Properties

Label 961.2.d.q.628.1
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.1
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.q.531.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213065 + 0.655747i) q^{2} +(0.278857 + 0.858234i) q^{3} +(1.23343 + 0.896137i) q^{4} +3.70752 q^{5} -0.622199 q^{6} +(-0.617599 - 0.448712i) q^{7} +(-1.96606 + 1.42843i) q^{8} +(1.76825 - 1.28471i) q^{9} +(-0.789942 + 2.43119i) q^{10} +(-3.32961 - 2.41910i) q^{11} +(-0.425146 + 1.30846i) q^{12} +(0.899163 + 2.76734i) q^{13} +(0.425830 - 0.309383i) q^{14} +(1.03387 + 3.18192i) q^{15} +(0.424467 + 1.30637i) q^{16} +(1.05862 - 0.769131i) q^{17} +(0.465690 + 1.43325i) q^{18} +(-1.17412 + 3.61358i) q^{19} +(4.57295 + 3.32244i) q^{20} +(0.212878 - 0.655171i) q^{21} +(2.29574 - 1.66795i) q^{22} +(-2.65597 + 1.92967i) q^{23} +(-1.77418 - 1.28901i) q^{24} +8.74568 q^{25} -2.00625 q^{26} +(3.78584 + 2.75057i) q^{27} +(-0.359656 - 1.10691i) q^{28} +(-1.51283 + 4.65602i) q^{29} -2.30681 q^{30} -5.80746 q^{32} +(1.14767 - 3.53217i) q^{33} +(0.278801 + 0.858060i) q^{34} +(-2.28976 - 1.66361i) q^{35} +3.33228 q^{36} +10.4128 q^{37} +(-2.11943 - 1.53985i) q^{38} +(-2.12429 + 1.54338i) q^{39} +(-7.28921 + 5.29592i) q^{40} +(0.233600 - 0.718947i) q^{41} +(0.384269 + 0.279188i) q^{42} +(2.21160 - 6.80661i) q^{43} +(-1.93898 - 5.96757i) q^{44} +(6.55580 - 4.76307i) q^{45} +(-0.699483 - 2.15279i) q^{46} +(-0.270719 - 0.833189i) q^{47} +(-1.00281 + 0.728584i) q^{48} +(-1.98303 - 6.10315i) q^{49} +(-1.86340 + 5.73495i) q^{50} +(0.955298 + 0.694065i) q^{51} +(-1.37086 + 4.21908i) q^{52} +(2.89281 - 2.10175i) q^{53} +(-2.61031 + 1.89650i) q^{54} +(-12.3446 - 8.96886i) q^{55} +1.85519 q^{56} -3.42871 q^{57} +(-2.73084 - 1.98407i) q^{58} +(0.286542 + 0.881886i) q^{59} +(-1.57623 + 4.85115i) q^{60} -2.31704 q^{61} -1.66853 q^{63} +(0.388433 - 1.19547i) q^{64} +(3.33366 + 10.2599i) q^{65} +(2.07168 + 1.50516i) q^{66} -2.08690 q^{67} +1.99498 q^{68} +(-2.39675 - 1.74134i) q^{69} +(1.57877 - 1.14704i) q^{70} +(6.25862 - 4.54716i) q^{71} +(-1.64137 + 5.05162i) q^{72} +(-4.57700 - 3.32538i) q^{73} +(-2.21860 + 6.82815i) q^{74} +(2.43880 + 7.50584i) q^{75} +(-4.68646 + 3.40491i) q^{76} +(0.970882 + 2.98807i) q^{77} +(-0.559458 - 1.72183i) q^{78} +(-11.4029 + 8.28467i) q^{79} +(1.57372 + 4.84341i) q^{80} +(0.721302 - 2.21994i) q^{81} +(0.421675 + 0.306365i) q^{82} +(4.35952 - 13.4172i) q^{83} +(0.849692 - 0.617338i) q^{84} +(3.92484 - 2.85157i) q^{85} +(3.99219 + 2.90050i) q^{86} -4.41782 q^{87} +10.0017 q^{88} +(-3.58784 - 2.60672i) q^{89} +(1.72655 + 5.31379i) q^{90} +(0.686415 - 2.11257i) q^{91} -5.00520 q^{92} +0.604042 q^{94} +(-4.35308 + 13.3974i) q^{95} +(-1.61945 - 4.98416i) q^{96} +(4.26970 + 3.10212i) q^{97} +4.42463 q^{98} -8.99540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 22 q^{6} - 9 q^{7} - 8 q^{8} - 10 q^{9} - 6 q^{10} - 4 q^{11} + 5 q^{12} - 9 q^{13} - 18 q^{14} - 4 q^{15} - 2 q^{16} - 17 q^{17} - 14 q^{18} - 7 q^{19} + 36 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213065 + 0.655747i −0.150660 + 0.463683i −0.997695 0.0678533i \(-0.978385\pi\)
0.847036 + 0.531536i \(0.178385\pi\)
\(3\) 0.278857 + 0.858234i 0.160998 + 0.495502i 0.998719 0.0505969i \(-0.0161124\pi\)
−0.837721 + 0.546099i \(0.816112\pi\)
\(4\) 1.23343 + 0.896137i 0.616714 + 0.448069i
\(5\) 3.70752 1.65805 0.829026 0.559210i \(-0.188896\pi\)
0.829026 + 0.559210i \(0.188896\pi\)
\(6\) −0.622199 −0.254012
\(7\) −0.617599 0.448712i −0.233430 0.169597i 0.464921 0.885352i \(-0.346083\pi\)
−0.698351 + 0.715755i \(0.746083\pi\)
\(8\) −1.96606 + 1.42843i −0.695108 + 0.505025i
\(9\) 1.76825 1.28471i 0.589415 0.428235i
\(10\) −0.789942 + 2.43119i −0.249802 + 0.768810i
\(11\) −3.32961 2.41910i −1.00391 0.729387i −0.0409908 0.999160i \(-0.513051\pi\)
−0.962924 + 0.269773i \(0.913051\pi\)
\(12\) −0.425146 + 1.30846i −0.122729 + 0.377721i
\(13\) 0.899163 + 2.76734i 0.249383 + 0.767521i 0.994885 + 0.101018i \(0.0322099\pi\)
−0.745502 + 0.666504i \(0.767790\pi\)
\(14\) 0.425830 0.309383i 0.113808 0.0826862i
\(15\) 1.03387 + 3.18192i 0.266943 + 0.821568i
\(16\) 0.424467 + 1.30637i 0.106117 + 0.326594i
\(17\) 1.05862 0.769131i 0.256753 0.186542i −0.451962 0.892037i \(-0.649276\pi\)
0.708714 + 0.705496i \(0.249276\pi\)
\(18\) 0.465690 + 1.43325i 0.109764 + 0.337820i
\(19\) −1.17412 + 3.61358i −0.269362 + 0.829012i 0.721294 + 0.692629i \(0.243548\pi\)
−0.990656 + 0.136383i \(0.956452\pi\)
\(20\) 4.57295 + 3.32244i 1.02254 + 0.742921i
\(21\) 0.212878 0.655171i 0.0464538 0.142970i
\(22\) 2.29574 1.66795i 0.489454 0.355609i
\(23\) −2.65597 + 1.92967i −0.553808 + 0.402365i −0.829187 0.558971i \(-0.811196\pi\)
0.275380 + 0.961336i \(0.411196\pi\)
\(24\) −1.77418 1.28901i −0.362152 0.263119i
\(25\) 8.74568 1.74914
\(26\) −2.00625 −0.393458
\(27\) 3.78584 + 2.75057i 0.728585 + 0.529348i
\(28\) −0.359656 1.10691i −0.0679685 0.209186i
\(29\) −1.51283 + 4.65602i −0.280926 + 0.864602i 0.706664 + 0.707549i \(0.250199\pi\)
−0.987590 + 0.157052i \(0.949801\pi\)
\(30\) −2.30681 −0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) 1.14767 3.53217i 0.199784 0.614872i
\(34\) 0.278801 + 0.858060i 0.0478139 + 0.147156i
\(35\) −2.28976 1.66361i −0.387040 0.281201i
\(36\) 3.33228 0.555379
\(37\) 10.4128 1.71185 0.855925 0.517099i \(-0.172988\pi\)
0.855925 + 0.517099i \(0.172988\pi\)
\(38\) −2.11943 1.53985i −0.343817 0.249797i
\(39\) −2.12429 + 1.54338i −0.340158 + 0.247139i
\(40\) −7.28921 + 5.29592i −1.15252 + 0.837358i
\(41\) 0.233600 0.718947i 0.0364822 0.112281i −0.931157 0.364618i \(-0.881199\pi\)
0.967639 + 0.252338i \(0.0811994\pi\)
\(42\) 0.384269 + 0.279188i 0.0592940 + 0.0430796i
\(43\) 2.21160 6.80661i 0.337266 1.03800i −0.628329 0.777948i \(-0.716261\pi\)
0.965595 0.260050i \(-0.0837391\pi\)
\(44\) −1.93898 5.96757i −0.292313 0.899645i
\(45\) 6.55580 4.76307i 0.977281 0.710036i
\(46\) −0.699483 2.15279i −0.103133 0.317411i
\(47\) −0.270719 0.833189i −0.0394885 0.121533i 0.929369 0.369152i \(-0.120352\pi\)
−0.968857 + 0.247619i \(0.920352\pi\)
\(48\) −1.00281 + 0.728584i −0.144743 + 0.105162i
\(49\) −1.98303 6.10315i −0.283290 0.871878i
\(50\) −1.86340 + 5.73495i −0.263524 + 0.811044i
\(51\) 0.955298 + 0.694065i 0.133768 + 0.0971885i
\(52\) −1.37086 + 4.21908i −0.190104 + 0.585081i
\(53\) 2.89281 2.10175i 0.397357 0.288697i −0.371106 0.928590i \(-0.621021\pi\)
0.768464 + 0.639893i \(0.221021\pi\)
\(54\) −2.61031 + 1.89650i −0.355218 + 0.258081i
\(55\) −12.3446 8.96886i −1.66454 1.20936i
\(56\) 1.85519 0.247910
\(57\) −3.42871 −0.454144
\(58\) −2.73084 1.98407i −0.358577 0.260521i
\(59\) 0.286542 + 0.881886i 0.0373046 + 0.114812i 0.967975 0.251048i \(-0.0807751\pi\)
−0.930670 + 0.365859i \(0.880775\pi\)
\(60\) −1.57623 + 4.85115i −0.203491 + 0.626281i
\(61\) −2.31704 −0.296666 −0.148333 0.988937i \(-0.547391\pi\)
−0.148333 + 0.988937i \(0.547391\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) 0.388433 1.19547i 0.0485541 0.149434i
\(65\) 3.33366 + 10.2599i 0.413490 + 1.27259i
\(66\) 2.07168 + 1.50516i 0.255006 + 0.185273i
\(67\) −2.08690 −0.254955 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(68\) 1.99498 0.241926
\(69\) −2.39675 1.74134i −0.288535 0.209633i
\(70\) 1.57877 1.14704i 0.188699 0.137098i
\(71\) 6.25862 4.54716i 0.742762 0.539648i −0.150813 0.988562i \(-0.548189\pi\)
0.893575 + 0.448914i \(0.148189\pi\)
\(72\) −1.64137 + 5.05162i −0.193438 + 0.595340i
\(73\) −4.57700 3.32538i −0.535697 0.389207i 0.286788 0.957994i \(-0.407413\pi\)
−0.822484 + 0.568788i \(0.807413\pi\)
\(74\) −2.21860 + 6.82815i −0.257907 + 0.793756i
\(75\) 2.43880 + 7.50584i 0.281608 + 0.866700i
\(76\) −4.68646 + 3.40491i −0.537574 + 0.390570i
\(77\) 0.970882 + 2.98807i 0.110642 + 0.340522i
\(78\) −0.559458 1.72183i −0.0633461 0.194959i
\(79\) −11.4029 + 8.28467i −1.28292 + 0.932098i −0.999637 0.0269378i \(-0.991424\pi\)
−0.283286 + 0.959036i \(0.591424\pi\)
\(80\) 1.57372 + 4.84341i 0.175947 + 0.541509i
\(81\) 0.721302 2.21994i 0.0801447 0.246660i
\(82\) 0.421675 + 0.306365i 0.0465662 + 0.0338323i
\(83\) 4.35952 13.4172i 0.478520 1.47273i −0.362631 0.931933i \(-0.618122\pi\)
0.841151 0.540800i \(-0.181878\pi\)
\(84\) 0.849692 0.617338i 0.0927090 0.0673571i
\(85\) 3.92484 2.85157i 0.425709 0.309296i
\(86\) 3.99219 + 2.90050i 0.430489 + 0.312769i
\(87\) −4.41782 −0.473640
\(88\) 10.0017 1.06619
\(89\) −3.58784 2.60672i −0.380310 0.276311i 0.381163 0.924508i \(-0.375524\pi\)
−0.761473 + 0.648196i \(0.775524\pi\)
\(90\) 1.72655 + 5.31379i 0.181995 + 0.560122i
\(91\) 0.686415 2.11257i 0.0719559 0.221457i
\(92\) −5.00520 −0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) −4.35308 + 13.3974i −0.446617 + 1.37454i
\(96\) −1.61945 4.98416i −0.165285 0.508694i
\(97\) 4.26970 + 3.10212i 0.433522 + 0.314972i 0.783056 0.621951i \(-0.213660\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(98\) 4.42463 0.446955
\(99\) −8.99540 −0.904072
\(100\) 10.7872 + 7.83733i 1.07872 + 0.783733i
\(101\) −3.08028 + 2.23795i −0.306499 + 0.222684i −0.730393 0.683027i \(-0.760663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(102\) −0.658671 + 0.478553i −0.0652181 + 0.0473838i
\(103\) −1.93003 + 5.94001i −0.190171 + 0.585286i −0.999999 0.00138104i \(-0.999560\pi\)
0.809828 + 0.586667i \(0.199560\pi\)
\(104\) −5.72075 4.15637i −0.560966 0.407565i
\(105\) 0.789248 2.42906i 0.0770227 0.237052i
\(106\) 0.761857 + 2.34476i 0.0739981 + 0.227743i
\(107\) −1.88289 + 1.36800i −0.182026 + 0.132250i −0.675067 0.737756i \(-0.735885\pi\)
0.493041 + 0.870006i \(0.335885\pi\)
\(108\) 2.20467 + 6.78526i 0.212144 + 0.652912i
\(109\) 0.456365 + 1.40455i 0.0437118 + 0.134531i 0.970531 0.240978i \(-0.0774680\pi\)
−0.926819 + 0.375509i \(0.877468\pi\)
\(110\) 8.51150 6.18396i 0.811539 0.589618i
\(111\) 2.90368 + 8.93661i 0.275605 + 0.848225i
\(112\) 0.324035 0.997279i 0.0306185 0.0942340i
\(113\) −5.16197 3.75039i −0.485597 0.352807i 0.317891 0.948127i \(-0.397025\pi\)
−0.803489 + 0.595320i \(0.797025\pi\)
\(114\) 0.730538 2.24836i 0.0684212 0.210579i
\(115\) −9.84705 + 7.15430i −0.918242 + 0.667142i
\(116\) −6.03840 + 4.38716i −0.560652 + 0.407337i
\(117\) 5.14516 + 3.73818i 0.475670 + 0.345594i
\(118\) −0.639346 −0.0588566
\(119\) −0.998919 −0.0915708
\(120\) −6.57779 4.77904i −0.600467 0.436265i
\(121\) 1.83505 + 5.64771i 0.166823 + 0.513428i
\(122\) 0.493680 1.51939i 0.0446957 0.137559i
\(123\) 0.682166 0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 0.355505 1.09413i 0.0316709 0.0974730i
\(127\) 0.442517 + 1.36193i 0.0392670 + 0.120851i 0.968768 0.247967i \(-0.0797624\pi\)
−0.929501 + 0.368818i \(0.879762\pi\)
\(128\) −8.69550 6.31765i −0.768581 0.558407i
\(129\) 6.45838 0.568629
\(130\) −7.43821 −0.652374
\(131\) −5.09106 3.69887i −0.444808 0.323172i 0.342734 0.939432i \(-0.388647\pi\)
−0.787543 + 0.616260i \(0.788647\pi\)
\(132\) 4.58088 3.32820i 0.398714 0.289683i
\(133\) 2.34659 1.70490i 0.203475 0.147833i
\(134\) 0.444645 1.36848i 0.0384115 0.118218i
\(135\) 14.0361 + 10.1978i 1.20803 + 0.877687i
\(136\) −0.982661 + 3.02432i −0.0842625 + 0.259333i
\(137\) −3.93994 12.1259i −0.336612 1.03598i −0.965923 0.258830i \(-0.916663\pi\)
0.629311 0.777153i \(-0.283337\pi\)
\(138\) 1.65254 1.20064i 0.140674 0.102205i
\(139\) −5.78287 17.7978i −0.490496 1.50959i −0.823860 0.566794i \(-0.808184\pi\)
0.333363 0.942798i \(-0.391816\pi\)
\(140\) −1.33343 4.10387i −0.112695 0.346841i
\(141\) 0.639579 0.464681i 0.0538623 0.0391332i
\(142\) 1.64829 + 5.07291i 0.138321 + 0.425709i
\(143\) 3.70061 11.3893i 0.309461 0.952423i
\(144\) 2.42887 + 1.76468i 0.202406 + 0.147056i
\(145\) −5.60885 + 17.2623i −0.465790 + 1.43355i
\(146\) 3.15581 2.29283i 0.261176 0.189756i
\(147\) 4.68495 3.40381i 0.386408 0.280742i
\(148\) 12.8434 + 9.33128i 1.05572 + 0.767027i
\(149\) −20.1353 −1.64955 −0.824774 0.565462i \(-0.808698\pi\)
−0.824774 + 0.565462i \(0.808698\pi\)
\(150\) −5.44155 −0.444301
\(151\) 12.4366 + 9.03571i 1.01207 + 0.735315i 0.964643 0.263559i \(-0.0848964\pi\)
0.0474314 + 0.998874i \(0.484896\pi\)
\(152\) −2.85334 8.78167i −0.231436 0.712287i
\(153\) 0.883790 2.72003i 0.0714502 0.219901i
\(154\) −2.16628 −0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) 4.68076 14.4059i 0.373566 1.14972i −0.570876 0.821037i \(-0.693396\pi\)
0.944441 0.328680i \(-0.106604\pi\)
\(158\) −3.00309 9.24256i −0.238913 0.735299i
\(159\) 2.61047 + 1.89662i 0.207024 + 0.150412i
\(160\) −21.5313 −1.70220
\(161\) 2.50619 0.197515
\(162\) 1.30203 + 0.945983i 0.102297 + 0.0743234i
\(163\) 0.845317 0.614159i 0.0662103 0.0481046i −0.554188 0.832392i \(-0.686971\pi\)
0.620398 + 0.784287i \(0.286971\pi\)
\(164\) 0.932404 0.677431i 0.0728085 0.0528985i
\(165\) 4.25501 13.0956i 0.331252 1.01949i
\(166\) 7.86944 + 5.71748i 0.610787 + 0.443763i
\(167\) 3.48862 10.7369i 0.269957 0.830843i −0.720552 0.693400i \(-0.756112\pi\)
0.990510 0.137443i \(-0.0438883\pi\)
\(168\) 0.517333 + 1.59219i 0.0399131 + 0.122840i
\(169\) 3.66756 2.66464i 0.282120 0.204972i
\(170\) 1.03366 + 3.18127i 0.0792779 + 0.243992i
\(171\) 2.56625 + 7.89810i 0.196246 + 0.603983i
\(172\) 8.82750 6.41356i 0.673091 0.489029i
\(173\) −6.38203 19.6419i −0.485217 1.49334i −0.831667 0.555275i \(-0.812613\pi\)
0.346450 0.938068i \(-0.387387\pi\)
\(174\) 0.941283 2.89697i 0.0713585 0.219619i
\(175\) −5.40132 3.92429i −0.408301 0.296648i
\(176\) 1.74695 5.37655i 0.131681 0.405272i
\(177\) −0.676961 + 0.491841i −0.0508835 + 0.0369690i
\(178\) 2.47379 1.79731i 0.185418 0.134714i
\(179\) −0.106517 0.0773892i −0.00796146 0.00578434i 0.583797 0.811899i \(-0.301566\pi\)
−0.591759 + 0.806115i \(0.701566\pi\)
\(180\) 12.3545 0.920848
\(181\) −7.73199 −0.574714 −0.287357 0.957824i \(-0.592777\pi\)
−0.287357 + 0.957824i \(0.592777\pi\)
\(182\) 1.23906 + 0.900229i 0.0918451 + 0.0667294i
\(183\) −0.646123 1.98856i −0.0477628 0.146999i
\(184\) 2.46540 7.58772i 0.181752 0.559374i
\(185\) 38.6056 2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) 0.412739 1.27028i 0.0301021 0.0926447i
\(189\) −1.10392 3.39750i −0.0802980 0.247132i
\(190\) −7.85781 5.70903i −0.570066 0.414177i
\(191\) −21.1027 −1.52694 −0.763468 0.645846i \(-0.776505\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(192\) 1.13431 0.0818620
\(193\) −4.58165 3.32877i −0.329795 0.239610i 0.410549 0.911839i \(-0.365337\pi\)
−0.740343 + 0.672229i \(0.765337\pi\)
\(194\) −2.94393 + 2.13889i −0.211362 + 0.153563i
\(195\) −7.87583 + 5.72212i −0.564000 + 0.409770i
\(196\) 3.02333 9.30486i 0.215952 0.664633i
\(197\) 12.8753 + 9.35448i 0.917330 + 0.666479i 0.942858 0.333195i \(-0.108127\pi\)
−0.0255278 + 0.999674i \(0.508127\pi\)
\(198\) 1.91661 5.89871i 0.136207 0.419203i
\(199\) 1.31686 + 4.05288i 0.0933499 + 0.287301i 0.986820 0.161821i \(-0.0517367\pi\)
−0.893470 + 0.449122i \(0.851737\pi\)
\(200\) −17.1945 + 12.4926i −1.21584 + 0.883358i
\(201\) −0.581946 1.79105i −0.0410473 0.126331i
\(202\) −0.811230 2.49671i −0.0570779 0.175668i
\(203\) 3.02354 2.19673i 0.212211 0.154180i
\(204\) 0.556313 + 1.71216i 0.0389497 + 0.119875i
\(205\) 0.866076 2.66551i 0.0604894 0.186167i
\(206\) −3.48392 2.53122i −0.242736 0.176358i
\(207\) −2.21734 + 6.82428i −0.154116 + 0.474320i
\(208\) −3.23352 + 2.34929i −0.224204 + 0.162894i
\(209\) 12.6510 9.19148i 0.875087 0.635788i
\(210\) 1.42468 + 1.03509i 0.0983126 + 0.0714283i
\(211\) −11.5083 −0.792263 −0.396131 0.918194i \(-0.629648\pi\)
−0.396131 + 0.918194i \(0.629648\pi\)
\(212\) 5.45152 0.374412
\(213\) 5.64779 + 4.10336i 0.386980 + 0.281157i
\(214\) −0.495884 1.52617i −0.0338979 0.104327i
\(215\) 8.19954 25.2356i 0.559204 1.72105i
\(216\) −11.3722 −0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) 1.57763 4.85544i 0.106606 0.328100i
\(220\) −7.18881 22.1249i −0.484669 1.49166i
\(221\) 3.08032 + 2.23798i 0.207204 + 0.150543i
\(222\) −6.47882 −0.434830
\(223\) −9.42391 −0.631072 −0.315536 0.948914i \(-0.602184\pi\)
−0.315536 + 0.948914i \(0.602184\pi\)
\(224\) 3.58668 + 2.60588i 0.239645 + 0.174112i
\(225\) 15.4645 11.2356i 1.03097 0.749042i
\(226\) 3.55914 2.58587i 0.236751 0.172009i
\(227\) 6.72514 20.6979i 0.446364 1.37377i −0.434618 0.900615i \(-0.643117\pi\)
0.880981 0.473151i \(-0.156883\pi\)
\(228\) −4.22906 3.07259i −0.280077 0.203488i
\(229\) −5.23966 + 16.1260i −0.346246 + 1.06564i 0.614667 + 0.788787i \(0.289291\pi\)
−0.960913 + 0.276850i \(0.910709\pi\)
\(230\) −2.59335 7.98150i −0.171000 0.526284i
\(231\) −2.29373 + 1.66649i −0.150916 + 0.109647i
\(232\) −3.67647 11.3150i −0.241372 0.742866i
\(233\) −3.03952 9.35469i −0.199126 0.612846i −0.999904 0.0138848i \(-0.995580\pi\)
0.800778 0.598962i \(-0.204420\pi\)
\(234\) −3.54755 + 2.57744i −0.231910 + 0.168493i
\(235\) −1.00370 3.08906i −0.0654740 0.201508i
\(236\) −0.436862 + 1.34452i −0.0284373 + 0.0875210i
\(237\) −10.2900 7.47609i −0.668404 0.485624i
\(238\) 0.212835 0.655038i 0.0137960 0.0424598i
\(239\) 0.477834 0.347167i 0.0309085 0.0224563i −0.572224 0.820098i \(-0.693919\pi\)
0.603132 + 0.797641i \(0.293919\pi\)
\(240\) −3.71793 + 2.70124i −0.239992 + 0.174364i
\(241\) 12.4350 + 9.03452i 0.801006 + 0.581965i 0.911209 0.411944i \(-0.135150\pi\)
−0.110203 + 0.993909i \(0.535150\pi\)
\(242\) −4.09445 −0.263201
\(243\) 16.1450 1.03570
\(244\) −2.85790 2.07639i −0.182958 0.132927i
\(245\) −7.35213 22.6275i −0.469710 1.44562i
\(246\) −0.145346 + 0.447328i −0.00926690 + 0.0285206i
\(247\) −11.0557 −0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) −2.95887 + 9.10646i −0.187135 + 0.575943i
\(251\) 1.87002 + 5.75532i 0.118034 + 0.363273i 0.992568 0.121693i \(-0.0388322\pi\)
−0.874533 + 0.484965i \(0.838832\pi\)
\(252\) −2.05801 1.49523i −0.129642 0.0941907i
\(253\) 13.5114 0.849455
\(254\) −0.987363 −0.0619527
\(255\) 3.54178 + 2.57326i 0.221795 + 0.161144i
\(256\) 8.02935 5.83366i 0.501834 0.364604i
\(257\) 3.66310 2.66140i 0.228498 0.166013i −0.467646 0.883916i \(-0.654898\pi\)
0.696144 + 0.717903i \(0.254898\pi\)
\(258\) −1.37606 + 4.23506i −0.0856695 + 0.263663i
\(259\) −6.43092 4.67234i −0.399598 0.290325i
\(260\) −5.08250 + 15.6423i −0.315203 + 0.970095i
\(261\) 3.30656 + 10.1765i 0.204671 + 0.629912i
\(262\) 3.51025 2.55035i 0.216864 0.157561i
\(263\) 0.775281 + 2.38607i 0.0478059 + 0.147131i 0.972110 0.234525i \(-0.0753536\pi\)
−0.924304 + 0.381657i \(0.875354\pi\)
\(264\) 2.78905 + 8.58383i 0.171654 + 0.528298i
\(265\) 10.7251 7.79226i 0.658839 0.478675i
\(266\) 0.618005 + 1.90202i 0.0378923 + 0.116621i
\(267\) 1.23668 3.80611i 0.0756835 0.232930i
\(268\) −2.57404 1.87015i −0.157234 0.114237i
\(269\) −4.12222 + 12.6869i −0.251336 + 0.773533i 0.743194 + 0.669077i \(0.233310\pi\)
−0.994530 + 0.104456i \(0.966690\pi\)
\(270\) −9.67776 + 7.03131i −0.588970 + 0.427912i
\(271\) 11.1840 8.12564i 0.679379 0.493598i −0.193773 0.981046i \(-0.562072\pi\)
0.873152 + 0.487449i \(0.162072\pi\)
\(272\) 1.45412 + 1.05648i 0.0881691 + 0.0640586i
\(273\) 2.00449 0.121317
\(274\) 8.79097 0.531082
\(275\) −29.1197 21.1567i −1.75598 1.27580i
\(276\) −1.39574 4.29563i −0.0840134 0.258567i
\(277\) −3.57556 + 11.0044i −0.214834 + 0.661192i 0.784331 + 0.620343i \(0.213006\pi\)
−0.999165 + 0.0408496i \(0.986994\pi\)
\(278\) 12.9030 0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) −4.75866 + 14.6457i −0.283878 + 0.873686i 0.702855 + 0.711333i \(0.251908\pi\)
−0.986733 + 0.162353i \(0.948092\pi\)
\(282\) 0.168441 + 0.518409i 0.0100305 + 0.0308708i
\(283\) 18.3612 + 13.3402i 1.09146 + 0.792993i 0.979645 0.200736i \(-0.0643333\pi\)
0.111816 + 0.993729i \(0.464333\pi\)
\(284\) 11.7944 0.699871
\(285\) −12.7120 −0.752994
\(286\) 6.68003 + 4.85333i 0.394999 + 0.286983i
\(287\) −0.466871 + 0.339202i −0.0275585 + 0.0200224i
\(288\) −10.2690 + 7.46088i −0.605108 + 0.439637i
\(289\) −4.72418 + 14.5395i −0.277893 + 0.855266i
\(290\) −10.1246 7.35597i −0.594539 0.431958i
\(291\) −1.47171 + 4.52945i −0.0862730 + 0.265521i
\(292\) −2.66539 8.20323i −0.155980 0.480058i
\(293\) −10.0325 + 7.28904i −0.586105 + 0.425830i −0.840920 0.541159i \(-0.817986\pi\)
0.254815 + 0.966990i \(0.417986\pi\)
\(294\) 1.23384 + 3.79737i 0.0719591 + 0.221467i
\(295\) 1.06236 + 3.26961i 0.0618530 + 0.190364i
\(296\) −20.4722 + 14.8739i −1.18992 + 0.864528i
\(297\) −5.95145 18.3167i −0.345338 1.06284i
\(298\) 4.29013 13.2037i 0.248521 0.764868i
\(299\) −7.72821 5.61487i −0.446934 0.324716i
\(300\) −3.71819 + 11.4434i −0.214670 + 0.660685i
\(301\) −4.42009 + 3.21138i −0.254769 + 0.185101i
\(302\) −8.57493 + 6.23005i −0.493432 + 0.358499i
\(303\) −2.77964 2.01953i −0.159686 0.116019i
\(304\) −5.21907 −0.299334
\(305\) −8.59046 −0.491888
\(306\) 1.59534 + 1.15908i 0.0911997 + 0.0662605i
\(307\) 9.49300 + 29.2164i 0.541794 + 1.66747i 0.728493 + 0.685053i \(0.240221\pi\)
−0.186699 + 0.982417i \(0.559779\pi\)
\(308\) −1.48021 + 4.55561i −0.0843426 + 0.259580i
\(309\) −5.63612 −0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) 1.97187 6.06878i 0.111635 0.343577i
\(313\) −3.32057 10.2197i −0.187690 0.577650i 0.812295 0.583247i \(-0.198218\pi\)
−0.999984 + 0.00559778i \(0.998218\pi\)
\(314\) 8.44932 + 6.13879i 0.476823 + 0.346432i
\(315\) −6.18610 −0.348547
\(316\) −21.4888 −1.20884
\(317\) −7.07594 5.14097i −0.397425 0.288746i 0.371067 0.928606i \(-0.378992\pi\)
−0.768491 + 0.639860i \(0.778992\pi\)
\(318\) −1.79990 + 1.30770i −0.100933 + 0.0733324i
\(319\) 16.3005 11.8430i 0.912655 0.663083i
\(320\) 1.44012 4.43224i 0.0805052 0.247770i
\(321\) −1.69913 1.23449i −0.0948359 0.0689023i
\(322\) −0.533981 + 1.64343i −0.0297576 + 0.0915845i
\(323\) 1.53637 + 4.72845i 0.0854858 + 0.263098i
\(324\) 2.87904 2.09175i 0.159947 0.116208i
\(325\) 7.86379 + 24.2022i 0.436204 + 1.34250i
\(326\) 0.222625 + 0.685170i 0.0123301 + 0.0379480i
\(327\) −1.07817 + 0.783335i −0.0596229 + 0.0433185i
\(328\) 0.567692 + 1.74718i 0.0313455 + 0.0964716i
\(329\) −0.206666 + 0.636051i −0.0113938 + 0.0350666i
\(330\) 7.68078 + 5.58042i 0.422813 + 0.307192i
\(331\) 10.0026 30.7848i 0.549793 1.69209i −0.159520 0.987195i \(-0.550995\pi\)
0.709313 0.704893i \(-0.249005\pi\)
\(332\) 17.4008 12.6424i 0.954995 0.693844i
\(333\) 18.4124 13.3774i 1.00899 0.733075i
\(334\) 6.29736 + 4.57530i 0.344576 + 0.250349i
\(335\) −7.73721 −0.422729
\(336\) 0.946258 0.0516226
\(337\) 22.4371 + 16.3015i 1.22223 + 0.888000i 0.996283 0.0861400i \(-0.0274532\pi\)
0.225944 + 0.974140i \(0.427453\pi\)
\(338\) 0.965898 + 2.97273i 0.0525379 + 0.161695i
\(339\) 1.77926 5.47600i 0.0966362 0.297416i
\(340\) 7.39640 0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) −3.16515 + 9.74132i −0.170902 + 0.525982i
\(344\) 5.37460 + 16.5413i 0.289779 + 0.891848i
\(345\) −8.88598 6.45605i −0.478405 0.347582i
\(346\) 14.2399 0.765540
\(347\) 25.9161 1.39125 0.695624 0.718407i \(-0.255128\pi\)
0.695624 + 0.718407i \(0.255128\pi\)
\(348\) −5.44906 3.95897i −0.292100 0.212223i
\(349\) −4.52559 + 3.28803i −0.242249 + 0.176004i −0.702285 0.711896i \(-0.747837\pi\)
0.460036 + 0.887900i \(0.347837\pi\)
\(350\) 3.72417 2.70577i 0.199065 0.144629i
\(351\) −4.20768 + 12.9499i −0.224589 + 0.691215i
\(352\) 19.3366 + 14.0488i 1.03064 + 0.748806i
\(353\) −3.60591 + 11.0979i −0.191923 + 0.590679i 0.808075 + 0.589079i \(0.200509\pi\)
−0.999999 + 0.00160016i \(0.999491\pi\)
\(354\) −0.178286 0.548709i −0.00947581 0.0291635i
\(355\) 23.2039 16.8587i 1.23154 0.894765i
\(356\) −2.08936 6.43039i −0.110736 0.340810i
\(357\) −0.278556 0.857307i −0.0147427 0.0453735i
\(358\) 0.0734428 0.0533593i 0.00388157 0.00282013i
\(359\) 8.09620 + 24.9175i 0.427301 + 1.31510i 0.900774 + 0.434289i \(0.143000\pi\)
−0.473473 + 0.880808i \(0.657000\pi\)
\(360\) −6.08541 + 18.7290i −0.320729 + 0.987104i
\(361\) 3.69193 + 2.68235i 0.194312 + 0.141176i
\(362\) 1.64742 5.07022i 0.0865862 0.266485i
\(363\) −4.33534 + 3.14981i −0.227546 + 0.165322i
\(364\) 2.73979 1.99058i 0.143604 0.104335i
\(365\) −16.9693 12.3289i −0.888213 0.645325i
\(366\) 1.44166 0.0753567
\(367\) −27.0146 −1.41015 −0.705076 0.709132i \(-0.749087\pi\)
−0.705076 + 0.709132i \(0.749087\pi\)
\(368\) −3.64825 2.65061i −0.190178 0.138173i
\(369\) −0.510573 1.57138i −0.0265794 0.0818029i
\(370\) −8.22549 + 25.3155i −0.427623 + 1.31609i
\(371\) −2.72967 −0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 1.14744 3.53145i 0.0593326 0.182607i
\(375\) 3.87253 + 11.9184i 0.199977 + 0.615465i
\(376\) 1.72240 + 1.25140i 0.0888261 + 0.0645359i
\(377\) −14.2451 −0.733658
\(378\) 2.46311 0.126688
\(379\) 3.75304 + 2.72674i 0.192781 + 0.140063i 0.679989 0.733223i \(-0.261985\pi\)
−0.487208 + 0.873286i \(0.661985\pi\)
\(380\) −17.3751 + 12.6238i −0.891325 + 0.647585i
\(381\) −1.04545 + 0.759566i −0.0535602 + 0.0389137i
\(382\) 4.49624 13.8380i 0.230048 0.708014i
\(383\) −4.06234 2.95147i −0.207576 0.150813i 0.479140 0.877738i \(-0.340949\pi\)
−0.686716 + 0.726926i \(0.740949\pi\)
\(384\) 2.99722 9.22450i 0.152951 0.470736i
\(385\) 3.59956 + 11.0783i 0.183451 + 0.564603i
\(386\) 3.15902 2.29516i 0.160790 0.116821i
\(387\) −4.83383 14.8770i −0.245718 0.756241i
\(388\) 2.48644 + 7.65247i 0.126230 + 0.388496i
\(389\) 15.0492 10.9339i 0.763025 0.554370i −0.136812 0.990597i \(-0.543686\pi\)
0.899837 + 0.436227i \(0.143686\pi\)
\(390\) −2.07420 6.38373i −0.105031 0.323253i
\(391\) −1.32748 + 4.08558i −0.0671338 + 0.206616i
\(392\) 12.6167 + 9.16655i 0.637238 + 0.462981i
\(393\) 1.75482 5.40078i 0.0885190 0.272433i
\(394\) −8.87746 + 6.44985i −0.447240 + 0.324939i
\(395\) −42.2763 + 30.7155i −2.12715 + 1.54547i
\(396\) −11.0952 8.06112i −0.557554 0.405086i
\(397\) 32.5588 1.63408 0.817040 0.576581i \(-0.195614\pi\)
0.817040 + 0.576581i \(0.195614\pi\)
\(398\) −2.93824 −0.147281
\(399\) 2.11757 + 1.53850i 0.106011 + 0.0770214i
\(400\) 3.71225 + 11.4251i 0.185613 + 0.571257i
\(401\) 3.82880 11.7838i 0.191201 0.588457i −0.808799 0.588086i \(-0.799882\pi\)
1.00000 0.000371451i \(-0.000118236\pi\)
\(402\) 1.29847 0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) 2.67424 8.23046i 0.132884 0.408975i
\(406\) 0.796287 + 2.45072i 0.0395190 + 0.121627i
\(407\) −34.6705 25.1896i −1.71855 1.24860i
\(408\) −2.86960 −0.142066
\(409\) 3.44808 0.170497 0.0852484 0.996360i \(-0.472832\pi\)
0.0852484 + 0.996360i \(0.472832\pi\)
\(410\) 1.56337 + 1.13585i 0.0772092 + 0.0560958i
\(411\) 9.30817 6.76278i 0.459138 0.333583i
\(412\) −7.70361 + 5.59700i −0.379530 + 0.275744i
\(413\) 0.218745 0.673226i 0.0107637 0.0331273i
\(414\) −4.00256 2.90803i −0.196715 0.142922i
\(415\) 16.1630 49.7446i 0.793411 2.44187i
\(416\) −5.22185 16.0712i −0.256022 0.787956i
\(417\) 13.6621 9.92611i 0.669037 0.486084i
\(418\) 3.33180 + 10.2542i 0.162964 + 0.501550i
\(419\) −12.3752 38.0871i −0.604570 1.86068i −0.499717 0.866189i \(-0.666563\pi\)
−0.104854 0.994488i \(-0.533437\pi\)
\(420\) 3.15025 2.28879i 0.153716 0.111681i
\(421\) 6.70085 + 20.6231i 0.326580 + 1.00511i 0.970723 + 0.240204i \(0.0772142\pi\)
−0.644143 + 0.764905i \(0.722786\pi\)
\(422\) 2.45201 7.54652i 0.119362 0.367359i
\(423\) −1.54910 1.12549i −0.0753199 0.0547231i
\(424\) −2.68524 + 8.26433i −0.130407 + 0.401351i
\(425\) 9.25833 6.72657i 0.449095 0.326287i
\(426\) −3.89411 + 2.82924i −0.188670 + 0.137077i
\(427\) 1.43100 + 1.03968i 0.0692510 + 0.0503138i
\(428\) −3.54833 −0.171515
\(429\) 10.8066 0.521750
\(430\) 14.8011 + 10.7536i 0.713774 + 0.518587i
\(431\) −3.59098 11.0519i −0.172972 0.532352i 0.826563 0.562844i \(-0.190293\pi\)
−0.999535 + 0.0304917i \(0.990293\pi\)
\(432\) −1.98632 + 6.11325i −0.0955667 + 0.294124i
\(433\) −24.5964 −1.18203 −0.591015 0.806661i \(-0.701272\pi\)
−0.591015 + 0.806661i \(0.701272\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) −0.695773 + 2.14137i −0.0333215 + 0.102553i
\(437\) −3.85460 11.8632i −0.184390 0.567495i
\(438\) 2.84780 + 2.06905i 0.136073 + 0.0988630i
\(439\) 18.1932 0.868316 0.434158 0.900837i \(-0.357046\pi\)
0.434158 + 0.900837i \(0.357046\pi\)
\(440\) 37.0816 1.76779
\(441\) −11.3472 8.24425i −0.540345 0.392584i
\(442\) −2.12386 + 1.54307i −0.101021 + 0.0733964i
\(443\) −14.3684 + 10.4393i −0.682664 + 0.495984i −0.874240 0.485493i \(-0.838640\pi\)
0.191576 + 0.981478i \(0.438640\pi\)
\(444\) −4.42695 + 13.6247i −0.210094 + 0.646602i
\(445\) −13.3020 9.66445i −0.630574 0.458139i
\(446\) 2.00791 6.17970i 0.0950771 0.292617i
\(447\) −5.61488 17.2808i −0.265575 0.817354i
\(448\) −0.776318 + 0.564028i −0.0366776 + 0.0266478i
\(449\) 2.84252 + 8.74836i 0.134147 + 0.412861i 0.995456 0.0952196i \(-0.0303553\pi\)
−0.861310 + 0.508080i \(0.830355\pi\)
\(450\) 4.07278 + 12.5347i 0.191993 + 0.590892i
\(451\) −2.51700 + 1.82871i −0.118521 + 0.0861106i
\(452\) −3.00605 9.25167i −0.141393 0.435162i
\(453\) −4.28672 + 13.1932i −0.201408 + 0.619869i
\(454\) 12.1397 + 8.81998i 0.569743 + 0.413942i
\(455\) 2.54490 7.83238i 0.119307 0.367188i
\(456\) 6.74106 4.89766i 0.315679 0.229354i
\(457\) −25.2412 + 18.3388i −1.18074 + 0.857855i −0.992254 0.124222i \(-0.960356\pi\)
−0.188481 + 0.982077i \(0.560356\pi\)
\(458\) −9.45819 6.87178i −0.441952 0.321097i
\(459\) 6.12331 0.285812
\(460\) −18.5568 −0.865218
\(461\) −5.39491 3.91963i −0.251266 0.182555i 0.455022 0.890480i \(-0.349631\pi\)
−0.706288 + 0.707925i \(0.749631\pi\)
\(462\) −0.604082 1.85917i −0.0281044 0.0864966i
\(463\) −10.9140 + 33.5899i −0.507217 + 1.56105i 0.289795 + 0.957089i \(0.406413\pi\)
−0.797011 + 0.603964i \(0.793587\pi\)
\(464\) −6.72466 −0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) 11.1071 34.1842i 0.513977 1.58186i −0.271159 0.962535i \(-0.587407\pi\)
0.785136 0.619324i \(-0.212593\pi\)
\(468\) 2.99626 + 9.22153i 0.138502 + 0.426266i
\(469\) 1.28886 + 0.936415i 0.0595143 + 0.0432396i
\(470\) 2.23949 0.103300
\(471\) 13.6689 0.629830
\(472\) −1.82307 1.32454i −0.0839136 0.0609668i
\(473\) −23.8296 + 17.3132i −1.09569 + 0.796064i
\(474\) 7.09485 5.15471i 0.325877 0.236764i
\(475\) −10.2685 + 31.6032i −0.471151 + 1.45005i
\(476\) −1.23209 0.895169i −0.0564729 0.0410300i
\(477\) 2.41507 7.43281i 0.110578 0.340325i
\(478\) 0.125844 + 0.387307i 0.00575595 + 0.0177150i
\(479\) −26.8953 + 19.5406i −1.22888 + 0.892832i −0.996806 0.0798671i \(-0.974550\pi\)
−0.232072 + 0.972699i \(0.574550\pi\)
\(480\) −6.00415 18.4789i −0.274051 0.843441i
\(481\) 9.36278 + 28.8157i 0.426906 + 1.31388i
\(482\) −8.57381 + 6.22924i −0.390526 + 0.283734i
\(483\) 0.698869 + 2.15090i 0.0317996 + 0.0978693i
\(484\) −2.79772 + 8.61049i −0.127169 + 0.391386i
\(485\) 15.8300 + 11.5012i 0.718802 + 0.522241i
\(486\) −3.43994 + 10.5871i −0.156039 + 0.480238i
\(487\) 23.0694 16.7609i 1.04537 0.759509i 0.0740472 0.997255i \(-0.476408\pi\)
0.971327 + 0.237746i \(0.0764084\pi\)
\(488\) 4.55544 3.30972i 0.206215 0.149824i
\(489\) 0.762815 + 0.554217i 0.0344957 + 0.0250626i
\(490\) 16.4044 0.741075
\(491\) 27.9636 1.26198 0.630991 0.775790i \(-0.282649\pi\)
0.630991 + 0.775790i \(0.282649\pi\)
\(492\) 0.841402 + 0.611315i 0.0379333 + 0.0275602i
\(493\) 1.97958 + 6.09252i 0.0891557 + 0.274393i
\(494\) 2.35559 7.24975i 0.105983 0.326182i
\(495\) −33.3506 −1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) −2.71249 + 8.34819i −0.121550 + 0.374091i
\(499\) 12.7639 + 39.2834i 0.571392 + 1.75856i 0.648148 + 0.761515i \(0.275544\pi\)
−0.0767556 + 0.997050i \(0.524456\pi\)
\(500\) 17.1288 + 12.4448i 0.766023 + 0.556548i
\(501\) 10.1876 0.455147
\(502\) −4.17247 −0.186226
\(503\) 20.6995 + 15.0391i 0.922947 + 0.670560i 0.944256 0.329213i \(-0.106783\pi\)
−0.0213090 + 0.999773i \(0.506783\pi\)
\(504\) 3.28043 2.38337i 0.146122 0.106164i
\(505\) −11.4202 + 8.29724i −0.508191 + 0.369222i
\(506\) −2.87881 + 8.86007i −0.127979 + 0.393878i
\(507\) 3.30961 + 2.40457i 0.146985 + 0.106791i
\(508\) −0.674661 + 2.07639i −0.0299332 + 0.0921250i
\(509\) 7.56096 + 23.2702i 0.335134 + 1.03144i 0.966656 + 0.256078i \(0.0824304\pi\)
−0.631522 + 0.775358i \(0.717570\pi\)
\(510\) −2.44203 + 1.77424i −0.108135 + 0.0785647i
\(511\) 1.33461 + 4.10750i 0.0590396 + 0.181705i
\(512\) −4.52814 13.9362i −0.200118 0.615898i
\(513\) −14.3845 + 10.4509i −0.635089 + 0.461419i
\(514\) 0.964724 + 2.96912i 0.0425522 + 0.130962i
\(515\) −7.15560 + 22.0227i −0.315313 + 0.970435i
\(516\) 7.96595 + 5.78760i 0.350681 + 0.254785i
\(517\) −1.11418 + 3.42909i −0.0490015 + 0.150811i
\(518\) 4.43407 3.22154i 0.194822 0.141546i
\(519\) 15.0776 10.9546i 0.661835 0.480851i
\(520\) −21.2098 15.4098i −0.930110 0.675765i
\(521\) 14.9656 0.655654 0.327827 0.944738i \(-0.393684\pi\)
0.327827 + 0.944738i \(0.393684\pi\)
\(522\) −7.37774 −0.322915
\(523\) −16.9615 12.3233i −0.741677 0.538860i 0.151559 0.988448i \(-0.451571\pi\)
−0.893236 + 0.449589i \(0.851571\pi\)
\(524\) −2.96476 9.12458i −0.129516 0.398609i
\(525\) 1.86176 5.72991i 0.0812539 0.250074i
\(526\) −1.72984 −0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) −3.77686 + 11.6240i −0.164211 + 0.505391i
\(530\) 2.82460 + 8.69322i 0.122693 + 0.377609i
\(531\) 1.63964 + 1.19127i 0.0711544 + 0.0516967i
\(532\) 4.42217 0.191726
\(533\) 2.19961 0.0952759
\(534\) 2.23235 + 1.62190i 0.0966032 + 0.0701863i
\(535\) −6.98086 + 5.07189i −0.301809 + 0.219277i
\(536\) 4.10297 2.98098i 0.177221 0.128759i
\(537\) 0.0367150 0.112997i 0.00158437 0.00487619i
\(538\) −7.44108 5.40626i −0.320808 0.233080i
\(539\) −8.16142 + 25.1183i −0.351537 + 1.08192i
\(540\) 8.17384 + 25.1565i 0.351746 + 1.08256i
\(541\) −1.40065 + 1.01763i −0.0602187 + 0.0437515i −0.617487 0.786581i \(-0.711849\pi\)
0.557269 + 0.830332i \(0.311849\pi\)
\(542\) 2.94545 + 9.06515i 0.126518 + 0.389382i
\(543\) −2.15612 6.63586i −0.0925280 0.284772i
\(544\) −6.14788 + 4.46670i −0.263588 + 0.191508i
\(545\) 1.69198 + 5.20738i 0.0724764 + 0.223059i
\(546\) −0.427087 + 1.31444i −0.0182776 + 0.0562527i
\(547\) 10.6155 + 7.71258i 0.453884 + 0.329766i 0.791127 0.611651i \(-0.209494\pi\)
−0.337243 + 0.941418i \(0.609494\pi\)
\(548\) 6.00683 18.4871i 0.256599 0.789730i
\(549\) −4.09710 + 2.97671i −0.174860 + 0.127043i
\(550\) 20.0778 14.5874i 0.856121 0.622008i
\(551\) −15.0487 10.9335i −0.641094 0.465782i
\(552\) 7.19953 0.306432
\(553\) 10.7598 0.457554
\(554\) −6.45429 4.68932i −0.274217 0.199230i
\(555\) 10.7654 + 33.1326i 0.456967 + 1.40640i
\(556\) 8.81656 27.1346i 0.373905 1.15076i
\(557\) 28.0246 1.18744 0.593721 0.804671i \(-0.297658\pi\)
0.593721 + 0.804671i \(0.297658\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) 1.20137 3.69743i 0.0507670 0.156245i
\(561\) −1.50176 4.62193i −0.0634042 0.195138i
\(562\) −8.58993 6.24095i −0.362344 0.263259i
\(563\) 22.6519 0.954662 0.477331 0.878723i \(-0.341604\pi\)
0.477331 + 0.878723i \(0.341604\pi\)
\(564\) 1.20529 0.0507520
\(565\) −19.1381 13.9046i −0.805145 0.584972i
\(566\) −12.6599 + 9.19798i −0.532136 + 0.386620i
\(567\) −1.44159 + 1.04738i −0.0605410 + 0.0439856i
\(568\) −5.80956 + 17.8800i −0.243764 + 0.750227i
\(569\) −37.5724 27.2979i −1.57512 1.14439i −0.922039 0.387098i \(-0.873478\pi\)
−0.653078 0.757291i \(-0.726522\pi\)
\(570\) 2.70848 8.33585i 0.113446 0.349150i
\(571\) 3.86221 + 11.8866i 0.161628 + 0.497441i 0.998772 0.0495423i \(-0.0157763\pi\)
−0.837144 + 0.546983i \(0.815776\pi\)
\(572\) 14.7708 10.7316i 0.617599 0.448712i
\(573\) −5.88463 18.1110i −0.245834 0.756600i
\(574\) −0.122956 0.378421i −0.00513210 0.0157950i
\(575\) −23.2282 + 16.8763i −0.968685 + 0.703791i
\(576\) −0.848987 2.61291i −0.0353745 0.108871i
\(577\) −9.42017 + 28.9923i −0.392167 + 1.20696i 0.538980 + 0.842319i \(0.318810\pi\)
−0.931146 + 0.364646i \(0.881190\pi\)
\(578\) −8.52769 6.19573i −0.354705 0.257708i
\(579\) 1.57923 4.86038i 0.0656307 0.201991i
\(580\) −22.3875 + 16.2655i −0.929590 + 0.675386i
\(581\) −8.71290 + 6.33030i −0.361472 + 0.262625i
\(582\) −2.65660 1.93013i −0.110120 0.0800067i
\(583\) −14.7162 −0.609485
\(584\) 13.7487 0.568926
\(585\) 19.0758 + 13.8593i 0.788685 + 0.573013i
\(586\) −2.64219 8.13182i −0.109148 0.335922i
\(587\) −10.4009 + 32.0107i −0.429292 + 1.32123i 0.469532 + 0.882915i \(0.344423\pi\)
−0.898824 + 0.438310i \(0.855577\pi\)
\(588\) 8.82883 0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) −4.43796 + 13.6586i −0.182553 + 0.561841i
\(592\) 4.41988 + 13.6030i 0.181656 + 0.559080i
\(593\) 36.3151 + 26.3844i 1.49128 + 1.08348i 0.973697 + 0.227847i \(0.0731687\pi\)
0.517585 + 0.855632i \(0.326831\pi\)
\(594\) 13.2791 0.544850
\(595\) −3.70351 −0.151829
\(596\) −24.8354 18.0440i −1.01730 0.739111i
\(597\) −3.11111 + 2.26035i −0.127329 + 0.0925100i
\(598\) 5.32854 3.87141i 0.217900 0.158314i
\(599\) −6.05198 + 18.6261i −0.247277 + 0.761041i 0.747976 + 0.663725i \(0.231026\pi\)
−0.995254 + 0.0973156i \(0.968974\pi\)
\(600\) −15.5164 11.2733i −0.633453 0.460231i
\(601\) −9.41249 + 28.9687i −0.383944 + 1.18166i 0.553300 + 0.832982i \(0.313368\pi\)
−0.937244 + 0.348675i \(0.886632\pi\)
\(602\) −1.16409 3.58269i −0.0474446 0.146019i
\(603\) −3.69015 + 2.68105i −0.150274 + 0.109181i
\(604\) 7.24238 + 22.2898i 0.294688 + 0.906958i
\(605\) 6.80348 + 20.9390i 0.276601 + 0.851290i
\(606\) 1.91654 1.39245i 0.0778543 0.0565644i
\(607\) −4.13297 12.7200i −0.167752 0.516288i 0.831477 0.555560i \(-0.187496\pi\)
−0.999229 + 0.0392723i \(0.987496\pi\)
\(608\) 6.81867 20.9857i 0.276534 0.851083i
\(609\) 2.72844 + 1.98233i 0.110562 + 0.0803280i
\(610\) 1.83033 5.63317i 0.0741078 0.228080i
\(611\) 2.06229 1.49834i 0.0834315 0.0606165i
\(612\) 3.52761 2.56296i 0.142595 0.103601i
\(613\) −4.20301 3.05367i −0.169758 0.123336i 0.499662 0.866220i \(-0.333457\pi\)
−0.669420 + 0.742884i \(0.733457\pi\)
\(614\) −21.1812 −0.854804
\(615\) 2.52914 0.101985
\(616\) −6.17705 4.48789i −0.248881 0.180822i
\(617\) −9.27455 28.5441i −0.373379 1.14914i −0.944566 0.328323i \(-0.893517\pi\)
0.571186 0.820820i \(-0.306483\pi\)
\(618\) 1.20086 3.69587i 0.0483057 0.148670i
\(619\) −18.3260 −0.736584 −0.368292 0.929710i \(-0.620057\pi\)
−0.368292 + 0.929710i \(0.620057\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) −0.507396 + 1.56160i −0.0203447 + 0.0626146i
\(623\) 1.04618 + 3.21981i 0.0419143 + 0.128999i
\(624\) −2.91793 2.12000i −0.116811 0.0848679i
\(625\) 7.75849 0.310339
\(626\) 7.40901 0.296123
\(627\) 11.4163 + 8.29440i 0.455922 + 0.331246i
\(628\) 18.6831 13.5740i 0.745535 0.541663i
\(629\) 11.0232 8.00880i 0.439522 0.319332i
\(630\) 1.31804 4.05651i 0.0525120 0.161615i
\(631\) 8.36136 + 6.07489i 0.332861 + 0.241837i 0.741643 0.670794i \(-0.234047\pi\)
−0.408783 + 0.912632i \(0.634047\pi\)
\(632\) 10.5847 32.5763i 0.421036 1.29582i
\(633\) −3.20917 9.87680i −0.127553 0.392568i
\(634\) 4.87881 3.54466i 0.193762 0.140777i
\(635\) 1.64064 + 5.04936i 0.0651067 + 0.200378i
\(636\) 1.52020 + 4.67868i 0.0602797 + 0.185522i
\(637\) 15.1064 10.9754i 0.598537 0.434863i
\(638\) 4.29295 + 13.2124i 0.169960 + 0.523082i
\(639\) 5.22503 16.0810i 0.206699 0.636154i
\(640\) −32.2387 23.4228i −1.27435 0.925868i
\(641\) −0.0312886 + 0.0962963i −0.00123582 + 0.00380348i −0.951673 0.307115i \(-0.900636\pi\)
0.950437 + 0.310918i \(0.100636\pi\)
\(642\) 1.17153 0.851170i 0.0462368 0.0335930i
\(643\) −11.0931 + 8.05961i −0.437469 + 0.317840i −0.784629 0.619966i \(-0.787146\pi\)
0.347159 + 0.937806i \(0.387146\pi\)
\(644\) 3.09120 + 2.24589i 0.121810 + 0.0885005i
\(645\) 23.9446 0.942816
\(646\) −3.42801 −0.134873
\(647\) −8.76519 6.36828i −0.344595 0.250363i 0.402003 0.915638i \(-0.368314\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(648\) 1.75290 + 5.39487i 0.0688603 + 0.211930i
\(649\) 1.17930 3.62951i 0.0462916 0.142471i
\(650\) −17.5460 −0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) −7.49434 + 23.0652i −0.293276 + 0.902611i 0.690519 + 0.723314i \(0.257382\pi\)
−0.983795 + 0.179297i \(0.942618\pi\)
\(654\) −0.283950 0.873907i −0.0111033 0.0341725i
\(655\) −18.8752 13.7136i −0.737515 0.535836i
\(656\) 1.03837 0.0405415
\(657\) −12.3654 −0.482420
\(658\) −0.373055 0.271041i −0.0145432 0.0105663i
\(659\) 6.90374 5.01586i 0.268932 0.195390i −0.445144 0.895459i \(-0.646847\pi\)
0.714075 + 0.700069i \(0.246847\pi\)
\(660\) 16.9837 12.3394i 0.661089 0.480309i
\(661\) 11.7069 36.0300i 0.455344 1.40141i −0.415386 0.909645i \(-0.636354\pi\)
0.870731 0.491760i \(-0.163646\pi\)
\(662\) 18.0559 + 13.1183i 0.701761 + 0.509859i
\(663\) −1.06174 + 3.26771i −0.0412347 + 0.126907i
\(664\) 10.5945 + 32.6064i 0.411144 + 1.26537i
\(665\) 8.70003 6.32094i 0.337373 0.245116i
\(666\) 4.84913 + 14.9241i 0.187900 + 0.578297i
\(667\) −4.96657 15.2855i −0.192306 0.591858i
\(668\) 13.9247 10.1169i 0.538761 0.391433i
\(669\) −2.62793 8.08792i −0.101601 0.312697i
\(670\) 1.64853 5.07365i 0.0636882 0.196012i
\(671\) 7.71483 + 5.60516i 0.297828 + 0.216385i
\(672\) −1.23628 + 3.80488i −0.0476905 + 0.146776i
\(673\) 5.76029 4.18509i 0.222043 0.161323i −0.471203 0.882025i \(-0.656180\pi\)
0.693246 + 0.720701i \(0.256180\pi\)
\(674\) −15.4702 + 11.2398i −0.595891 + 0.432940i
\(675\) 33.1097 + 24.0556i 1.27439 + 0.925902i
\(676\) 6.91154 0.265829
\(677\) −48.0610 −1.84713 −0.923567 0.383438i \(-0.874740\pi\)
−0.923567 + 0.383438i \(0.874740\pi\)
\(678\) 3.21177 + 2.33349i 0.123347 + 0.0896171i
\(679\) −1.24500 3.83173i −0.0477789 0.147048i
\(680\) −3.64323 + 11.2127i −0.139712 + 0.429988i
\(681\) 19.6390 0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) −3.91250 + 12.0414i −0.149598 + 0.460416i
\(685\) −14.6074 44.9569i −0.558119 1.71771i
\(686\) −5.71346 4.15107i −0.218141 0.158489i
\(687\) −15.3010 −0.583770
\(688\) 9.83073 0.374793
\(689\) 8.41734 + 6.11556i 0.320675 + 0.232984i
\(690\) 6.12682 4.45140i 0.233244 0.169462i
\(691\) −22.0482 + 16.0190i −0.838753 + 0.609390i −0.922022 0.387137i \(-0.873464\pi\)
0.0832688 + 0.996527i \(0.473464\pi\)
\(692\) 9.73004 29.9460i 0.369881 1.13838i
\(693\) 5.55555 + 4.03634i 0.211038 + 0.153328i
\(694\) −5.52180 + 16.9944i −0.209605 + 0.645097i
\(695\) −21.4401 65.9857i −0.813268 2.50298i
\(696\) 8.68571 6.31054i 0.329231 0.239200i
\(697\) −0.305671 0.940760i −0.0115781 0.0356338i
\(698\) −1.19187 3.66820i −0.0451130 0.138844i
\(699\) 7.18093 5.21725i 0.271608 0.197334i
\(700\) −3.14543 9.68065i −0.118886 0.365894i
\(701\) 2.62329 8.07366i 0.0990804 0.304938i −0.889215 0.457489i \(-0.848749\pi\)
0.988296 + 0.152551i \(0.0487489\pi\)
\(702\) −7.59535 5.51834i −0.286668 0.208277i
\(703\) −12.2259 + 37.6274i −0.461108 + 1.41914i
\(704\) −4.18530 + 3.04080i −0.157739 + 0.114604i
\(705\) 2.37125 1.72281i 0.0893065 0.0648849i
\(706\) −6.50909 4.72913i −0.244973 0.177983i
\(707\) 2.90657 0.109313
\(708\) −1.27574 −0.0479452
\(709\) −18.9198 13.7460i −0.710546 0.516242i 0.172804 0.984956i \(-0.444717\pi\)
−0.883350 + 0.468714i \(0.844717\pi\)
\(710\) 6.11106 + 18.8079i 0.229344 + 0.705848i
\(711\) −9.51971 + 29.2987i −0.357017 + 1.09879i
\(712\) 10.7774 0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) 13.7201 42.2261i 0.513102 1.57917i
\(716\) −0.0620297 0.190908i −0.00231816 0.00713456i
\(717\) 0.431198 + 0.313283i 0.0161034 + 0.0116998i
\(718\) −18.0646 −0.674165
\(719\) −12.9769 −0.483956 −0.241978 0.970282i \(-0.577796\pi\)
−0.241978 + 0.970282i \(0.577796\pi\)
\(720\) 9.00508 + 6.54257i 0.335599 + 0.243827i
\(721\) 3.85733 2.80252i 0.143655 0.104371i
\(722\) −2.54556 + 1.84946i −0.0947360 + 0.0688297i
\(723\) −4.28616 + 13.1914i −0.159404 + 0.490595i
\(724\) −9.53684 6.92892i −0.354434 0.257511i
\(725\) −13.2308 + 40.7201i −0.491378 + 1.51231i
\(726\) −1.14177 3.51400i −0.0423749 0.130417i
\(727\) 10.0504 7.30207i 0.372750 0.270819i −0.385600 0.922666i \(-0.626006\pi\)
0.758350 + 0.651847i \(0.226006\pi\)
\(728\) 1.66812 + 5.13393i 0.0618245 + 0.190276i
\(729\) 2.33825 + 7.19640i 0.0866020 + 0.266533i
\(730\) 11.7002 8.50069i 0.433044 0.314625i
\(731\) −2.89393 8.90661i −0.107036 0.329423i
\(732\) 0.985079 3.03176i 0.0364096 0.112057i
\(733\) 27.6339 + 20.0772i 1.02068 + 0.741568i 0.966422 0.256959i \(-0.0827206\pi\)
0.0542580 + 0.998527i \(0.482721\pi\)
\(734\) 5.75587 17.7147i 0.212453 0.653863i
\(735\) 17.3695 12.6197i 0.640684 0.465484i
\(736\) 15.4244 11.2065i 0.568552 0.413077i
\(737\) 6.94855 + 5.04842i 0.255953 + 0.185961i
\(738\) 1.13921 0.0419351
\(739\) 12.3749 0.455219 0.227610 0.973752i \(-0.426909\pi\)
0.227610 + 0.973752i \(0.426909\pi\)
\(740\) 47.6171 + 34.5959i 1.75044 + 1.27177i
\(741\) −3.08297 9.48840i −0.113256 0.348565i
\(742\) 0.581597 1.78997i 0.0213511 0.0657119i
\(743\) 16.2455 0.595990 0.297995 0.954567i \(-0.403682\pi\)
0.297995 + 0.954567i \(0.403682\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 2.64325 8.13509i 0.0967763 0.297847i
\(747\) −9.52849 29.3257i −0.348629 1.07297i
\(748\) −6.64249 4.82605i −0.242873 0.176458i
\(749\) 1.77671 0.0649196
\(750\) −8.64058 −0.315509
\(751\) 8.72790 + 6.34119i 0.318485 + 0.231393i 0.735529 0.677493i \(-0.236934\pi\)
−0.417043 + 0.908887i \(0.636934\pi\)
\(752\) 0.973546 0.707322i 0.0355016 0.0257934i
\(753\) −4.41795 + 3.20983i −0.160999 + 0.116973i
\(754\) 3.03513 9.34115i 0.110533 0.340185i
\(755\) 46.1088 + 33.5000i 1.67807 + 1.21919i
\(756\) 1.68303 5.17983i 0.0612112 0.188389i
\(757\) −12.7011 39.0900i −0.461630 1.42075i −0.863172 0.504910i \(-0.831526\pi\)
0.401542 0.915841i \(-0.368474\pi\)
\(758\) −2.58769 + 1.88007i −0.0939893 + 0.0682872i
\(759\) 3.76776 + 11.5960i 0.136761 + 0.420907i
\(760\) −10.5788 32.5582i −0.383733 1.18101i
\(761\) 15.9057 11.5562i 0.576581 0.418910i −0.260909 0.965363i \(-0.584022\pi\)
0.837490 + 0.546453i \(0.184022\pi\)
\(762\) −0.275333 0.847389i −0.00997428 0.0306977i
\(763\) 0.348386 1.07222i 0.0126124 0.0388170i
\(764\) −26.0286 18.9109i −0.941682 0.684172i
\(765\) 3.27667 10.0845i 0.118468 0.364607i
\(766\) 2.80096 2.03501i 0.101203 0.0735281i
\(767\) −2.18283 + 1.58592i −0.0788174 + 0.0572642i
\(768\) 7.24569 + 5.26430i 0.261456 + 0.189959i
\(769\) 3.78834 0.136611 0.0683055 0.997664i \(-0.478241\pi\)
0.0683055 + 0.997664i \(0.478241\pi\)
\(770\) −8.03151 −0.289435
\(771\) 3.30558 + 2.40165i 0.119048 + 0.0864932i
\(772\) −2.66810 8.21158i −0.0960272 0.295541i
\(773\) 7.83963 24.1279i 0.281972 0.867820i −0.705318 0.708891i \(-0.749196\pi\)
0.987290 0.158929i \(-0.0508041\pi\)
\(774\) 10.7855 0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) 2.21665 6.82215i 0.0795219 0.244743i
\(778\) 3.96340 + 12.1981i 0.142095 + 0.437323i
\(779\) 2.32370 + 1.68826i 0.0832551 + 0.0604884i
\(780\) −14.8421 −0.531431
\(781\) −31.8388 −1.13928
\(782\) −2.39626 1.74099i −0.0856902 0.0622576i
\(783\) −18.5341 + 13.4658i −0.662354 + 0.481228i
\(784\) 7.13127 5.18117i 0.254688 0.185042i
\(785\) 17.3540 53.4102i 0.619391 1.90629i
\(786\) 3.16765 + 2.30143i 0.112986 + 0.0820895i
\(787\) 8.01794 24.6767i 0.285809 0.879628i −0.700347 0.713803i \(-0.746971\pi\)
0.986155 0.165825i \(-0.0530288\pi\)
\(788\) 7.49790 + 23.0761i 0.267101 + 0.822054i
\(789\) −1.83161 + 1.33075i −0.0652072 + 0.0473758i
\(790\) −11.1340 34.2670i −0.396130 1.21916i
\(791\) 1.50518 + 4.63247i 0.0535181 + 0.164712i
\(792\) 17.6855 12.8493i 0.628428 0.456579i
\(793\) −2.08340 6.41203i −0.0739835 0.227698i
\(794\) −6.93714 + 21.3503i −0.246190 + 0.757695i
\(795\) 9.67836 + 7.03174i 0.343256 + 0.249390i
\(796\) −2.00769 + 6.17903i −0.0711606 + 0.219010i
\(797\) −14.9689 + 10.8756i −0.530227 + 0.385232i −0.820443 0.571729i \(-0.806273\pi\)
0.290216 + 0.956961i \(0.406273\pi\)
\(798\) −1.46005 + 1.06079i −0.0516851 + 0.0375514i
\(799\) −0.927420 0.673810i −0.0328098 0.0238377i
\(800\) −50.7902 −1.79570
\(801\) −9.69305 −0.342487
\(802\) 6.91143 + 5.02145i 0.244051 + 0.177314i
\(803\) 7.19517 + 22.1444i 0.253912 + 0.781460i
\(804\) 0.887235 2.73063i 0.0312904 0.0963019i
\(805\) 9.29174 0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) 2.85926 8.79990i 0.100588 0.309579i
\(809\) −11.3557 34.9493i −0.399245 1.22875i −0.925606 0.378489i \(-0.876444\pi\)
0.526360 0.850262i \(-0.323556\pi\)
\(810\) 4.82731 + 3.50725i 0.169614 + 0.123232i
\(811\) −39.4301 −1.38458 −0.692289 0.721620i \(-0.743398\pi\)
−0.692289 + 0.721620i \(0.743398\pi\)
\(812\) 5.69788 0.199956
\(813\) 10.0924 + 7.33259i 0.353957 + 0.257165i
\(814\) 23.9051 17.3680i 0.837872 0.608749i
\(815\) 3.13403 2.27700i 0.109780 0.0797600i
\(816\) −0.501216 + 1.54258i −0.0175461 + 0.0540013i
\(817\) 21.9995 + 15.9836i 0.769666 + 0.559195i
\(818\) −0.734666 + 2.26107i −0.0256870 + 0.0790564i
\(819\) −1.50028 4.61738i −0.0524240 0.161344i
\(820\) 3.45690 2.51159i 0.120720 0.0877084i
\(821\) −0.457525 1.40812i −0.0159677 0.0491436i 0.942755 0.333486i \(-0.108225\pi\)
−0.958723 + 0.284342i \(0.908225\pi\)
\(822\) 2.45142 + 7.54471i 0.0855032 + 0.263152i
\(823\) −31.4426 + 22.8444i −1.09602 + 0.796306i −0.980406 0.196988i \(-0.936884\pi\)
−0.115615 + 0.993294i \(0.536884\pi\)
\(824\) −4.69032 14.4353i −0.163395 0.502878i
\(825\) 10.0372 30.8912i 0.349449 1.07549i
\(826\) 0.394859 + 0.286882i 0.0137389 + 0.00998190i
\(827\) −10.4869 + 32.2753i −0.364665 + 1.12232i 0.585526 + 0.810654i \(0.300888\pi\)
−0.950191 + 0.311669i \(0.899112\pi\)
\(828\) −8.85042 + 6.43021i −0.307573 + 0.223465i
\(829\) 13.3736 9.71650i 0.464485 0.337468i −0.330803 0.943700i \(-0.607320\pi\)
0.795288 + 0.606232i \(0.207320\pi\)
\(830\) 29.1761 + 21.1977i 1.01272 + 0.735782i
\(831\) −10.4415 −0.362210
\(832\) 3.65754 0.126802
\(833\) −6.79340 4.93569i −0.235377 0.171012i
\(834\) 3.59809 + 11.0738i 0.124592 + 0.383454i
\(835\) 12.9341 39.8071i 0.447603 1.37758i
\(836\) 23.8409 0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) −16.7110 + 51.4313i −0.576929 + 1.77561i 0.0525843 + 0.998616i \(0.483254\pi\)
−0.629514 + 0.776989i \(0.716746\pi\)
\(840\) 1.91802 + 5.90306i 0.0661780 + 0.203675i
\(841\) 4.07162 + 2.95820i 0.140401 + 0.102007i
\(842\) −14.9512 −0.515254
\(843\) −13.8964 −0.478617
\(844\) −14.1946 10.3130i −0.488599 0.354988i
\(845\) 13.5975 9.87918i 0.467769 0.339854i
\(846\) 1.06809 0.776016i 0.0367218 0.0266800i
\(847\) 1.40087 4.31142i 0.0481344 0.148142i
\(848\) 3.97357 + 2.88697i 0.136453 + 0.0991388i
\(849\) −6.32886 + 19.4782i −0.217206 + 0.668491i
\(850\) 2.43830 + 7.50432i 0.0836330 + 0.257396i
\(851\) −27.6560 + 20.0933i −0.948036 + 0.688789i
\(852\) 3.28896 + 10.1224i 0.112678 + 0.346787i
\(853\) 12.2297 + 37.6392i 0.418738 + 1.28874i 0.908865 + 0.417091i \(0.136950\pi\)
−0.490127 + 0.871651i \(0.663050\pi\)
\(854\) −0.986664 + 0.716854i −0.0337630 + 0.0245302i
\(855\) 9.51441 + 29.2823i 0.325386 + 1.00143i
\(856\) 1.74779 5.37915i 0.0597383 0.183856i
\(857\) −10.2948 7.47959i −0.351663 0.255498i 0.397903 0.917427i \(-0.369738\pi\)
−0.749566 + 0.661929i \(0.769738\pi\)
\(858\) −2.30252 + 7.08642i −0.0786067 + 0.241926i
\(859\) −17.1142 + 12.4342i −0.583930 + 0.424250i −0.840139 0.542372i \(-0.817526\pi\)
0.256209 + 0.966621i \(0.417526\pi\)
\(860\) 32.7281 23.7784i 1.11602 0.810835i
\(861\) −0.421305 0.306096i −0.0143580 0.0104317i
\(862\) 8.01237 0.272902
\(863\) −9.33974 −0.317928 −0.158964 0.987284i \(-0.550815\pi\)
−0.158964 + 0.987284i \(0.550815\pi\)
\(864\) −21.9861 15.9739i −0.747983 0.543441i
\(865\) −23.6615 72.8225i −0.804514 2.47604i
\(866\) 5.24064 16.1290i 0.178084 0.548087i
\(867\) −13.7957 −0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 3.48982 10.7406i 0.118316 0.364139i
\(871\) −1.87646 5.77515i −0.0635814 0.195683i
\(872\) −2.90353 2.10954i −0.0983260 0.0714380i
\(873\) 11.5352 0.390407
\(874\) 8.60055 0.290918
\(875\) −8.57669 6.23133i −0.289945 0.210657i
\(876\) 6.29703 4.57506i 0.212757 0.154577i
\(877\) −18.1505 + 13.1871i −0.612899 + 0.445297i −0.850434 0.526082i \(-0.823661\pi\)
0.237535 + 0.971379i \(0.423661\pi\)
\(878\) −3.87634 + 11.9302i −0.130820 + 0.402623i
\(879\) −9.05334 6.57764i −0.305362 0.221858i
\(880\) 6.47683 19.9336i 0.218334 0.671963i
\(881\) 14.3481 + 44.1590i 0.483400 + 1.48775i 0.834284 + 0.551334i \(0.185881\pi\)
−0.350884 + 0.936419i \(0.614119\pi\)
\(882\) 7.82384 5.68435i 0.263442 0.191402i
\(883\) −11.2913 34.7512i −0.379984 1.16947i −0.940054 0.341026i \(-0.889226\pi\)
0.560070 0.828445i \(-0.310774\pi\)
\(884\) 1.79381 + 5.52077i 0.0603323 + 0.185684i
\(885\) −2.50984 + 1.82351i −0.0843674 + 0.0612965i
\(886\) −3.78411 11.6463i −0.127130 0.391264i
\(887\) 8.86417 27.2811i 0.297630 0.916010i −0.684696 0.728829i \(-0.740065\pi\)
0.982325 0.187181i \(-0.0599350\pi\)
\(888\) −18.4741 13.4222i −0.619950 0.450420i
\(889\) 0.337815 1.03969i 0.0113299 0.0348700i
\(890\) 9.17161 6.66356i 0.307433 0.223363i
\(891\) −7.77192 + 5.64663i −0.260369 + 0.189169i
\(892\) −11.6237 8.44512i −0.389190 0.282763i
\(893\) 3.32865 0.111389
\(894\) 12.5282 0.419005
\(895\) −0.394914 0.286922i −0.0132005 0.00959074i
\(896\) 2.53553 + 7.80355i 0.0847060 + 0.260698i
\(897\) 2.66381 8.19836i 0.0889420 0.273735i
\(898\) −6.34235 −0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) 1.44586 4.44989i 0.0481685 0.148247i
\(902\) −0.662885 2.04015i −0.0220717 0.0679296i
\(903\) −3.98869 2.89795i −0.132735 0.0964378i
\(904\) 15.5059 0.515719
\(905\) −28.6665 −0.952906
\(906\) −7.73803 5.62201i −0.257079 0.186779i
\(907\) 17.9518 13.0427i 0.596079 0.433077i −0.248406 0.968656i \(-0.579907\pi\)
0.844485 + 0.535579i \(0.179907\pi\)
\(908\) 26.8431 19.5027i 0.890820 0.647218i
\(909\) −2.57158 + 7.91450i −0.0852938 + 0.262507i
\(910\) 4.59383 + 3.33761i 0.152284 + 0.110641i
\(911\) 8.90971 27.4213i 0.295192 0.908507i −0.687965 0.725744i \(-0.741496\pi\)
0.983157 0.182763i \(-0.0585042\pi\)
\(912\) −1.45537 4.47918i −0.0481923 0.148320i
\(913\) −46.9732 + 34.1280i −1.55458 + 1.12947i
\(914\) −6.64760 20.4592i −0.219883 0.676731i
\(915\) −2.39551 7.37263i −0.0791932 0.243732i
\(916\) −20.9139 + 15.1948i −0.691013 + 0.502051i
\(917\) 1.48451 + 4.56884i 0.0490227 + 0.150876i
\(918\) −1.30466 + 4.01534i −0.0430603 + 0.132526i
\(919\) −38.8832 28.2503i −1.28264 0.931893i −0.283011 0.959117i \(-0.591333\pi\)
−0.999629 + 0.0272242i \(0.991333\pi\)
\(920\) 9.14051 28.1316i 0.301354 0.927471i
\(921\) −22.4274 + 16.2944i −0.739007 + 0.536920i
\(922\) 3.71975 2.70256i 0.122503 0.0890039i
\(923\) 18.2110 + 13.2311i 0.599424 + 0.435507i
\(924\) −4.32255 −0.142201
\(925\) 91.0668 2.99426
\(926\) −19.7010 14.3136i −0.647416 0.470376i
\(927\) 4.21840 + 12.9829i 0.138551 + 0.426415i
\(928\) 8.78572 27.0397i 0.288405 0.887621i
\(929\) −7.01617 −0.230193 −0.115097 0.993354i \(-0.536718\pi\)
−0.115097 + 0.993354i \(0.536718\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) 4.63406 14.2622i 0.151794 0.467173i
\(933\) 0.664074 + 2.04381i 0.0217408 + 0.0669113i
\(934\) 20.0497 + 14.5669i 0.656045 + 0.476644i
\(935\) −19.9664 −0.652972
\(936\) −15.4554 −0.505176
\(937\) 10.4207 + 7.57106i 0.340428 + 0.247336i 0.744843 0.667240i \(-0.232525\pi\)
−0.404414 + 0.914576i \(0.632525\pi\)
\(938\) −0.888663 + 0.645651i −0.0290159 + 0.0210813i
\(939\) 7.84490 5.69965i 0.256009 0.186001i
\(940\) 1.53024 4.70958i 0.0499108 0.153610i
\(941\) −40.4826 29.4123i −1.31969 0.958815i −0.999936 0.0113156i \(-0.996398\pi\)
−0.319759 0.947499i \(-0.603602\pi\)
\(942\) −2.91237 + 8.96334i −0.0948900 + 0.292041i
\(943\) 0.766899 + 2.36027i 0.0249737 + 0.0768611i
\(944\) −1.03045 + 0.748663i −0.0335382 + 0.0243669i
\(945\) −4.09278 12.5963i −0.133138 0.409757i
\(946\) −6.27584 19.3151i −0.204045 0.627987i
\(947\) 41.9620 30.4872i 1.36358 0.990701i 0.365375 0.930860i \(-0.380941\pi\)
0.998208 0.0598409i \(-0.0190593\pi\)
\(948\) −5.99231 18.4424i −0.194621 0.598982i
\(949\) 5.08699 15.6562i 0.165131 0.508220i
\(950\) −18.5358 13.4671i −0.601382 0.436929i
\(951\) 2.43898 7.50642i 0.0790894 0.243412i
\(952\) 1.96394 1.42688i 0.0636516 0.0462456i
\(953\) 15.1571 11.0123i 0.490987 0.356723i −0.314577 0.949232i \(-0.601863\pi\)
0.805564 + 0.592509i \(0.201863\pi\)
\(954\) 4.35947 + 3.16734i 0.141143 + 0.102547i
\(955\) −78.2385 −2.53174
\(956\) 0.900482 0.0291237
\(957\) 14.7096 + 10.6872i 0.475494 + 0.345467i
\(958\) −7.08322 21.7999i −0.228848 0.704323i
\(959\) −3.00772 + 9.25682i −0.0971245 + 0.298918i
\(960\) 4.20549 0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) −1.57194 + 4.83793i −0.0506550 + 0.155900i
\(964\) 7.24144 + 22.2868i 0.233231 + 0.717811i
\(965\) −16.9866 12.3415i −0.546817 0.397285i
\(966\) −1.55935 −0.0501712
\(967\) 47.7846 1.53665 0.768324 0.640061i \(-0.221091\pi\)
0.768324 + 0.640061i \(0.221091\pi\)
\(968\) −11.6752 8.48250i −0.375254 0.272638i
\(969\) −3.62969 + 2.63713i −0.116603 + 0.0847167i
\(970\) −10.9147 + 7.92996i −0.350449 + 0.254616i
\(971\) −9.61063 + 29.5785i −0.308420 + 0.949219i 0.669959 + 0.742398i \(0.266312\pi\)
−0.978379 + 0.206821i \(0.933688\pi\)
\(972\) 19.9137 + 14.4682i 0.638733 + 0.464067i
\(973\) −4.41460 + 13.5868i −0.141526 + 0.435571i
\(974\) 6.07562 + 18.6988i 0.194676 + 0.599150i
\(975\) −18.5783 + 13.4979i −0.594982 + 0.432280i
\(976\) −0.983507 3.02692i −0.0314813 0.0968894i
\(977\) −6.82283 20.9985i −0.218282 0.671802i −0.998904 0.0467994i \(-0.985098\pi\)
0.780623 0.625003i \(-0.214902\pi\)
\(978\) −0.525955 + 0.382129i −0.0168182 + 0.0122191i
\(979\) 5.64018 + 17.3587i 0.180261 + 0.554786i
\(980\) 11.2091 34.4979i 0.358060 1.10200i
\(981\) 2.61139 + 1.89729i 0.0833754 + 0.0605758i
\(982\) −5.95807 + 18.3371i −0.190130 + 0.585159i
\(983\) −30.4003 + 22.0871i −0.969620 + 0.704470i −0.955365 0.295428i \(-0.904538\pi\)
−0.0142549 + 0.999898i \(0.504538\pi\)
\(984\) −1.34118 + 0.974425i −0.0427553 + 0.0310635i
\(985\) 47.7355 + 34.6819i 1.52098 + 1.10506i
\(986\) −4.41693 −0.140664
\(987\) −0.603511 −0.0192100
\(988\) −13.6364 9.90744i −0.433832 0.315198i
\(989\) 7.26059 + 22.3458i 0.230873 + 0.710555i
\(990\) 7.10585 21.8695i 0.225839 0.695060i
\(991\) 6.77397 0.215182 0.107591 0.994195i \(-0.465686\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 1.25829 3.87263i 0.0399106 0.122832i
\(995\) 4.88229 + 15.0261i 0.154779 + 0.476360i
\(996\) 15.7025 + 11.4086i 0.497554 + 0.361494i
\(997\) −29.5733 −0.936595 −0.468298 0.883571i \(-0.655132\pi\)
−0.468298 + 0.883571i \(0.655132\pi\)
\(998\) −28.4795 −0.901502
\(999\) 39.4211 + 28.6411i 1.24723 + 0.906165i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.q.628.1 16
31.2 even 5 961.2.a.j.1.3 8
31.3 odd 30 961.2.g.k.816.2 16
31.4 even 5 inner 961.2.d.q.531.1 16
31.5 even 3 961.2.g.n.448.1 16
31.6 odd 6 961.2.g.s.846.1 16
31.7 even 15 961.2.g.n.547.1 16
31.8 even 5 961.2.d.n.388.4 16
31.9 even 15 961.2.g.j.338.2 16
31.10 even 15 961.2.c.i.521.3 16
31.11 odd 30 961.2.g.s.844.1 16
31.12 odd 30 961.2.c.j.439.3 16
31.13 odd 30 31.2.g.a.19.2 yes 16
31.14 even 15 961.2.g.l.235.2 16
31.15 odd 10 961.2.d.o.374.4 16
31.16 even 5 961.2.d.n.374.4 16
31.17 odd 30 31.2.g.a.18.2 16
31.18 even 15 961.2.g.l.732.2 16
31.19 even 15 961.2.c.i.439.3 16
31.20 even 15 961.2.g.m.844.1 16
31.21 odd 30 961.2.c.j.521.3 16
31.22 odd 30 961.2.g.k.338.2 16
31.23 odd 10 961.2.d.o.388.4 16
31.24 odd 30 961.2.g.t.547.1 16
31.25 even 3 961.2.g.m.846.1 16
31.26 odd 6 961.2.g.t.448.1 16
31.27 odd 10 961.2.d.p.531.1 16
31.28 even 15 961.2.g.j.816.2 16
31.29 odd 10 961.2.a.i.1.3 8
31.30 odd 2 961.2.d.p.628.1 16
93.2 odd 10 8649.2.a.be.1.6 8
93.17 even 30 279.2.y.c.235.1 16
93.29 even 10 8649.2.a.bf.1.6 8
93.44 even 30 279.2.y.c.19.1 16
124.75 even 30 496.2.bg.c.81.1 16
124.79 even 30 496.2.bg.c.49.1 16
155.13 even 60 775.2.ck.a.174.3 32
155.17 even 60 775.2.ck.a.49.3 32
155.44 odd 30 775.2.bl.a.701.1 16
155.48 even 60 775.2.ck.a.49.2 32
155.79 odd 30 775.2.bl.a.576.1 16
155.137 even 60 775.2.ck.a.174.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.17 odd 30
31.2.g.a.19.2 yes 16 31.13 odd 30
279.2.y.c.19.1 16 93.44 even 30
279.2.y.c.235.1 16 93.17 even 30
496.2.bg.c.49.1 16 124.79 even 30
496.2.bg.c.81.1 16 124.75 even 30
775.2.bl.a.576.1 16 155.79 odd 30
775.2.bl.a.701.1 16 155.44 odd 30
775.2.ck.a.49.2 32 155.48 even 60
775.2.ck.a.49.3 32 155.17 even 60
775.2.ck.a.174.2 32 155.137 even 60
775.2.ck.a.174.3 32 155.13 even 60
961.2.a.i.1.3 8 31.29 odd 10
961.2.a.j.1.3 8 31.2 even 5
961.2.c.i.439.3 16 31.19 even 15
961.2.c.i.521.3 16 31.10 even 15
961.2.c.j.439.3 16 31.12 odd 30
961.2.c.j.521.3 16 31.21 odd 30
961.2.d.n.374.4 16 31.16 even 5
961.2.d.n.388.4 16 31.8 even 5
961.2.d.o.374.4 16 31.15 odd 10
961.2.d.o.388.4 16 31.23 odd 10
961.2.d.p.531.1 16 31.27 odd 10
961.2.d.p.628.1 16 31.30 odd 2
961.2.d.q.531.1 16 31.4 even 5 inner
961.2.d.q.628.1 16 1.1 even 1 trivial
961.2.g.j.338.2 16 31.9 even 15
961.2.g.j.816.2 16 31.28 even 15
961.2.g.k.338.2 16 31.22 odd 30
961.2.g.k.816.2 16 31.3 odd 30
961.2.g.l.235.2 16 31.14 even 15
961.2.g.l.732.2 16 31.18 even 15
961.2.g.m.844.1 16 31.20 even 15
961.2.g.m.846.1 16 31.25 even 3
961.2.g.n.448.1 16 31.5 even 3
961.2.g.n.547.1 16 31.7 even 15
961.2.g.s.844.1 16 31.11 odd 30
961.2.g.s.846.1 16 31.6 odd 6
961.2.g.t.448.1 16 31.26 odd 6
961.2.g.t.547.1 16 31.24 odd 30
8649.2.a.be.1.6 8 93.2 odd 10
8649.2.a.bf.1.6 8 93.29 even 10