(0.887688\pi\)
\(54\) −2.61031 + 1.89650i −0.355218 + 0.258081i
\(55\) −1.59497 + 15.1751i −0.215066 + 2.04622i
\(56\) −0.927595 1.60664i −0.123955 0.214696i
\(57\) 1.71435 2.96935i 0.227072 0.393300i
\(58\) −2.73084 1.98407i −0.358577 0.260521i
\(59\) 0.620465 0.689096i 0.0807776 0.0897126i −0.701401 0.712767i \(-0.747442\pi\)
0.782179 + 0.623054i \(0.214108\pi\)
\(60\) −1.57623 + 4.85115i −0.203491 + 0.626281i
\(61\) −2.31704 −0.296666 −0.148333 0.988937i \(-0.547391\pi\)
−0.148333 + 0.988937i \(0.547391\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) 0.388433 1.19547i 0.0485541 0.149434i
\(65\) 7.21855 8.01701i 0.895351 0.994388i
\(66\) 2.07168 + 1.50516i 0.255006 + 0.185273i
\(67\) 1.04345 1.80731i 0.127478 0.220798i −0.795221 0.606320i \(-0.792645\pi\)
0.922699 + 0.385522i \(0.125979\pi\)
\(68\) −0.997488 1.72770i −0.120963 0.209514i
\(69\) −0.309670 + 2.94632i −0.0372799 + 0.354695i
\(70\) 1.57877 1.14704i 0.188699 0.137098i
\(71\) 0.808641 + 7.69371i 0.0959680 + 0.913075i 0.931527 + 0.363673i \(0.118478\pi\)
−0.835559 + 0.549401i \(0.814856\pi\)
\(72\) −3.55415 3.94728i −0.418860 0.465192i
\(73\) 5.16836 2.30110i 0.604911 0.269324i −0.0813424 0.996686i \(-0.525921\pi\)
0.686254 + 0.727362i \(0.259254\pi\)
\(74\) 7.02265 1.49271i 0.816366 0.173524i
\(75\) −7.71965 1.64086i −0.891388 0.189470i
\(76\) 5.29197 + 2.35614i 0.607030 + 0.270267i
\(77\) 0.970882 + 2.98807i 0.110642 + 0.340522i
\(78\) −0.559458 1.72183i −0.0633461 0.194959i
\(79\) 12.8762 + 5.73284i 1.44868 + 0.644995i 0.972192 0.234185i \(-0.0752423\pi\)
0.476490 + 0.879180i \(0.341909\pi\)
\(80\) −4.98137 1.05882i −0.556934 0.118380i
\(81\) −2.28318 + 0.485304i −0.253686 + 0.0539227i
\(82\) −0.476157 + 0.211999i −0.0525828 + 0.0234114i
\(83\) 9.43990 + 10.4841i 1.03616 + 1.15078i 0.988393 + 0.151918i \(0.0485451\pi\)
0.0477709 + 0.998858i \(0.484788\pi\)
\(84\) 0.109784 + 1.04452i 0.0119784 + 0.113967i
\(85\) 3.92484 2.85157i 0.425709 0.309296i
\(86\) 0.515809 4.90759i 0.0556211 0.529199i
\(87\) 2.20891 + 3.82595i 0.236820 + 0.410184i
\(88\) −5.00086 + 8.66175i −0.533094 + 0.923346i
\(89\) −3.58784 2.60672i −0.380310 0.276311i 0.381163 0.924508i \(-0.375524\pi\)
−0.761473 + 0.648196i \(0.775524\pi\)
\(90\) 3.73860 4.15213i 0.394083 0.437673i
\(91\) 0.686415 2.11257i 0.0719559 0.221457i
\(92\) −5.00520 −0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) −4.35308 + 13.3974i −0.446617 + 1.37454i
\(96\) −3.50669 + 3.89457i −0.357900 + 0.397488i
\(97\) 4.26970 + 3.10212i 0.433522 + 0.314972i 0.783056 0.621951i \(-0.213660\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(98\) −2.21232 + 3.83184i −0.223478 + 0.387075i
\(99\) 4.49770 + 7.79025i 0.452036 + 0.782949i
\(100\) 1.39375 13.2606i 0.139375 1.32606i
\(101\) −3.08028 + 2.23795i −0.306499 + 0.222684i −0.730393 0.683027i \(-0.760663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(102\) −0.0851031 0.809702i −0.00842646 0.0801725i
\(103\) −4.17918 4.64146i −0.411787 0.457336i 0.501196 0.865334i \(-0.332894\pi\)
−0.912983 + 0.407998i \(0.866227\pi\)
\(104\) 6.45990 2.87613i 0.633445 0.282028i
\(105\) −2.49825 + 0.531019i −0.243804 + 0.0518222i
\(106\) −2.41155 0.512590i −0.234230 0.0497872i
\(107\) 2.12617 + 0.946633i 0.205545 + 0.0915144i 0.506927 0.861989i \(-0.330781\pi\)
−0.301382 + 0.953503i \(0.597448\pi\)
\(108\) 2.20467 + 6.78526i 0.212144 + 0.652912i
\(109\) 0.456365 + 1.40455i 0.0437118 + 0.134531i 0.970531 0.240978i \(-0.0774680\pi\)
−0.926819 + 0.375509i \(0.877468\pi\)
\(110\) −9.61122 4.27919i −0.916394 0.408005i
\(111\) −9.19117 1.95364i −0.872387 0.185432i
\(112\) −1.02569 + 0.218016i −0.0969183 + 0.0206006i
\(113\) 5.82892 2.59520i 0.548339 0.244136i −0.113818 0.993502i \(-0.536308\pi\)
0.662157 + 0.749366i \(0.269641\pi\)
\(114\) 1.58187 + 1.75685i 0.148156 + 0.164544i
\(115\) −1.27228 12.1049i −0.118641 1.12879i
\(116\) −6.03840 + 4.38716i −0.560652 + 0.407337i
\(117\) 0.664776 6.32492i 0.0614586 0.584739i
\(118\) 0.319673 + 0.553690i 0.0294283 + 0.0509713i
\(119\) 0.499460 0.865089i 0.0457854 0.0793026i
\(120\) −6.57779 4.77904i −0.600467 0.436265i
\(121\) 3.97353 4.41305i 0.361230 0.401187i
\(122\) 0.493680 1.51939i 0.0446957 0.137559i
\(123\) 0.682166 0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 0.355505 1.09413i 0.0316709 0.0974730i
\(127\) 0.958204 1.06419i 0.0850269 0.0944319i −0.699130 0.714995i \(-0.746429\pi\)
0.784157 + 0.620563i \(0.213096\pi\)
\(128\) −8.69550 6.31765i −0.768581 0.558407i
\(129\) −3.22919 + 5.59312i −0.284314 + 0.492447i
\(130\) 3.71911 + 6.44168i 0.326187 + 0.564973i
\(131\) −0.657787 + 6.25843i −0.0574711 + 0.546801i 0.927468 + 0.373902i \(0.121980\pi\)
−0.984939 + 0.172900i \(0.944686\pi\)
\(132\) 4.58088 3.32820i 0.398714 0.289683i
\(133\) 0.303190 + 2.88466i 0.0262899 + 0.250132i
\(134\) 0.962812 + 1.06931i 0.0831743 + 0.0923744i
\(135\) −15.8496 + 7.05669i −1.36411 + 0.607343i
\(136\) 3.11047 0.661150i 0.266720 0.0566932i
\(137\) 12.4713 + 2.65085i 1.06549 + 0.226478i 0.707115 0.707098i \(-0.249996\pi\)
0.358379 + 0.933576i \(0.383330\pi\)
\(138\) −1.86606 0.830822i −0.158849 0.0707242i
\(139\) −5.78287 17.7978i −0.490496 1.50959i −0.823860 0.566794i \(-0.808184\pi\)
0.333363 0.942798i \(-0.391816\pi\)
\(140\) −1.33343 4.10387i −0.112695 0.346841i
\(141\) −0.722216 0.321551i −0.0608215 0.0270795i
\(142\) −5.21741 1.10900i −0.437836 0.0930648i
\(143\) −11.7137 + 2.48983i −0.979553 + 0.208210i
\(144\) −2.74269 + 1.22112i −0.228558 + 0.101760i
\(145\) −12.1451 13.4885i −1.00860 1.12016i
\(146\) 0.407744 + 3.87942i 0.0337451 + 0.321063i
\(147\) 4.68495 3.40381i 0.386408 0.280742i
\(148\) 1.65942 15.7884i 0.136404 1.29780i
\(149\) 10.0677 + 17.4377i 0.824774 + 1.42855i 0.902092 + 0.431545i \(0.142031\pi\)
−0.0773172 + 0.997007i \(0.524635\pi\)
\(150\) 2.72078 4.71252i 0.222150 0.384776i
\(151\) 12.4366 + 9.03571i 1.01207 + 0.735315i 0.964643 0.263559i \(-0.0848964\pi\)
0.0474314 + 0.998874i \(0.484896\pi\)
\(152\) −6.17848 + 6.86190i −0.501141 + 0.556573i
\(153\) 0.883790 2.72003i 0.0714502 0.219901i
\(154\) −2.16628 −0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) 4.68076 14.4059i 0.373566 1.14972i −0.570876 0.821037i \(-0.693396\pi\)
0.944441 0.328680i \(-0.106604\pi\)
\(158\) −6.50275 + 7.22203i −0.517331 + 0.574554i
\(159\) 2.61047 + 1.89662i 0.207024 + 0.150412i
\(160\) 10.7656 18.6466i 0.851098 1.47414i
\(161\) −1.25310 2.17042i −0.0987577 0.171053i
\(162\) 0.168228 1.60059i 0.0132173 0.125754i
\(163\) 0.845317 0.614159i 0.0662103 0.0481046i −0.554188 0.832392i \(-0.686971\pi\)
0.620398 + 0.784287i \(0.286971\pi\)
\(164\) 0.120471 + 1.14620i 0.00940717 + 0.0895033i
\(165\) 9.21359 + 10.2327i 0.717277 + 0.796617i
\(166\) −8.88621 + 3.95639i −0.689704 + 0.307076i
\(167\) −11.0427 + 2.34720i −0.854510 + 0.181632i −0.614284 0.789085i \(-0.710555\pi\)
−0.240226 + 0.970717i \(0.577222\pi\)
\(168\) −1.63754 0.348070i −0.126339 0.0268542i
\(169\) −4.14142 1.84388i −0.318571 0.141837i
\(170\) 1.03366 + 3.18127i 0.0792779 + 0.243992i
\(171\) 2.56625 + 7.89810i 0.196246 + 0.603983i
\(172\) −9.96805 4.43806i −0.760057 0.338399i
\(173\) 20.2014 + 4.29393i 1.53588 + 0.326462i 0.896716 0.442607i \(-0.145946\pi\)
0.639166 + 0.769069i \(0.279280\pi\)
\(174\) −2.97949 + 0.633311i −0.225875 + 0.0480112i
\(175\) 6.09919 2.71554i 0.461056 0.205275i
\(176\) 3.78275 + 4.20117i 0.285136 + 0.316675i
\(177\) −0.0874662 0.832185i −0.00657436 0.0625509i
\(178\) 2.47379 1.79731i 0.185418 0.134714i
\(179\) −0.0137625 + 0.130941i −0.00102866 + 0.00978700i −0.995024 0.0996337i \(-0.968233\pi\)
0.993996 + 0.109421i \(0.0348996\pi\)
\(180\) −6.17723 10.6993i −0.460424 0.797477i
\(181\) 3.86599 6.69610i 0.287357 0.497717i −0.685821 0.727770i \(-0.740557\pi\)
0.973178 + 0.230053i \(0.0738901\pi\)
\(182\) 1.23906 + 0.900229i 0.0918451 + 0.0667294i
\(183\) −1.39908 + 1.55384i −0.103423 + 0.114863i
\(184\) 2.46540 7.58772i 0.181752 0.559374i
\(185\) 38.6056 2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) 0.412739 1.27028i 0.0301021 0.0926447i
\(189\) −2.39036 + 2.65477i −0.173873 + 0.193106i
\(190\) −7.85781 5.70903i −0.570066 0.414177i
\(191\) 10.5513 18.2755i 0.763468 1.32237i −0.177585 0.984106i \(-0.556828\pi\)
0.941053 0.338260i \(-0.109838\pi\)
\(192\) −0.567157 0.982344i −0.0409310 0.0708946i
\(193\) −0.591969 + 5.63221i −0.0426109 + 0.405415i 0.952339 + 0.305042i \(0.0986705\pi\)
−0.994950 + 0.100374i \(0.967996\pi\)
\(194\) −2.94393 + 2.13889i −0.211362 + 0.153563i
\(195\) −1.01759 9.68173i −0.0728712 0.693323i
\(196\) 6.54658 + 7.27071i 0.467613 + 0.519337i
\(197\) −14.5389 + 6.47313i −1.03585 + 0.461192i −0.852979 0.521945i \(-0.825207\pi\)
−0.182874 + 0.983136i \(0.558540\pi\)
\(198\) −6.06673 + 1.28952i −0.431144 + 0.0916424i
\(199\) −4.16833 0.886006i −0.295485 0.0628073i 0.0577838 0.998329i \(-0.481597\pi\)
−0.353269 + 0.935522i \(0.614930\pi\)
\(200\) 19.4162 + 8.64463i 1.37293 + 0.611267i
\(201\) −0.581946 1.79105i −0.0410473 0.126331i
\(202\) −0.811230 2.49671i −0.0570779 0.175668i
\(203\) −3.41419 1.52009i −0.239629 0.106690i
\(204\) −1.76093 0.374297i −0.123290 0.0262060i
\(205\) −2.74144 + 0.582710i −0.191470 + 0.0406982i
\(206\) 3.93406 1.75155i 0.274099 0.122037i
\(207\) −4.80133 5.33241i −0.333715 0.370628i
\(208\) −0.417784 3.97495i −0.0289681 0.275613i
\(209\) 12.6510 9.19148i 0.875087 0.635788i
\(210\) 0.184075 1.75136i 0.0127024 0.120855i
\(211\) 5.75414 + 9.96646i 0.396131 + 0.686120i 0.993245 0.116037i \(-0.0370191\pi\)
−0.597113 + 0.802157i \(0.703686\pi\)
\(212\) −2.72576 + 4.72115i −0.187206 + 0.324250i
\(213\) 5.64779 + 4.10336i 0.386980 + 0.281157i
\(214\) −1.07376 + 1.19254i −0.0734010 + 0.0815201i
\(215\) 8.19954 25.2356i 0.559204 1.72105i
\(216\) −11.3722 −0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) 1.57763 4.85544i 0.106606 0.328100i
\(220\) −15.5663 + 17.2881i −1.04948 + 1.16557i
\(221\) 3.08032 + 2.23798i 0.207204 + 0.150543i
\(222\) 3.23941 5.61082i 0.217415 0.376574i
\(223\) 4.71196 + 8.16135i 0.315536 + 0.546524i 0.979551 0.201195i \(-0.0644824\pi\)
−0.664015 + 0.747719i \(0.731149\pi\)
\(224\) 0.463414 4.40909i 0.0309632 0.294595i
\(225\) 15.4645 11.2356i 1.03097 0.749042i
\(226\) 0.459856 + 4.37524i 0.0305892 + 0.291037i
\(227\) 14.5623 + 16.1731i 0.966534 + 1.07344i 0.997264 + 0.0739173i \(0.0235501\pi\)
−0.0307302 + 0.999528i \(0.509783\pi\)
\(228\) 4.77548 2.12618i 0.316264 0.140810i
\(229\) 16.5854 3.52533i 1.09599 0.232960i 0.375776 0.926710i \(-0.377376\pi\)
0.720216 + 0.693750i \(0.244043\pi\)
\(230\) 8.20885 + 1.74485i 0.541276 + 0.115052i
\(231\) 2.59008 + 1.15318i 0.170415 + 0.0758737i
\(232\) −3.67647 11.3150i −0.241372 0.742866i
\(233\) −3.03952 9.35469i −0.199126 0.612846i −0.999904 0.0138848i \(-0.995580\pi\)
0.800778 0.598962i \(-0.204420\pi\)
\(234\) 4.00591 + 1.78354i 0.261874 + 0.116594i
\(235\) 3.17705 + 0.675304i 0.207248 + 0.0440520i
\(236\) 1.38282 0.293928i 0.0900141 0.0191331i
\(237\) 11.6195 5.17332i 0.754765 0.336043i
\(238\) 0.460862 + 0.511839i 0.0298733 + 0.0331776i
\(239\) 0.0617382 + 0.587399i 0.00399351 + 0.0379957i 0.996337 0.0855115i \(-0.0272524\pi\)
−0.992344 + 0.123507i \(0.960586\pi\)
\(240\) −3.71793 + 2.70124i −0.239992 + 0.174364i
\(241\) 1.60665 15.2862i 0.103493 0.984674i −0.812359 0.583158i \(-0.801817\pi\)
0.915852 0.401516i \(-0.131516\pi\)
\(242\) 2.04722 + 3.54590i 0.131601 + 0.227939i
\(243\) −8.07252 + 13.9820i −0.517852 + 0.896946i
\(244\) −2.85790 2.07639i −0.182958 0.132927i
\(245\) −15.9199 + 17.6809i −1.01709 + 1.12959i
\(246\) −0.145346 + 0.447328i −0.00926690 + 0.0285206i
\(247\) −11.0557 −0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) −2.95887 + 9.10646i −0.187135 + 0.575943i
\(251\) 4.04925 4.49714i 0.255586 0.283857i −0.601673 0.798743i \(-0.705499\pi\)
0.857259 + 0.514885i \(0.172166\pi\)
\(252\) −2.05801 1.49523i −0.129642 0.0941907i
\(253\) −6.75571 + 11.7012i −0.424728 + 0.735650i
\(254\) 0.493682 + 0.855082i 0.0309763 + 0.0536526i
\(255\) 0.457614 4.35390i 0.0286569 0.272652i
\(256\) 8.02935 5.83366i 0.501834 0.364604i
\(257\) 0.473288 + 4.50304i 0.0295229 + 0.280892i 0.999317 + 0.0369649i \(0.0117690\pi\)
−0.969794 + 0.243927i \(0.921564\pi\)
\(258\) −2.97964 3.30923i −0.185505 0.206024i
\(259\) 7.26182 3.23317i 0.451228 0.200900i
\(260\) 16.0879 3.41959i 0.997729 0.212074i
\(261\) −10.4664 2.22471i −0.647855 0.137706i
\(262\) −3.96379 1.76479i −0.244884 0.109029i
\(263\) 0.775281 + 2.38607i 0.0478059 + 0.147131i 0.972110 0.234525i \(-0.0753536\pi\)
−0.924304 + 0.381657i \(0.875354\pi\)
\(264\) 2.78905 + 8.58383i 0.171654 + 0.528298i
\(265\) −12.1109 5.39210i −0.743964 0.331234i
\(266\) −1.95620 0.415804i −0.119943 0.0254946i
\(267\) −3.91453 + 0.832058i −0.239565 + 0.0509211i
\(268\) 2.90661 1.29411i 0.177550 0.0790502i
\(269\) −8.92605 9.91338i −0.544231 0.604430i 0.406803 0.913516i \(-0.366643\pi\)
−0.951034 + 0.309086i \(0.899977\pi\)
\(270\) −1.25041 11.8968i −0.0760974 0.724019i
\(271\) 11.1840 8.12564i 0.679379 0.493598i −0.193773 0.981046i \(-0.562072\pi\)
0.873152 + 0.487449i \(0.162072\pi\)
\(272\) 0.187879 1.78755i 0.0113918 0.108386i
\(273\) −1.00225 1.73594i −0.0606586 0.105064i
\(274\) −4.39548 + 7.61320i −0.265541 + 0.459930i
\(275\) −29.1197 21.1567i −1.75598 1.27580i
\(276\) −3.02226 + 3.35656i −0.181919 + 0.202041i
\(277\) −3.57556 + 11.0044i −0.214834 + 0.661192i 0.784331 + 0.620343i \(0.213006\pi\)
−0.999165 + 0.0408496i \(0.986994\pi\)
\(278\) 12.9030 0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) −4.75866 + 14.6457i −0.283878 + 0.873686i 0.702855 + 0.711333i \(0.251908\pi\)
−0.986733 + 0.162353i \(0.948092\pi\)
\(282\) 0.364735 0.405079i 0.0217196 0.0241221i
\(283\) 18.3612 + 13.3402i 1.09146 + 0.792993i 0.979645 0.200736i \(-0.0643333\pi\)
0.111816 + 0.993729i \(0.464333\pi\)
\(284\) −5.89722 + 10.2143i −0.349935 + 0.606106i
\(285\) 6.35600 + 11.0089i 0.376497 + 0.652112i
\(286\) 0.863089 8.21174i 0.0510355 0.485571i
\(287\) −0.466871 + 0.339202i −0.0275585 + 0.0200224i
\(288\) −1.32680 12.6237i −0.0781825 0.743857i
\(289\) −10.2295 11.3610i −0.601736 0.668295i
\(290\) 11.4328 5.09020i 0.671356 0.298907i
\(291\) 4.65847 0.990189i 0.273085 0.0580459i
\(292\) 8.43690 + 1.79332i 0.493732 + 0.104946i
\(293\) 11.3288 + 5.04388i 0.661833 + 0.294667i 0.710030 0.704171i \(-0.248681\pi\)
−0.0481978 + 0.998838i \(0.515348\pi\)
\(294\) 1.23384 + 3.79737i 0.0719591 + 0.221467i
\(295\) 1.06236 + 3.26961i 0.0618530 + 0.190364i
\(296\) 23.1173 + 10.2925i 1.34366 + 0.598238i
\(297\) 18.8384 + 4.00423i 1.09312 + 0.232349i
\(298\) −13.5798 + 2.88647i −0.786655 + 0.167209i
\(299\) 8.72673 3.88539i 0.504680 0.224698i
\(300\) −8.05118 8.94174i −0.464835 0.516252i
\(301\) −0.571094 5.43360i −0.0329173 0.313187i
\(302\) −8.57493 + 6.23005i −0.493432 + 0.358499i
\(303\) −0.359142 + 3.41701i −0.0206322 + 0.196302i
\(304\) 2.60953 + 4.51984i 0.149667 + 0.259231i
\(305\) 4.29523 7.43956i 0.245944 0.425988i
\(306\) 1.59534 + 1.15908i 0.0911997 + 0.0662605i
\(307\) 20.5557 22.8294i 1.17317 1.30294i 0.229027 0.973420i \(-0.426446\pi\)
0.944148 0.329523i \(-0.106888\pi\)
\(308\) −1.48021 + 4.55561i −0.0843426 + 0.259580i
\(309\) −5.63612 −0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) 1.97187 6.06878i 0.111635 0.343577i
\(313\) −7.19020 + 7.98553i −0.406414 + 0.451369i −0.911254 0.411844i \(-0.864885\pi\)
0.504840 + 0.863213i \(0.331551\pi\)
\(314\) 8.44932 + 6.13879i 0.476823 + 0.346432i
\(315\) 3.09305 5.35732i 0.174274 0.301851i
\(316\) 10.7444 + 18.6098i 0.604420 + 1.04689i
\(317\) −0.914242 + 8.69844i −0.0513490 + 0.488553i 0.938381 + 0.345603i \(0.112326\pi\)
−0.989730 + 0.142950i \(0.954341\pi\)
\(318\) −1.79990 + 1.30770i −0.100933 + 0.0733324i
\(319\) 2.10610 + 20.0382i 0.117919 + 1.12192i
\(320\) 3.11837 + 3.46330i 0.174322 + 0.193604i
\(321\) 1.91866 0.854242i 0.107089 0.0476791i
\(322\) 1.69024 0.359271i 0.0941933 0.0200214i
\(323\) −4.86315 1.03369i −0.270593 0.0575162i
\(324\) −3.25103 1.44745i −0.180613 0.0804140i
\(325\) 7.86379 + 24.2022i 0.436204 + 1.34250i
\(326\) 0.222625 + 0.685170i 0.0123301 + 0.0379480i
\(327\) 1.21747 + 0.542054i 0.0673264 + 0.0299756i
\(328\) −1.79694 0.381952i −0.0992196 0.0210898i
\(329\) 0.654169 0.139048i 0.0360655 0.00766596i
\(330\) −8.67317 + 3.86155i −0.477442 + 0.212571i
\(331\) 21.6592 + 24.0549i 1.19049 + 1.32218i 0.934696 + 0.355449i \(0.115672\pi\)
0.255799 + 0.966730i \(0.417661\pi\)
\(332\) 2.24826 + 21.3908i 0.123389 + 1.17397i
\(333\) 18.4124 13.3774i 1.00899 0.733075i
\(334\) 0.813646 7.74132i 0.0445207 0.423586i
\(335\) 3.86860 + 6.70062i 0.211364 + 0.366094i
\(336\) −0.473129 + 0.819484i −0.0258113 + 0.0447065i
\(337\) 22.4371 + 16.3015i 1.22223 + 0.888000i 0.996283 0.0861400i \(-0.0274532\pi\)
0.225944 + 0.974140i \(0.427453\pi\)
\(338\) 2.09151 2.32286i 0.113763 0.126347i
\(339\) 1.77926 5.47600i 0.0966362 0.297416i
\(340\) 7.39640 0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) −3.16515 + 9.74132i −0.170902 + 0.525982i
\(344\) 11.6379 12.9252i 0.627474 0.696880i
\(345\) −8.88598 6.45605i −0.478405 0.347582i
\(346\) −7.11994 + 12.3321i −0.382770 + 0.662977i
\(347\) −12.9580 22.4440i −0.695624 1.20486i −0.969970 0.243224i \(-0.921795\pi\)
0.274347 0.961631i \(-0.411538\pi\)
\(348\) −0.704042 + 6.69851i −0.0377406 + 0.359078i
\(349\) −4.52559 + 3.28803i −0.242249 + 0.176004i −0.702285 0.711896i \(-0.747837\pi\)
0.460036 + 0.887900i \(0.347837\pi\)
\(350\) 0.481179 + 4.57811i 0.0257201 + 0.244710i
\(351\) −9.11111 10.1189i −0.486315 0.540108i
\(352\) −21.8349 + 9.72154i −1.16381 + 0.518160i
\(353\) 11.4140 2.42612i 0.607505 0.129129i 0.106120 0.994353i \(-0.466157\pi\)
0.501385 + 0.865224i \(0.332824\pi\)
\(354\) 0.564339 + 0.119954i 0.0299943 + 0.00637548i
\(355\) −26.2020 11.6659i −1.39066 0.619161i
\(356\) −2.08936 6.43039i −0.110736 0.340810i
\(357\) −0.278556 0.857307i −0.0147427 0.0453735i
\(358\) −0.0829319 0.0369237i −0.00438309 0.00195148i
\(359\) −25.6273 5.44725i −1.35256 0.287495i −0.526066 0.850444i \(-0.676334\pi\)
−0.826492 + 0.562949i \(0.809667\pi\)
\(360\) 19.2625 4.09437i 1.01522 0.215792i
\(361\) −4.16895 + 1.85614i −0.219418 + 0.0976913i
\(362\) 3.56723 + 3.96182i 0.187490 + 0.208228i
\(363\) −0.560144 5.32942i −0.0293999 0.279722i
\(364\) 2.73979 1.99058i 0.143604 0.104335i
\(365\) −2.19250 + 20.8603i −0.114761 + 1.09188i
\(366\) −0.720830 1.24851i −0.0376784 0.0652608i
\(367\) 13.5073 23.3953i 0.705076 1.22123i −0.261589 0.965179i \(-0.584246\pi\)
0.966664 0.256047i \(-0.0824203\pi\)
\(368\) −3.64825 2.65061i −0.190178 0.138173i
\(369\) −1.10557 + 1.22786i −0.0575537 + 0.0639199i
\(370\) −8.22549 + 25.3155i −0.427623 + 1.31609i
\(371\) −2.72967 −0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 1.14744 3.53145i 0.0593326 0.182607i
\(375\) 8.38540 9.31293i 0.433020 0.480918i
\(376\) 1.72240 + 1.25140i 0.0888261 + 0.0645359i
\(377\) 7.12253 12.3366i 0.366829 0.635367i
\(378\) −1.23155 2.13311i −0.0633442 0.109715i
\(379\) 0.484909 4.61360i 0.0249081 0.236985i −0.974984 0.222276i \(-0.928651\pi\)
0.999892 0.0147084i \(-0.00468201\pi\)
\(380\) −17.3751 + 12.6238i −0.891325 + 0.647585i
\(381\) −0.135077 1.28517i −0.00692020 0.0658413i
\(382\) 9.73595 + 10.8129i 0.498134 + 0.553234i
\(383\) 4.58722 2.04236i 0.234396 0.104360i −0.286178 0.958177i \(-0.592385\pi\)
0.520574 + 0.853817i \(0.325718\pi\)
\(384\) −9.48727 + 2.01658i −0.484145 + 0.102908i
\(385\) −11.3939 2.42184i −0.580686 0.123429i
\(386\) −3.56718 1.58821i −0.181564 0.0808377i
\(387\) −4.83383 14.8770i −0.245718 0.756241i
\(388\) 2.48644 + 7.65247i 0.126230 + 0.388496i
\(389\) −16.9936 7.56605i −0.861611 0.383614i −0.0721346 0.997395i \(-0.522981\pi\)
−0.789476 + 0.613781i \(0.789648\pi\)
\(390\) 6.56557 + 1.39556i 0.332461 + 0.0706667i
\(391\) 4.20196 0.893153i 0.212502 0.0451687i
\(392\) −14.2468 + 6.34308i −0.719572 + 0.320374i
\(393\) 3.79980 + 4.22011i 0.191675 + 0.212876i
\(394\) −1.14701 10.9130i −0.0577853 0.549790i
\(395\) −42.2763 + 30.7155i −2.12715 + 1.54547i
\(396\) −1.43354 + 13.6393i −0.0720383 + 0.685399i
\(397\) −16.2794 28.1968i −0.817040 1.41515i −0.907854 0.419287i \(-0.862280\pi\)
0.0908142 0.995868i \(-0.471053\pi\)
\(398\) 1.46912 2.54459i 0.0736404 0.127549i
\(399\) 2.11757 + 1.53850i 0.106011 + 0.0770214i
\(400\) 8.03833 8.92747i 0.401917 0.446374i
\(401\) 3.82880 11.7838i 0.191201 0.588457i −0.808799 0.588086i \(-0.799882\pi\)
1.00000 0.000371451i \(-0.000118236\pi\)
\(402\) 1.29847 0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) 2.67424 8.23046i 0.132884 0.408975i
\(406\) 1.72424 1.91496i 0.0855726 0.0950381i
\(407\) −34.6705 25.1896i −1.71855 1.24860i
\(408\) 1.43480 2.48514i 0.0710331 0.123033i
\(409\) −1.72404 2.98613i −0.0852484 0.147654i 0.820249 0.572007i \(-0.193835\pi\)
−0.905497 + 0.424353i \(0.860502\pi\)
\(410\) 0.201994 1.92184i 0.00997576 0.0949130i
\(411\) 9.30817 6.76278i 0.459138 0.333583i
\(412\) −0.995339 9.47002i −0.0490368 0.466554i
\(413\) 0.473659 + 0.526052i 0.0233072 + 0.0258853i
\(414\) 4.51971 2.01230i 0.222131 0.0988993i
\(415\) −51.1616 + 10.8747i −2.51142 + 0.533820i
\(416\) 16.5290 + 3.51335i 0.810401 + 0.172256i
\(417\) −15.4273 6.86868i −0.755479 0.336361i
\(418\) 3.33180 + 10.2542i 0.162964 + 0.501550i
\(419\) −12.3752 38.0871i −0.604570 1.86068i −0.499717 0.866189i \(-0.666563\pi\)
−0.104854 0.994488i \(-0.533437\pi\)
\(420\) −3.55727 1.58380i −0.173577 0.0772815i
\(421\) −21.2106 4.50844i −1.03374 0.219728i −0.340356 0.940297i \(-0.610548\pi\)
−0.693384 + 0.720569i \(0.743881\pi\)
\(422\) −7.76148 + 1.64975i −0.377823 + 0.0803088i
\(423\) 1.74925 0.778817i 0.0850516 0.0378674i
\(424\) −5.81449 6.45765i −0.282377 0.313611i
\(425\) 1.19622 + 11.3812i 0.0580250 + 0.552071i
\(426\) −3.89411 + 2.82924i −0.188670 + 0.137077i
\(427\) 0.184891 1.75912i 0.00894752 0.0851300i
\(428\) 1.77417 + 3.07294i 0.0857575 + 0.148536i
\(429\) −5.40332 + 9.35883i −0.260875 + 0.451849i
\(430\) 14.8011 + 10.7536i 0.713774 + 0.518587i
\(431\) −7.77574 + 8.63584i −0.374544 + 0.415974i −0.900719 0.434403i \(-0.856959\pi\)
0.526174 + 0.850377i \(0.323626\pi\)
\(432\) −1.98632 + 6.11325i −0.0955667 + 0.294124i
\(433\) −24.5964 −1.18203 −0.591015 0.806661i \(-0.701272\pi\)
−0.591015 + 0.806661i \(0.701272\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) −0.695773 + 2.14137i −0.0333215 + 0.102553i
\(437\) −8.34656 + 9.26979i −0.399270 + 0.443434i
\(438\) 2.84780 + 2.06905i 0.136073 + 0.0988630i
\(439\) −9.09662 + 15.7558i −0.434158 + 0.751984i −0.997227 0.0744265i \(-0.976287\pi\)
0.563068 + 0.826410i \(0.309621\pi\)
\(440\) −18.5408 32.1136i −0.883897 1.53096i
\(441\) −1.46611 + 13.9491i −0.0698149 + 0.664244i
\(442\) −2.12386 + 1.54307i −0.101021 + 0.0733964i
\(443\) −1.85646 17.6630i −0.0882031 0.839196i −0.945773 0.324829i \(-0.894693\pi\)
0.857570 0.514368i \(-0.171973\pi\)
\(444\) −9.58590 10.6462i −0.454927 0.505247i
\(445\) 15.0206 6.68762i 0.712047 0.317024i
\(446\) −6.35573 + 1.35095i −0.300952 + 0.0639694i
\(447\) 17.7731 + 3.77778i 0.840637 + 0.178683i
\(448\) 0.876622 + 0.390297i 0.0414165 + 0.0184398i
\(449\) 2.84252 + 8.74836i 0.134147 + 0.412861i 0.995456 0.0952196i \(-0.0303553\pi\)
−0.861310 + 0.508080i \(0.830355\pi\)
\(450\) 4.07278 + 12.5347i 0.191993 + 0.590892i
\(451\) 2.84221 + 1.26543i 0.133835 + 0.0595870i
\(452\) 9.51520 + 2.02252i 0.447558 + 0.0951313i
\(453\) 13.5690 2.88418i 0.637526 0.135510i
\(454\) −13.7082 + 6.10327i −0.643356 + 0.286440i
\(455\) 5.51059 + 6.12014i 0.258341 + 0.286916i
\(456\) 0.870973 + 8.28676i 0.0407871 + 0.388063i
\(457\) −25.2412 + 18.3388i −1.18074 + 0.857855i −0.992254 0.124222i \(-0.960356\pi\)
−0.188481 + 0.982077i \(0.560356\pi\)
\(458\) −1.22204 + 11.6269i −0.0571021 + 0.543290i
\(459\) −3.06166 5.30294i −0.142906 0.247520i
\(460\) 9.27842 16.0707i 0.432609 0.749300i
\(461\) −5.39491 3.91963i −0.251266 0.182555i 0.455022 0.890480i \(-0.349631\pi\)
−0.706288 + 0.707925i \(0.749631\pi\)
\(462\) −1.30805 + 1.45274i −0.0608560 + 0.0675874i
\(463\) −10.9140 + 33.5899i −0.507217 + 1.56105i 0.289795 + 0.957089i \(0.406413\pi\)
−0.797011 + 0.603964i \(0.793587\pi\)
\(464\) −6.72466 −0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) 11.1071 34.1842i 0.513977 1.58186i −0.271159 0.962535i \(-0.587407\pi\)
0.785136 0.619324i \(-0.212593\pi\)
\(468\) 6.48795 7.20560i 0.299906 0.333079i
\(469\) 1.28886 + 0.936415i 0.0595143 + 0.0432396i
\(470\) −1.11975 + 1.93946i −0.0516501 + 0.0894606i
\(471\) −6.83446 11.8376i −0.314915 0.545449i
\(472\) −0.235548 + 2.24109i −0.0108420 + 0.103155i
\(473\) −23.8296 + 17.3132i −1.09569 + 0.796064i
\(474\) 0.916685 + 8.72168i 0.0421047 + 0.400600i
\(475\) −22.2349 24.6944i −1.02021 1.13306i
\(476\) 1.39129 0.619440i 0.0637695 0.0283920i
\(477\) −7.64454 + 1.62490i −0.350019 + 0.0743989i
\(478\) −0.398339 0.0846697i −0.0182196 0.00387270i
\(479\) 30.3703 + 13.5217i 1.38765 + 0.617823i 0.958418 0.285369i \(-0.0921163\pi\)
0.429236 + 0.903192i \(0.358783\pi\)
\(480\) −6.00415 18.4789i −0.274051 0.843441i
\(481\) 9.36278 + 28.8157i 0.426906 + 1.31388i
\(482\) 9.68158 + 4.31052i 0.440984 + 0.196339i
\(483\) −2.21217 0.470211i −0.100657 0.0213953i
\(484\) 8.85576 1.88235i 0.402535 0.0855614i
\(485\) −17.8753 + 7.95859i −0.811675 + 0.361381i
\(486\) −7.44868 8.27260i −0.337879 0.375253i
\(487\) 2.98067 + 28.3591i 0.135067 + 1.28508i 0.826624 + 0.562754i \(0.190258\pi\)
−0.691557 + 0.722321i \(0.743075\pi\)
\(488\) 4.55544 3.30972i 0.206215 0.149824i
\(489\) 0.0985590 0.937726i 0.00445699 0.0424054i
\(490\) −8.20220 14.2066i −0.370538 0.641790i
\(491\) −13.9818 + 24.2172i −0.630991 + 1.09291i 0.356359 + 0.934349i \(0.384018\pi\)
−0.987350 + 0.158559i \(0.949315\pi\)
\(492\) 0.841402 + 0.611315i 0.0379333 + 0.0275602i
\(493\) 4.28648 4.76062i 0.193054 0.214408i
\(494\) 2.35559 7.24975i 0.105983 0.326182i
\(495\) −33.3506 −1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) −2.71249 + 8.34819i −0.121550 + 0.374091i
\(499\) 27.6384 30.6956i 1.23727 1.37412i 0.335417 0.942070i \(-0.391123\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(500\) 17.1288 + 12.4448i 0.766023 + 0.556548i
\(501\) −5.09378 + 8.82269i −0.227573 + 0.394169i
\(502\) 2.08623 + 3.61346i 0.0931132 + 0.161277i
\(503\) 2.67447 25.4459i 0.119249 1.13458i −0.757235 0.653143i \(-0.773450\pi\)
0.876483 0.481432i \(-0.159883\pi\)
\(504\) 3.28043 2.38337i 0.146122 0.106164i
\(505\) −1.47554 14.0388i −0.0656604 0.624717i
\(506\) −6.23364 6.92315i −0.277119 0.307772i
\(507\) −3.73722 + 1.66392i −0.165976 + 0.0738972i
\(508\) 2.13554 0.453923i 0.0947492 0.0201396i
\(509\) −23.9331 5.08714i −1.06082 0.225483i −0.355718 0.934593i \(-0.615764\pi\)
−0.705098 + 0.709110i \(0.749097\pi\)
\(510\) 2.75755 + 1.22774i 0.122107 + 0.0543654i
\(511\) 1.33461 + 4.10750i 0.0590396 + 0.181705i
\(512\) −4.52814 13.9362i −0.200118 0.615898i
\(513\) 16.2430 + 7.23185i 0.717146 + 0.319294i
\(514\) −3.05369 0.649082i −0.134693 0.0286298i
\(515\) 22.6500 4.81441i 0.998078 0.212148i
\(516\) −8.99518 + 4.00491i −0.395991 + 0.176306i
\(517\) −2.41259 2.67945i −0.106106 0.117842i
\(518\) 0.572901 + 5.45079i 0.0251718 + 0.239494i
\(519\) 15.0776 10.9546i 0.661835 0.480851i
\(520\) −2.74039 + 26.0731i −0.120174 + 1.14338i
\(521\) −7.48279 12.9606i −0.327827 0.567813i 0.654253 0.756275i \(-0.272983\pi\)
−0.982080 + 0.188462i \(0.939650\pi\)
\(522\) 3.68887 6.38931i 0.161458 0.279653i
\(523\) −16.9615 12.3233i −0.741677 0.538860i 0.151559 0.988448i \(-0.451571\pi\)
−0.893236 + 0.449589i \(0.851571\pi\)
\(524\) −6.41974 + 7.12985i −0.280448 + 0.311469i
\(525\) 1.86176 5.72991i 0.0812539 0.250074i
\(526\) −1.72984 −0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) −3.77686 + 11.6240i −0.164211 + 0.505391i
\(530\) 6.11625 6.79278i 0.265673 0.295060i
\(531\) 1.63964 + 1.19127i 0.0711544 + 0.0516967i
\(532\) −2.21109 + 3.82971i −0.0958628 + 0.166039i
\(533\) −1.09981 1.90492i −0.0476379 0.0825113i
\(534\) 0.288429 2.74422i 0.0124815 0.118754i
\(535\) −6.98086 + 5.07189i −0.301809 + 0.219277i
\(536\) 0.530121 + 5.04377i 0.0228977 + 0.217858i
\(537\) 0.0795009 + 0.0882947i 0.00343072 + 0.00381020i
\(538\) 8.40250 3.74103i 0.362257 0.161287i
\(539\) 25.8338 5.49113i 1.11274 0.236520i
\(540\) −25.8731 5.49949i −1.11340 0.236660i
\(541\) 1.58162 + 0.704184i 0.0679993 + 0.0302752i 0.440454 0.897775i \(-0.354817\pi\)
−0.372455 + 0.928050i \(0.621484\pi\)
\(542\) 2.94545 + 9.06515i 0.126518 + 0.389382i
\(543\) −2.15612 6.63586i −0.0925280 0.284772i
\(544\) 6.94222 + 3.09087i 0.297645 + 0.132520i
\(545\) −5.35571 1.13839i −0.229413 0.0487633i
\(546\) 1.35188 0.287351i 0.0578551 0.0122975i
\(547\) −11.9870 + 5.33697i −0.512528 + 0.228192i −0.646670 0.762770i \(-0.723839\pi\)
0.134142 + 0.990962i \(0.457172\pi\)
\(548\) 13.0069 + 14.4456i 0.555627 + 0.617086i
\(549\) −0.529362 5.03655i −0.0225926 0.214955i
\(550\) 20.0778 14.5874i 0.856121 0.622008i
\(551\) −1.94435 + 18.4993i −0.0828321 + 0.788095i
\(552\) −3.59977 6.23498i −0.153216 0.265378i
\(553\) −5.37991 + 9.31828i −0.228777 + 0.396254i
\(554\) −6.45429 4.68932i −0.274217 0.199230i
\(555\) 23.3110 25.8895i 0.989495 1.09895i
\(556\) 8.81656 27.1346i 0.373905 1.15076i
\(557\) 28.0246 1.18744 0.593721 0.804671i \(-0.297658\pi\)
0.593721 + 0.804671i \(0.297658\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) 1.20137 3.69743i 0.0507670 0.156245i
\(561\) −3.25183 + 3.61152i −0.137292 + 0.152479i
\(562\) −8.58993 6.24095i −0.362344 0.263259i
\(563\) −11.3259 + 19.6171i −0.477331 + 0.826762i −0.999662 0.0259808i \(-0.991729\pi\)
0.522331 + 0.852743i \(0.325062\pi\)
\(564\) −0.602646 1.04381i −0.0253760 0.0439525i
\(565\) −2.47272 + 23.5264i −0.104028 + 0.989763i
\(566\) −12.6599 + 9.19798i −0.532136 + 0.386620i
\(567\) −0.186259 1.77214i −0.00782216 0.0744229i
\(568\) −12.5797 13.9712i −0.527834 0.586219i
\(569\) 42.4269 18.8897i 1.77863 0.791896i 0.796256 0.604960i \(-0.206811\pi\)
0.982372 0.186936i \(-0.0598558\pi\)
\(570\) −8.57330 + 1.82231i −0.359096 + 0.0763282i
\(571\) −12.2252 2.59855i −0.511610 0.108746i −0.0551292 0.998479i \(-0.517557\pi\)
−0.456481 + 0.889733i \(0.650890\pi\)
\(572\) −16.6793 7.42610i −0.697396 0.310501i
\(573\) −5.88463 18.1110i −0.245834 0.756600i
\(574\) −0.122956 0.378421i −0.00513210 0.0157950i
\(575\) 26.2294 + 11.6781i 1.09384 + 0.487010i
\(576\) 2.68734 + 0.571212i 0.111973 + 0.0238005i
\(577\) 29.8181 6.33804i 1.24135 0.263856i 0.459980 0.887929i \(-0.347857\pi\)
0.781366 + 0.624073i \(0.214523\pi\)
\(578\) 9.62950 4.28733i 0.400535 0.178329i
\(579\) 3.41960 + 3.79785i 0.142114 + 0.157833i
\(580\) −2.89256 27.5209i −0.120107 1.14274i
\(581\) −8.71290 + 6.33030i −0.361472 + 0.262625i
\(582\) −0.343244 + 3.26575i −0.0142279 + 0.135370i
\(583\) 7.35812 + 12.7446i 0.304742 + 0.527829i
\(584\) −6.87436 + 11.9067i −0.284463 + 0.492705i
\(585\) 19.0758 + 13.8593i 0.788685 + 0.573013i
\(586\) −5.72127 + 6.35411i −0.236343 + 0.262486i
\(587\) −10.4009 + 32.0107i −0.429292 + 1.32123i 0.469532 + 0.882915i \(0.344423\pi\)
−0.898824 + 0.438310i \(0.855577\pi\)
\(588\) 8.82883 0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) −4.43796 + 13.6586i −0.182553 + 0.561841i
\(592\) 9.57060 10.6292i 0.393349 0.436859i
\(593\) 36.3151 + 26.3844i 1.49128 + 1.08348i 0.973697 + 0.227847i \(0.0731687\pi\)
0.517585 + 0.855632i \(0.326831\pi\)
\(594\) −6.63957 + 11.5001i −0.272425 + 0.471854i
\(595\) 1.85175 + 3.20733i 0.0759145 + 0.131488i
\(596\) −3.20884 + 30.5301i −0.131439 + 1.25056i
\(597\) −3.11111 + 2.26035i −0.127329 + 0.0925100i
\(598\) 0.688471 + 6.55036i 0.0281537 + 0.267864i
\(599\) −13.1047 14.5542i −0.535442 0.594669i 0.413349 0.910573i \(-0.364359\pi\)
−0.948791 + 0.315904i \(0.897692\pi\)
\(600\) 17.5212 7.80092i 0.715298 0.318471i
\(601\) 29.7938 6.33288i 1.21532 0.258323i 0.444733 0.895663i \(-0.353298\pi\)
0.770583 + 0.637340i \(0.219965\pi\)
\(602\) 3.68474 + 0.783216i 0.150179 + 0.0319215i
\(603\) 4.16693 + 1.85524i 0.169691 + 0.0755511i
\(604\) 7.24238 + 22.2898i 0.294688 + 0.906958i
\(605\) 6.80348 + 20.9390i 0.276601 + 0.851290i
\(606\) −2.16417 0.963550i −0.0879134 0.0391416i
\(607\) 13.0823 + 2.78073i 0.530994 + 0.112866i 0.465604 0.884993i \(-0.345837\pi\)
0.0653907 + 0.997860i \(0.479171\pi\)
\(608\) −21.5835 + 4.58772i −0.875327 + 0.186056i
\(609\) −3.08097 + 1.37173i −0.124847 + 0.0555855i
\(610\) 3.96330 + 4.40169i 0.160469 + 0.178219i
\(611\) 0.266457 + 2.53517i 0.0107797 + 0.102562i
\(612\) 3.52761 2.56296i 0.142595 0.103601i
\(613\) −0.543047 + 5.16675i −0.0219335 + 0.208683i 0.978066 + 0.208293i \(0.0667908\pi\)
−1.00000 0.000389879i \(0.999876\pi\)
\(614\) 10.5906 + 18.3435i 0.427402 + 0.740282i
\(615\) −1.26457 + 2.19030i −0.0509924 + 0.0883215i
\(616\) −6.17705 4.48789i −0.248881 0.180822i
\(617\) −20.0827 + 22.3041i −0.808498 + 0.897927i −0.996445 0.0842517i \(-0.973150\pi\)
0.187947 + 0.982179i \(0.439817\pi\)
\(618\) 1.20086 3.69587i 0.0483057 0.148670i
\(619\) −18.3260 −0.736584 −0.368292 0.929710i \(-0.620057\pi\)
−0.368292 + 0.929710i \(0.620057\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) −0.507396 + 1.56160i −0.0203447 + 0.0626146i
\(623\) 2.26535 2.51592i 0.0907592 0.100798i
\(624\) −2.91793 2.12000i −0.116811 0.0848679i
\(625\) −3.87924 + 6.71905i −0.155170 + 0.268762i
\(626\) −3.70450 6.41639i −0.148062 0.256450i
\(627\) 1.47503 14.0340i 0.0589070 0.560463i
\(628\) 18.6831 13.5740i 0.745535 0.541663i
\(629\) 1.42424 + 13.5507i 0.0567882 + 0.540303i
\(630\) 2.85402 + 3.16971i 0.113707 + 0.126284i
\(631\) −9.44169 + 4.20371i −0.375868 + 0.167347i −0.585971 0.810332i \(-0.699287\pi\)
0.210103 + 0.977679i \(0.432620\pi\)
\(632\) −33.5043 + 7.12155i −1.33273 + 0.283280i
\(633\) 10.1581 + 2.15918i 0.403750 + 0.0858197i
\(634\) −5.50918 2.45284i −0.218797 0.0974148i
\(635\) 1.64064 + 5.04936i 0.0651067 + 0.200378i
\(636\) 1.52020 + 4.67868i 0.0602797 + 0.185522i
\(637\) −17.0582 7.59481i −0.675871 0.300917i
\(638\) −13.5887 2.88837i −0.537982 0.114352i
\(639\) −16.5391 + 3.51548i −0.654275 + 0.139070i
\(640\) 36.4041 16.2082i 1.43900 0.640683i
\(641\) −0.0677508 0.0752449i −0.00267599 0.00297199i 0.741805 0.670615i \(-0.233970\pi\)
−0.744481 + 0.667643i \(0.767303\pi\)
\(642\) 0.151367 + 1.44016i 0.00597399 + 0.0568387i
\(643\) −11.0931 + 8.05961i −0.437469 + 0.317840i −0.784629 0.619966i \(-0.787146\pi\)
0.347159 + 0.937806i \(0.387146\pi\)
\(644\) 0.399397 3.80001i 0.0157384 0.149741i
\(645\) −11.9723 20.7366i −0.471408 0.816503i
\(646\) 1.71401 2.96875i 0.0674367 0.116804i
\(647\) −8.76519 6.36828i −0.344595 0.250363i 0.402003 0.915638i \(-0.368314\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(648\) 3.79564 4.21549i 0.149107 0.165600i
\(649\) 1.17930 3.62951i 0.0462916 0.142471i
\(650\) −17.5460 −0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) −7.49434 + 23.0652i −0.293276 + 0.902611i 0.690519 + 0.723314i \(0.257382\pi\)
−0.983795 + 0.179297i \(0.942618\pi\)
\(654\) −0.614851 + 0.682861i −0.0240426 + 0.0267020i
\(655\) −18.8752 13.7136i −0.737515 0.535836i
\(656\) −0.519185 + 0.899255i −0.0202708 + 0.0351100i
\(657\) 6.18270 + 10.7087i 0.241210 + 0.417788i
\(658\) −0.0482003 + 0.458596i −0.00187904 + 0.0178779i
\(659\) 6.90374 5.01586i 0.268932 0.195390i −0.445144 0.895459i \(-0.646847\pi\)
0.714075 + 0.700069i \(0.246847\pi\)
\(660\) 2.19436 + 20.8780i 0.0854155 + 0.812674i
\(661\) 25.3495 + 28.1535i 0.985981 + 1.09504i 0.995469 + 0.0950874i \(0.0303130\pi\)
−0.00948838 + 0.999955i \(0.503020\pi\)
\(662\) −20.3887 + 9.07765i −0.792431 + 0.352813i
\(663\) 3.36079 0.714358i 0.130522 0.0277434i
\(664\) −33.5352 7.12812i −1.30142 0.276625i
\(665\) −9.82411 4.37397i −0.380963 0.169615i
\(666\) 4.84913 + 14.9241i 0.187900 + 0.578297i
\(667\) −4.96657 15.2855i −0.192306 0.591858i
\(668\) −15.7238 7.00068i −0.608371 0.270864i
\(669\) 8.31831 + 1.76811i 0.321604 + 0.0683591i
\(670\) −5.21817 + 1.10916i −0.201596 + 0.0428504i
\(671\) −8.71162 + 3.87867i −0.336309 + 0.149734i
\(672\) −2.67698 2.97309i −0.103267 0.114689i
\(673\) 0.744254 + 7.08110i 0.0286889 + 0.272956i 0.999457 + 0.0329387i \(0.0104866\pi\)
−0.970769 + 0.240018i \(0.922847\pi\)
\(674\) −15.4702 + 11.2398i −0.595891 + 0.432940i
\(675\) 4.27792 40.7017i 0.164657 1.56661i
\(676\) −3.45577 5.98557i −0.132914 0.230214i
\(677\) 24.0305 41.6220i 0.923567 1.59966i 0.129716 0.991551i \(-0.458593\pi\)
0.793850 0.608113i \(-0.208073\pi\)
\(678\) 3.21177 + 2.33349i 0.123347 + 0.0896171i
\(679\) −2.69587 + 2.99407i −0.103458 + 0.114902i
\(680\) −3.64323 + 11.2127i −0.139712 + 0.429988i
\(681\) 19.6390 0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) −3.91250 + 12.0414i −0.149598 + 0.460416i
\(685\) −31.6301 + 35.1288i −1.20852 + 1.34220i
\(686\) −5.71346 4.15107i −0.218141 0.158489i
\(687\) 7.65051 13.2511i 0.291885 0.505560i
\(688\) −4.91537 8.51366i −0.187397 0.324580i
\(689\) 1.08756 10.3474i 0.0414326 0.394205i
\(690\) 6.12682 4.45140i 0.233244 0.169462i
\(691\) −2.84872 27.1038i −0.108371 1.03108i −0.904652 0.426151i \(-0.859869\pi\)
0.796282 0.604926i \(-0.206797\pi\)
\(692\) 21.0690 + 23.3995i 0.800922 + 0.889514i
\(693\) −6.27335 + 2.79308i −0.238305 + 0.106100i
\(694\) 17.4785 3.71516i 0.663473 0.141026i
\(695\) 67.8654 + 14.4252i 2.57428 + 0.547180i
\(696\) −9.80794 4.36678i −0.371769 0.165522i
\(697\) −0.305671 0.940760i −0.0115781 0.0356338i
\(698\) −1.19187 3.66820i −0.0451130 0.138844i
\(699\) −8.10873 3.61024i −0.306700 0.136552i
\(700\) 9.95640 + 2.11630i 0.376317 + 0.0799886i
\(701\) −8.30364 + 1.76499i −0.313624 + 0.0666629i −0.362035 0.932165i \(-0.617918\pi\)
0.0484104 + 0.998828i \(0.484584\pi\)
\(702\) 8.57670 3.81859i 0.323707 0.144124i
\(703\) −26.4734 29.4016i −0.998461 1.10890i
\(704\) −0.540759 5.14498i −0.0203806 0.193909i
\(705\) 2.37125 1.72281i 0.0893065 0.0648849i
\(706\) −0.841002 + 8.00160i −0.0316515 + 0.301144i
\(707\) −1.45328 2.51716i −0.0546564 0.0946676i
\(708\) 0.637869 1.10482i 0.0239726 0.0415217i
\(709\) −18.9198 13.7460i −0.710546 0.516242i 0.172804 0.984956i \(-0.444717\pi\)
−0.883350 + 0.468714i \(0.844717\pi\)
\(710\) 13.2326 14.6963i 0.496610 0.551542i
\(711\) −9.51971 + 29.2987i −0.357017 + 1.09879i
\(712\) 10.7774 0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) 13.7201 42.2261i 0.513102 1.57917i
\(716\) −0.134316 + 0.149173i −0.00501963 + 0.00557487i
\(717\) 0.431198 + 0.313283i 0.0161034 + 0.0116998i
\(718\) 9.03230 15.6444i 0.337083 0.583844i
\(719\) 6.48843 + 11.2383i 0.241978 + 0.419118i 0.961278 0.275582i \(-0.0888706\pi\)
−0.719300 + 0.694700i \(0.755537\pi\)
\(720\) 1.16349 11.0699i 0.0433609 0.412551i
\(721\) 3.85733 2.80252i 0.143655 0.104371i
\(722\) −0.328898 3.12925i −0.0122403 0.116459i
\(723\) −9.28104 10.3076i −0.345166 0.383345i
\(724\) 10.7690 4.79469i 0.400228 0.178193i
\(725\) 41.8800 8.90187i 1.55538 0.330607i
\(726\) 3.61409 + 0.768199i 0.134132 + 0.0285106i
\(727\) −11.3490 5.05290i −0.420911 0.187402i 0.185341 0.982674i \(-0.440661\pi\)
−0.606252 + 0.795273i \(0.707328\pi\)
\(728\) 1.66812 + 5.13393i 0.0618245 + 0.190276i
\(729\) 2.33825 + 7.19640i 0.0866020 + 0.266533i
\(730\) −13.2119 5.88232i −0.488995 0.217715i
\(731\) 9.16031 + 1.94708i 0.338806 + 0.0720155i
\(732\) −3.11812 + 0.662777i −0.115249 + 0.0244970i
\(733\) −31.2043 + 13.8930i −1.15256 + 0.513151i −0.891879 0.452275i \(-0.850613\pi\)
−0.260678 + 0.965426i \(0.583946\pi\)
\(734\) 12.4635 + 13.8421i 0.460035 + 0.510921i
\(735\) 2.24422 + 21.3523i 0.0827792 + 0.787591i
\(736\) 15.4244 11.2065i 0.568552 0.413077i
\(737\) 0.897783 8.54183i 0.0330702 0.314642i
\(738\) −0.569607 0.986589i −0.0209675 0.0363168i
\(739\) −6.18747 + 10.7170i −0.227610 + 0.394231i −0.957099 0.289761i \(-0.906424\pi\)
0.729490 + 0.683992i \(0.239758\pi\)
\(740\) 47.6171 + 34.5959i 1.75044 + 1.27177i
\(741\) −6.67571 + 7.41413i −0.245238 + 0.272365i
\(742\) 0.581597 1.78997i 0.0213511 0.0657119i
\(743\) 16.2455 0.595990 0.297995 0.954567i \(-0.403682\pi\)
0.297995 + 0.954567i \(0.403682\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 2.64325 8.13509i 0.0967763 0.297847i
\(747\) −20.6325 + 22.9148i −0.754905 + 0.838407i
\(748\) −6.64249 4.82605i −0.242873 0.176458i
\(749\) −0.888356 + 1.53868i −0.0324598 + 0.0562220i
\(750\) 4.32029 + 7.48296i 0.157755 + 0.273239i
\(751\) 1.12768 10.7292i 0.0411497 0.391513i −0.954491 0.298240i \(-0.903600\pi\)
0.995641 0.0932730i \(-0.0297329\pi\)
\(752\) 0.973546 0.707322i 0.0355016 0.0257934i
\(753\) −0.570817 5.43097i −0.0208017 0.197915i
\(754\) 6.57211 + 7.29907i 0.239342 + 0.265817i
\(755\) −52.0663 + 23.1814i −1.89489 + 0.843658i
\(756\) −5.32738 + 1.13237i −0.193755 + 0.0411839i
\(757\) 40.2035 + 8.54552i 1.46122 + 0.310592i 0.868851 0.495074i \(-0.164859\pi\)
0.592370 + 0.805666i \(0.298192\pi\)
\(758\) 2.92203 + 1.30097i 0.106133 + 0.0472535i
\(759\) 3.76776 + 11.5960i 0.136761 + 0.420907i
\(760\) −10.5788 32.5582i −0.383733 1.18101i
\(761\) −17.9608 7.99665i −0.651078 0.289878i 0.0544972 0.998514i \(-0.482644\pi\)
−0.705575 + 0.708636i \(0.749311\pi\)
\(762\) 0.871527 + 0.185249i 0.0315721 + 0.00671086i
\(763\) −1.10276 + 0.234400i −0.0399227 + 0.00848584i
\(764\) 29.3916 13.0860i 1.06335 0.473435i
\(765\) 7.09514 + 7.87995i 0.256525 + 0.284900i
\(766\) 0.361896 + 3.44321i 0.0130758 + 0.124408i
\(767\) −2.18283 + 1.58592i −0.0788174 + 0.0572642i
\(768\) 0.936174 8.90710i 0.0337813 0.321407i
\(769\) −1.89417 3.28080i −0.0683055 0.118309i 0.829850 0.557986i \(-0.188426\pi\)
−0.898155 + 0.439678i \(0.855093\pi\)
\(770\) 4.01575 6.95549i 0.144718 0.250658i
\(771\) 3.30558 + 2.40165i 0.119048 + 0.0864932i
\(772\) −5.77739 + 6.41644i −0.207933 + 0.230933i
\(773\) 7.83963 24.1279i 0.281972 0.867820i −0.705318 0.708891i \(-0.749196\pi\)
0.987290 0.158929i \(-0.0508041\pi\)
\(774\) 10.7855 0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) 2.21665 6.82215i 0.0795219 0.244743i
\(778\) 8.58216 9.53145i 0.307685 0.341719i
\(779\) 2.32370 + 1.68826i 0.0832551 + 0.0604884i
\(780\) 7.42103 12.8536i 0.265716 0.460233i
\(781\) 15.9194 + 27.5732i 0.569641 + 0.986647i
\(782\) −0.309607 + 2.94572i −0.0110715 + 0.105339i
\(783\) −18.5341 + 13.4658i −0.662354 + 0.481228i
\(784\) 0.921390 + 8.76644i 0.0329068 + 0.313087i
\(785\) 37.5775 + 41.7341i 1.34120 + 1.48955i
\(786\) −3.57693 + 1.59255i −0.127585 + 0.0568044i
\(787\) −25.3796 + 5.39460i −0.904685 + 0.192297i −0.636687 0.771123i \(-0.719695\pi\)
−0.267998 + 0.963419i \(0.586362\pi\)
\(788\) −23.7335 5.04471i −0.845470 0.179710i
\(789\) 2.06827 + 0.920852i 0.0736323 + 0.0327832i
\(790\) −11.1340 34.2670i −0.396130 1.21916i
\(791\) 1.50518 + 4.63247i 0.0535181 + 0.164712i
\(792\) −19.9706 8.89147i −0.709623 0.315945i
\(793\) 6.59468 + 1.40174i 0.234184 + 0.0497773i
\(794\) 21.9585 4.66742i 0.779278 0.165641i
\(795\) −10.9288 + 4.86584i −0.387606 + 0.172573i
\(796\) −4.34735 4.82822i −0.154088 0.171132i
\(797\) −1.93405 18.4013i −0.0685076 0.651806i −0.973861 0.227146i \(-0.927060\pi\)
0.905353 0.424660i \(-0.139606\pi\)
\(798\) −1.46005 + 1.06079i −0.0516851 + 0.0375514i
\(799\) −0.119827 + 1.14007i −0.00423916 + 0.0403329i
\(800\) 25.3951 + 43.9856i 0.897852 + 1.55513i
\(801\) 4.84652 8.39442i 0.171243 0.296602i
\(802\) 6.91143 + 5.02145i 0.244051 + 0.177314i
\(803\) 15.5801 17.3034i 0.549809 0.610624i
\(804\) 0.887235 2.73063i 0.0312904 0.0963019i
\(805\) 9.29174 0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) 2.85926 8.79990i 0.100588 0.309579i
\(809\) −24.5891 + 27.3090i −0.864507 + 0.960132i −0.999528 0.0307106i \(-0.990223\pi\)
0.135022 + 0.990843i \(0.456890\pi\)
\(810\) 4.82731 + 3.50725i 0.169614 + 0.123232i
\(811\) 19.7151 34.1475i 0.692289 1.19908i −0.278797 0.960350i \(-0.589936\pi\)
0.971086 0.238730i \(-0.0767310\pi\)
\(812\) −2.84894 4.93451i −0.0999782 0.173167i
\(813\) 1.30399 12.4066i 0.0457328 0.435119i
\(814\) 23.9051 17.3680i 0.837872 0.608749i
\(815\) 0.404930 + 3.85265i 0.0141841 + 0.134952i
\(816\) −1.08531 1.20536i −0.0379934 0.0421960i
\(817\) −24.8420 + 11.0603i −0.869110 + 0.386953i
\(818\) 2.32548 0.494295i 0.0813083 0.0172826i
\(819\) 4.74891 + 1.00941i 0.165940 + 0.0352717i
\(820\) −3.90355 1.73797i −0.136318 0.0606926i
\(821\) −0.457525 1.40812i −0.0159677 0.0491436i 0.942755 0.333486i \(-0.108225\pi\)
−0.958723 + 0.284342i \(0.908225\pi\)
\(822\) 2.45142 + 7.54471i 0.0855032 + 0.263152i
\(823\) 35.5051 + 15.8079i 1.23763 + 0.551029i 0.918025 0.396521i \(-0.129783\pi\)
0.319606 + 0.947551i \(0.396449\pi\)
\(824\) 14.8465 + 3.15572i 0.517203 + 0.109935i
\(825\) −31.7711 + 6.75317i −1.10613 + 0.235115i
\(826\) −0.445877 + 0.198517i −0.0155140 + 0.00690729i
\(827\) −22.7078 25.2196i −0.789628 0.876971i 0.205182 0.978724i \(-0.434221\pi\)
−0.994810 + 0.101753i \(0.967555\pi\)
\(828\) −1.14351 10.8798i −0.0397398 0.378099i
\(829\) 13.3736 9.71650i 0.464485 0.337468i −0.330803 0.943700i \(-0.607320\pi\)
0.795288 + 0.606232i \(0.207320\pi\)
\(830\) 3.76968 35.8661i 0.130847 1.24493i
\(831\) 5.22073 + 9.04256i 0.181105 + 0.313683i
\(832\) −1.82877 + 3.16752i −0.0634012 + 0.109814i
\(833\) −6.79340 4.93569i −0.235377 0.171012i
\(834\) 7.79114 8.65293i 0.269785 0.299627i
\(835\) 12.9341 39.8071i 0.447603 1.37758i
\(836\) 23.8409 0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) −16.7110 + 51.4313i −0.576929 + 1.77561i 0.0525843 + 0.998616i \(0.483254\pi\)
−0.629514 + 0.776989i \(0.716746\pi\)
\(840\) 4.15319 4.61258i 0.143299 0.159149i
\(841\) 4.07162 + 2.95820i 0.140401 + 0.102007i
\(842\) 7.47562 12.9482i 0.257627 0.446223i
\(843\) 6.94819 + 12.0346i 0.239308 + 0.414494i
\(844\) −1.83401 + 17.4494i −0.0631291 + 0.600633i
\(845\) 13.5975 9.87918i 0.467769 0.339854i
\(846\) 0.138002 + 1.31300i 0.00474462 + 0.0451420i
\(847\) 3.03337 + 3.36890i 0.104228 + 0.115757i
\(848\) −4.48697 + 1.99773i −0.154083 + 0.0686023i
\(849\) 20.0331 4.25816i 0.687534 0.146140i
\(850\) −7.71808 1.64053i −0.264728 0.0562697i
\(851\) 31.2293 + 13.9042i 1.07053 + 0.476629i
\(852\) 3.28896 + 10.1224i 0.112678 + 0.346787i
\(853\) 12.2297 + 37.6392i 0.418738 + 1.28874i 0.908865 + 0.417091i \(0.136950\pi\)
−0.490127 + 0.871651i \(0.663050\pi\)
\(854\) 1.11415 + 0.496050i 0.0381253 + 0.0169745i
\(855\) −30.1165 6.40145i −1.02996 0.218925i
\(856\) −5.53238 + 1.17594i −0.189093 + 0.0401929i
\(857\) 11.6249 5.17574i 0.397099 0.176800i −0.198464 0.980108i \(-0.563595\pi\)
0.595564 + 0.803308i \(0.296929\pi\)
\(858\) −4.98576 5.53725i −0.170211 0.189039i
\(859\) −2.21123 21.0385i −0.0754462 0.717823i −0.965223 0.261427i \(-0.915807\pi\)
0.889777 0.456396i \(-0.150860\pi\)
\(860\) 32.7281 23.7784i 1.11602 0.810835i
\(861\) −0.0544344 + 0.517909i −0.00185512 + 0.0176503i
\(862\) −4.00618 6.93891i −0.136451 0.236340i
\(863\) 4.66987 8.08845i 0.158964 0.275334i −0.775531 0.631309i \(-0.782518\pi\)
0.934495 + 0.355975i \(0.115851\pi\)
\(864\) −21.9861 15.9739i −0.747983 0.543441i
\(865\) −51.2354 + 56.9027i −1.74206 + 1.93475i
\(866\) 5.24064 16.1290i 0.178084 0.548087i
\(867\) −13.7957 −0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 3.48982 10.7406i 0.118316 0.364139i
\(871\) −4.06320 + 4.51264i −0.137676 + 0.152905i
\(872\) −2.90353 2.10954i −0.0983260 0.0714380i
\(873\) −5.76760 + 9.98977i −0.195204 + 0.338102i
\(874\) −4.30028 7.44830i −0.145459 0.251942i
\(875\) −1.10815 + 10.5433i −0.0374621 + 0.356429i
\(876\) 6.29703 4.57506i 0.212757 0.154577i
\(877\) −2.34512 22.3123i −0.0791892 0.753435i −0.960006 0.279978i \(-0.909673\pi\)
0.880817 0.473456i \(-0.156994\pi\)
\(878\) −8.39365 9.32209i −0.283272 0.314605i
\(879\) 10.2231 4.55161i 0.344816 0.153522i
\(880\) −20.5014 + 4.35772i −0.691104 + 0.146899i
\(881\) −45.4168 9.65365i −1.53013 0.325240i −0.635520 0.772084i \(-0.719214\pi\)
−0.894612 + 0.446844i \(0.852548\pi\)
\(882\) −8.83472 3.93347i −0.297480 0.132447i
\(883\) −11.2913 34.7512i −0.379984 1.16947i −0.940054 0.341026i \(-0.889226\pi\)
0.560070 0.828445i \(-0.310774\pi\)
\(884\) 1.79381 + 5.52077i 0.0603323 + 0.185684i
\(885\) 2.83412 + 1.26183i 0.0952681 + 0.0424161i
\(886\) 11.9780 + 2.54601i 0.402410 + 0.0855348i
\(887\) −28.0582 + 5.96396i −0.942102 + 0.200250i −0.653266 0.757128i \(-0.726602\pi\)
−0.288836 + 0.957378i \(0.593268\pi\)
\(888\) 20.8610 9.28793i 0.700051 0.311683i
\(889\) 0.731487 + 0.812399i 0.0245333 + 0.0272470i
\(890\) 1.18501 + 11.2746i 0.0397217 + 0.377926i
\(891\) −7.77192 + 5.64663i −0.260369 + 0.189169i
\(892\) −1.50183 + 14.2890i −0.0502851 + 0.478431i
\(893\) −1.66433 2.88270i −0.0556945 0.0964658i
\(894\) −6.26408 + 10.8497i −0.209502 + 0.362869i
\(895\) −0.394914 0.286922i −0.0132005 0.00959074i
\(896\) 5.49031 6.09761i 0.183418 0.203707i
\(897\) 2.66381 8.19836i 0.0889420 0.273735i
\(898\) −6.34235 −0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) 1.44586 4.44989i 0.0481685 0.148247i
\(902\) −1.43538 + 1.59415i −0.0477929 + 0.0530794i
\(903\) −3.98869 2.89795i −0.132735 0.0964378i
\(904\) −7.75296 + 13.4285i −0.257860 + 0.446626i
\(905\) 14.3332 + 24.8259i 0.476453 + 0.825240i
\(906\) −0.999786 + 9.51233i −0.0332157 + 0.316026i
\(907\) 17.9518 13.0427i 0.596079 0.433077i −0.248406 0.968656i \(-0.579907\pi\)
0.844485 + 0.535579i \(0.179907\pi\)
\(908\) 3.46824 + 32.9981i 0.115098 + 1.09508i
\(909\) −5.56837 6.18430i −0.184691 0.205120i
\(910\) −5.18737 + 2.30957i −0.171960 + 0.0765614i
\(911\) −28.2024 + 5.99460i −0.934386 + 0.198610i −0.649856 0.760057i \(-0.725171\pi\)
−0.284530 + 0.958667i \(0.591838\pi\)
\(912\) 4.60677 + 0.979199i 0.152545 + 0.0324245i
\(913\) 53.0423 + 23.6160i 1.75544 + 0.781574i
\(914\) −6.64760 20.4592i −0.219883 0.676731i
\(915\) −2.39551 7.37263i −0.0791932 0.243732i
\(916\) 23.6160 + 10.5145i 0.780295 + 0.347410i
\(917\) −4.69898 0.998800i −0.155174 0.0329833i
\(918\) 4.12972 0.877799i 0.136301 0.0289717i
\(919\) 43.9071 19.5487i 1.44836 0.644853i 0.476238 0.879317i \(-0.342000\pi\)
0.972125 + 0.234464i \(0.0753335\pi\)
\(920\) 19.7924 + 21.9817i 0.652537 + 0.724715i
\(921\) −2.89771 27.5699i −0.0954828 0.908459i
\(922\) 3.71975 2.70256i 0.122503 0.0890039i
\(923\) 2.35294 22.3868i 0.0774481 0.736869i
\(924\) 2.16127 + 3.74343i 0.0711007 + 0.123150i
\(925\) −45.5334 + 78.8662i −1.49713 + 2.59310i
\(926\) −19.7010 14.3136i −0.647416 0.470376i
\(927\) 9.13433 10.1447i 0.300011 0.333196i
\(928\) 8.78572 27.0397i 0.288405 0.887621i
\(929\) −7.01617 −0.230193 −0.115097 0.993354i \(-0.536718\pi\)
−0.115097 + 0.993354i \(0.536718\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) 4.63406 14.2622i 0.151794 0.467173i
\(933\) 1.43795 1.59701i 0.0470765 0.0522837i
\(934\) 20.0497 + 14.5669i 0.656045 + 0.476644i
\(935\) 9.98321 17.2914i 0.326486 0.565490i
\(936\) 7.72770 + 13.3848i 0.252588 + 0.437495i
\(937\) 1.34639 12.8101i 0.0439848 0.418487i −0.950268 0.311432i \(-0.899191\pi\)
0.994253 0.107055i \(-0.0341421\pi\)
\(938\) −0.888663 + 0.645651i −0.0290159 + 0.0210813i
\(939\) 1.01359 + 9.64371i 0.0330774 + 0.314711i
\(940\) 3.31350 + 3.68001i 0.108074 + 0.120029i
\(941\) 45.7131 20.3528i 1.49021 0.663482i 0.509768 0.860312i \(-0.329731\pi\)
0.980438 + 0.196830i \(0.0630647\pi\)
\(942\) 9.21866 1.95949i 0.300360 0.0638436i
\(943\) −2.42751 0.515982i −0.0790505 0.0168027i
\(944\) 1.16358 + 0.518061i 0.0378714 + 0.0168615i
\(945\) −4.09278 12.5963i −0.133138 0.409757i
\(946\) −6.27584 19.3151i −0.204045 0.627987i
\(947\) −47.3837 21.0966i −1.53976 0.685547i −0.550928 0.834553i \(-0.685726\pi\)
−0.988836 + 0.149006i \(0.952393\pi\)
\(948\) 18.9678 + 4.03172i 0.616044 + 0.130944i
\(949\) −16.1021 + 3.42261i −0.522697 + 0.111103i
\(950\) 20.9307 9.31896i 0.679083 0.302347i
\(951\) 5.28126 + 5.86543i 0.171256 + 0.190200i
\(952\) 0.253749 + 2.41426i 0.00822405 + 0.0782467i
\(953\) 15.1571 11.0123i 0.490987 0.356723i −0.314577 0.949232i \(-0.601863\pi\)
0.805564 + 0.592509i \(0.201863\pi\)
\(954\) 0.563263 5.35909i 0.0182363 0.173507i
\(955\) 39.1193 + 67.7565i 1.26587 + 2.19255i
\(956\) −0.450241 + 0.779840i −0.0145618 + 0.0252218i
\(957\) 14.7096 + 10.6872i 0.475494 + 0.345467i
\(958\) −15.3377 + 17.0342i −0.495537 + 0.550350i
\(959\) −3.00772 + 9.25682i −0.0971245 + 0.298918i
\(960\) 4.20549 0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) −1.57194 + 4.83793i −0.0506550 + 0.155900i
\(964\) 15.6803 17.4147i 0.505027 0.560889i
\(965\) −16.9866 12.3415i −0.546817 0.397285i
\(966\) 0.779674 1.35044i 0.0250856 0.0434496i
\(967\) −23.8923 41.3827i −0.768324 1.33078i −0.938471 0.345358i \(-0.887757\pi\)
0.170146 0.985419i \(-0.445576\pi\)
\(968\) −1.50848 + 14.3522i −0.0484844 + 0.461298i
\(969\) −3.62969 + 2.63713i −0.116603 + 0.0847167i
\(970\) −1.41022 13.4174i −0.0452795 0.430805i
\(971\) −20.8104 23.1123i −0.667838 0.741709i 0.310077 0.950711i \(-0.399645\pi\)
−0.977915 + 0.209002i \(0.932978\pi\)
\(972\) −22.4867 + 10.0117i −0.721260 + 0.321126i
\(973\) 13.9738 2.97022i 0.447979 0.0952208i
\(974\) −19.2315 4.08778i −0.616217 0.130981i
\(975\) 20.9787 + 9.34033i 0.671857 + 0.299130i
\(976\) −0.983507 3.02692i −0.0314813 0.0968894i
\(977\) −6.82283 20.9985i −0.218282 0.671802i −0.998904 0.0467994i \(-0.985098\pi\)
0.780623 0.625003i \(-0.214902\pi\)
\(978\) 0.593911 + 0.264426i 0.0189912 + 0.00845542i
\(979\) −17.8532 3.79481i −0.570590 0.121283i
\(980\) −35.4806 + 7.54163i −1.13339 + 0.240909i
\(981\) −2.94880 + 1.31289i −0.0941478 + 0.0419173i
\(982\) −12.9013 14.3284i −0.411698 0.457237i
\(983\) −3.92785 37.3710i −0.125279 1.19195i −0.858810 0.512294i \(-0.828796\pi\)
0.733531 0.679656i \(-0.237871\pi\)
\(984\) −1.34118 + 0.974425i −0.0427553 + 0.0310635i
\(985\) 6.16764 58.6811i 0.196517 1.86974i
\(986\) 2.20846 + 3.82517i 0.0703318 + 0.121818i
\(987\) 0.301756 0.522656i 0.00960499 0.0166363i
\(988\) −13.6364 9.90744i −0.433832 0.315198i
\(989\) 15.7217 17.4608i 0.499922 0.555220i
\(990\) 7.10585 21.8695i 0.225839 0.695060i
\(991\) 6.77397 0.215182 0.107591 0.994195i \(-0.465686\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 1.25829 3.87263i 0.0399106 0.122832i
\(995\) 10.5719 11.7413i 0.335151 0.372223i
\(996\) 15.7025 + 11.4086i 0.497554 + 0.361494i
\(997\) 14.7866 25.6112i 0.468298 0.811115i −0.531046 0.847343i \(-0.678201\pi\)
0.999344 + 0.0362278i \(0.0115342\pi\)
\(998\) 14.2397 + 24.6639i 0.450751 + 0.780724i
\(999\) 5.09338 48.4603i 0.161147 1.53321i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.n.448.1 16
31.2 even 5 961.2.c.i.521.3 16
31.3 odd 30 961.2.d.o.374.4 16
31.4 even 5 961.2.g.m.844.1 16
31.5 even 3 961.2.g.m.846.1 16
31.6 odd 6 961.2.d.p.628.1 16
31.7 even 15 961.2.d.q.531.1 16
31.8 even 5 961.2.g.j.338.2 16
31.9 even 15 961.2.g.l.235.2 16
31.10 even 15 961.2.c.i.439.3 16
31.11 odd 30 961.2.g.t.547.1 16
31.12 odd 30 961.2.a.i.1.3 8
31.13 odd 30 961.2.g.k.816.2 16
31.14 even 15 961.2.d.n.388.4 16
31.15 odd 10 31.2.g.a.19.2 yes 16
31.16 even 5 961.2.g.l.732.2 16
31.17 odd 30 961.2.d.o.388.4 16
31.18 even 15 961.2.g.j.816.2 16
31.19 even 15 961.2.a.j.1.3 8
31.20 even 15 inner 961.2.g.n.547.1 16
31.21 odd 30 961.2.c.j.439.3 16
31.22 odd 30 31.2.g.a.18.2 16
31.23 odd 10 961.2.g.k.338.2 16
31.24 odd 30 961.2.d.p.531.1 16
31.25 even 3 961.2.d.q.628.1 16
31.26 odd 6 961.2.g.s.846.1 16
31.27 odd 10 961.2.g.s.844.1 16
31.28 even 15 961.2.d.n.374.4 16
31.29 odd 10 961.2.c.j.521.3 16
31.30 odd 2 961.2.g.t.448.1 16
93.50 odd 30 8649.2.a.be.1.6 8
93.53 even 30 279.2.y.c.235.1 16
93.74 even 30 8649.2.a.bf.1.6 8
93.77 even 10 279.2.y.c.19.1 16
124.15 even 10 496.2.bg.c.81.1 16
124.115 even 30 496.2.bg.c.49.1 16
155.22 even 60 775.2.ck.a.49.3 32
155.53 even 60 775.2.ck.a.49.2 32
155.77 even 20 775.2.ck.a.174.2 32
155.84 odd 30 775.2.bl.a.576.1 16
155.108 even 20 775.2.ck.a.174.3 32
155.139 odd 10 775.2.bl.a.701.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.22 odd 30
31.2.g.a.19.2 yes 16 31.15 odd 10
279.2.y.c.19.1 16 93.77 even 10
279.2.y.c.235.1 16 93.53 even 30
496.2.bg.c.49.1 16 124.115 even 30
496.2.bg.c.81.1 16 124.15 even 10
775.2.bl.a.576.1 16 155.84 odd 30
775.2.bl.a.701.1 16 155.139 odd 10
775.2.ck.a.49.2 32 155.53 even 60
775.2.ck.a.49.3 32 155.22 even 60
775.2.ck.a.174.2 32 155.77 even 20
775.2.ck.a.174.3 32 155.108 even 20
961.2.a.i.1.3 8 31.12 odd 30
961.2.a.j.1.3 8 31.19 even 15
961.2.c.i.439.3 16 31.10 even 15
961.2.c.i.521.3 16 31.2 even 5
961.2.c.j.439.3 16 31.21 odd 30
961.2.c.j.521.3 16 31.29 odd 10
961.2.d.n.374.4 16 31.28 even 15
961.2.d.n.388.4 16 31.14 even 15
961.2.d.o.374.4 16 31.3 odd 30
961.2.d.o.388.4 16 31.17 odd 30
961.2.d.p.531.1 16 31.24 odd 30
961.2.d.p.628.1 16 31.6 odd 6
961.2.d.q.531.1 16 31.7 even 15
961.2.d.q.628.1 16 31.25 even 3
961.2.g.j.338.2 16 31.8 even 5
961.2.g.j.816.2 16 31.18 even 15
961.2.g.k.338.2 16 31.23 odd 10
961.2.g.k.816.2 16 31.13 odd 30
961.2.g.l.235.2 16 31.9 even 15
961.2.g.l.732.2 16 31.16 even 5
961.2.g.m.844.1 16 31.4 even 5
961.2.g.m.846.1 16 31.5 even 3
961.2.g.n.448.1 16 1.1 even 1 trivial
961.2.g.n.547.1 16 31.20 even 15 inner
961.2.g.s.844.1 16 31.27 odd 10
961.2.g.s.846.1 16 31.26 odd 6
961.2.g.t.448.1 16 31.30 odd 2
961.2.g.t.547.1 16 31.11 odd 30
8649.2.a.be.1.6 8 93.50 odd 30
8649.2.a.bf.1.6 8 93.74 even 30