Properties

Label 961.2.g.s.846.1
Level $961$
Weight $2$
Character 961.846
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 846.1
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.846
Dual form 961.2.g.s.844.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213065 + 0.655747i) q^{2} +(0.882681 + 0.187620i) q^{3} +(1.23343 + 0.896137i) q^{4} +(-1.85376 - 3.21080i) q^{5} +(-0.311099 + 0.538840i) q^{6} +(0.697395 - 0.310500i) q^{7} +(-1.96606 + 1.42843i) q^{8} +(-1.99671 - 0.888993i) q^{9} +(2.50044 - 0.531486i) q^{10} +(0.430200 - 4.09308i) q^{11} +(0.920590 + 1.02242i) q^{12} +(-1.94700 + 2.16237i) q^{13} +(0.0550190 + 0.523471i) q^{14} +(-1.03387 - 3.18192i) q^{15} +(0.424467 + 1.30637i) q^{16} +(-0.136778 - 1.30136i) q^{17} +(1.00838 - 1.11992i) q^{18} +(-2.54239 - 2.82361i) q^{19} +(0.590845 - 5.62151i) q^{20} +(0.673833 - 0.143228i) q^{21} +(2.59236 + 1.15419i) q^{22} +(2.65597 - 1.92967i) q^{23} +(-2.00341 + 0.891974i) q^{24} +(-4.37284 + 7.57398i) q^{25} +(-1.00313 - 1.73747i) q^{26} +(-3.78584 - 2.75057i) q^{27} +(1.13844 + 0.241982i) q^{28} +(1.51283 - 4.65602i) q^{29} +2.30681 q^{30} -5.80746 q^{32} +(1.14767 - 3.53217i) q^{33} +(0.882502 + 0.187582i) q^{34} +(-2.28976 - 1.66361i) q^{35} +(-1.66614 - 2.88584i) q^{36} +(5.20639 - 9.01773i) q^{37} +(2.39327 - 1.06555i) q^{38} +(-2.12429 + 1.54338i) q^{39} +(8.23100 + 3.66468i) q^{40} +(-0.739427 + 0.157170i) q^{41} +(-0.0496492 + 0.472381i) q^{42} +(-4.78889 - 5.31861i) q^{43} +(4.19858 - 4.66299i) q^{44} +(0.847038 + 8.05903i) q^{45} +(0.699483 + 2.15279i) q^{46} +(-0.270719 - 0.833189i) q^{47} +(0.129567 + 1.23275i) q^{48} +(-4.29396 + 4.76893i) q^{49} +(-4.03491 - 4.48122i) q^{50} +(0.123429 - 1.17434i) q^{51} +(-4.33926 + 0.922339i) q^{52} +(3.26657 + 1.45437i) q^{53} +(2.61031 - 1.89650i) q^{54} +(-13.9396 + 6.20629i) q^{55} +(-0.927595 + 1.60664i) q^{56} +(-1.71435 - 2.96935i) q^{57} +(2.73084 + 1.98407i) q^{58} +(-0.907007 - 0.192790i) q^{59} +(1.57623 - 4.85115i) q^{60} +2.31704 q^{61} -1.66853 q^{63} +(0.388433 - 1.19547i) q^{64} +(10.5522 + 2.24294i) q^{65} +(2.07168 + 1.50516i) q^{66} +(1.04345 + 1.80731i) q^{67} +(0.997488 - 1.72770i) q^{68} +(2.70642 - 1.20498i) q^{69} +(1.57877 - 1.14704i) q^{70} +(-7.06726 - 3.14655i) q^{71} +(5.19552 - 1.10434i) q^{72} +(0.591367 - 5.62649i) q^{73} +(4.80405 + 5.33544i) q^{74} +(-5.28085 + 5.86498i) q^{75} +(-0.605510 - 5.76105i) q^{76} +(-0.970882 - 2.98807i) q^{77} +(-0.559458 - 1.72183i) q^{78} +(1.47330 + 14.0175i) q^{79} +(3.40765 - 3.78458i) q^{80} +(1.56187 + 1.73464i) q^{81} +(0.0544822 - 0.518364i) q^{82} +(13.7994 - 2.93316i) q^{83} +(0.959476 + 0.427186i) q^{84} +(-3.92484 + 2.85157i) q^{85} +(4.50800 - 2.00709i) q^{86} +(2.20891 - 3.82595i) q^{87} +(5.00086 + 8.66175i) q^{88} +(3.58784 + 2.60672i) q^{89} +(-5.46515 - 1.16165i) q^{90} +(-0.686415 + 2.11257i) q^{91} +5.00520 q^{92} +0.604042 q^{94} +(-4.35308 + 13.3974i) q^{95} +(-5.12614 - 1.08959i) q^{96} +(4.26970 + 3.10212i) q^{97} +(-2.21232 - 3.83184i) q^{98} +(-4.49770 + 7.79025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} - 3 q^{7} - 8 q^{8} + 5 q^{9} + 18 q^{10} - 2 q^{11} - 20 q^{12} - 27 q^{13} - 6 q^{14} + 4 q^{15} - 2 q^{16} - 16 q^{17} + 22 q^{18} - 4 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213065 + 0.655747i −0.150660 + 0.463683i −0.997695 0.0678533i \(-0.978385\pi\)
0.847036 + 0.531536i \(0.178385\pi\)
\(3\) 0.882681 + 0.187620i 0.509616 + 0.108322i 0.455541 0.890215i \(-0.349446\pi\)
0.0540749 + 0.998537i \(0.482779\pi\)
\(4\) 1.23343 + 0.896137i 0.616714 + 0.448069i
\(5\) −1.85376 3.21080i −0.829026 1.43591i −0.898803 0.438352i \(-0.855562\pi\)
0.0697774 0.997563i \(-0.477771\pi\)
\(6\) −0.311099 + 0.538840i −0.127006 + 0.219981i
\(7\) 0.697395 0.310500i 0.263591 0.117358i −0.270686 0.962668i \(-0.587251\pi\)
0.534277 + 0.845310i \(0.320584\pi\)
\(8\) −1.96606 + 1.42843i −0.695108 + 0.505025i
\(9\) −1.99671 0.888993i −0.665570 0.296331i
\(10\) 2.50044 0.531486i 0.790710 0.168071i
\(11\) 0.430200 4.09308i 0.129710 1.23411i −0.715092 0.699030i \(-0.753615\pi\)
0.844802 0.535079i \(-0.179718\pi\)
\(12\) 0.920590 + 1.02242i 0.265751 + 0.295147i
\(13\) −1.94700 + 2.16237i −0.540002 + 0.599733i −0.949960 0.312372i \(-0.898877\pi\)
0.409958 + 0.912104i \(0.365543\pi\)
\(14\) 0.0550190 + 0.523471i 0.0147045 + 0.139904i
\(15\) −1.03387 3.18192i −0.266943 0.821568i
\(16\) 0.424467 + 1.30637i 0.106117 + 0.326594i
\(17\) −0.136778 1.30136i −0.0331735 0.315625i −0.998508 0.0546085i \(-0.982609\pi\)
0.965334 0.261017i \(-0.0840577\pi\)
\(18\) 1.00838 1.11992i 0.237678 0.263968i
\(19\) −2.54239 2.82361i −0.583264 0.647781i 0.377217 0.926125i \(-0.376881\pi\)
−0.960481 + 0.278344i \(0.910214\pi\)
\(20\) 0.590845 5.62151i 0.132117 1.25701i
\(21\) 0.673833 0.143228i 0.147043 0.0312549i
\(22\) 2.59236 + 1.15419i 0.552693 + 0.246075i
\(23\) 2.65597 1.92967i 0.553808 0.402365i −0.275380 0.961336i \(-0.588804\pi\)
0.829187 + 0.558971i \(0.188804\pi\)
\(24\) −2.00341 + 0.891974i −0.408944 + 0.182073i
\(25\) −4.37284 + 7.57398i −0.874568 + 1.51480i
\(26\) −1.00313 1.73747i −0.196729 0.340745i
\(27\) −3.78584 2.75057i −0.728585 0.529348i
\(28\) 1.13844 + 0.241982i 0.215144 + 0.0457303i
\(29\) 1.51283 4.65602i 0.280926 0.864602i −0.706664 0.707549i \(-0.749801\pi\)
0.987590 0.157052i \(-0.0501992\pi\)
\(30\) 2.30681 0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) 1.14767 3.53217i 0.199784 0.614872i
\(34\) 0.882502 + 0.187582i 0.151348 + 0.0321700i
\(35\) −2.28976 1.66361i −0.387040 0.281201i
\(36\) −1.66614 2.88584i −0.277690 0.480973i
\(37\) 5.20639 9.01773i 0.855925 1.48251i −0.0198583 0.999803i \(-0.506321\pi\)
0.875784 0.482704i \(-0.160345\pi\)
\(38\) 2.39327 1.06555i 0.388239 0.172855i
\(39\) −2.12429 + 1.54338i −0.340158 + 0.247139i
\(40\) 8.23100 + 3.66468i 1.30144 + 0.579437i
\(41\) −0.739427 + 0.157170i −0.115479 + 0.0245458i −0.265289 0.964169i \(-0.585467\pi\)
0.149810 + 0.988715i \(0.452134\pi\)
\(42\) −0.0496492 + 0.472381i −0.00766104 + 0.0728899i
\(43\) −4.78889 5.31861i −0.730299 0.811080i 0.257588 0.966255i \(-0.417072\pi\)
−0.987887 + 0.155175i \(0.950406\pi\)
\(44\) 4.19858 4.66299i 0.632960 0.702973i
\(45\) 0.847038 + 8.05903i 0.126269 + 1.20137i
\(46\) 0.699483 + 2.15279i 0.103133 + 0.317411i
\(47\) −0.270719 0.833189i −0.0394885 0.121533i 0.929369 0.369152i \(-0.120352\pi\)
−0.968857 + 0.247619i \(0.920352\pi\)
\(48\) 0.129567 + 1.23275i 0.0187014 + 0.177932i
\(49\) −4.29396 + 4.76893i −0.613424 + 0.681276i
\(50\) −4.03491 4.48122i −0.570623 0.633741i
\(51\) 0.123429 1.17434i 0.0172835 0.164441i
\(52\) −4.33926 + 0.922339i −0.601748 + 0.127905i
\(53\) 3.26657 + 1.45437i 0.448698 + 0.199773i 0.618630 0.785683i \(-0.287688\pi\)
−0.169932 + 0.985456i \(0.554355\pi\)
\(54\) 2.61031 1.89650i 0.355218 0.258081i
\(55\) −13.9396 + 6.20629i −1.87961 + 0.836856i
\(56\) −0.927595 + 1.60664i −0.123955 + 0.214696i
\(57\) −1.71435 2.96935i −0.227072 0.393300i
\(58\) 2.73084 + 1.98407i 0.358577 + 0.260521i
\(59\) −0.907007 0.192790i −0.118082 0.0250992i 0.148491 0.988914i \(-0.452558\pi\)
−0.266574 + 0.963815i \(0.585892\pi\)
\(60\) 1.57623 4.85115i 0.203491 0.626281i
\(61\) 2.31704 0.296666 0.148333 0.988937i \(-0.452609\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) 0.388433 1.19547i 0.0485541 0.149434i
\(65\) 10.5522 + 2.24294i 1.30884 + 0.278203i
\(66\) 2.07168 + 1.50516i 0.255006 + 0.185273i
\(67\) 1.04345 + 1.80731i 0.127478 + 0.220798i 0.922699 0.385522i \(-0.125979\pi\)
−0.795221 + 0.606320i \(0.792645\pi\)
\(68\) 0.997488 1.72770i 0.120963 0.209514i
\(69\) 2.70642 1.20498i 0.325815 0.145062i
\(70\) 1.57877 1.14704i 0.188699 0.137098i
\(71\) −7.06726 3.14655i −0.838730 0.373427i −0.0580164 0.998316i \(-0.518478\pi\)
−0.780714 + 0.624889i \(0.785144\pi\)
\(72\) 5.19552 1.10434i 0.612298 0.130148i
\(73\) 0.591367 5.62649i 0.0692143 0.658530i −0.903827 0.427899i \(-0.859254\pi\)
0.973041 0.230632i \(-0.0740793\pi\)
\(74\) 4.80405 + 5.33544i 0.558459 + 0.620232i
\(75\) −5.28085 + 5.86498i −0.609780 + 0.677229i
\(76\) −0.605510 5.76105i −0.0694568 0.660837i
\(77\) −0.970882 2.98807i −0.110642 0.340522i
\(78\) −0.559458 1.72183i −0.0633461 0.194959i
\(79\) 1.47330 + 14.0175i 0.165759 + 1.57709i 0.688906 + 0.724850i \(0.258091\pi\)
−0.523147 + 0.852242i \(0.675242\pi\)
\(80\) 3.40765 3.78458i 0.380987 0.423129i
\(81\) 1.56187 + 1.73464i 0.173541 + 0.192737i
\(82\) 0.0544822 0.518364i 0.00601656 0.0572437i
\(83\) 13.7994 2.93316i 1.51468 0.321956i 0.625762 0.780014i \(-0.284788\pi\)
0.888922 + 0.458058i \(0.151455\pi\)
\(84\) 0.959476 + 0.427186i 0.104687 + 0.0466098i
\(85\) −3.92484 + 2.85157i −0.425709 + 0.309296i
\(86\) 4.50800 2.00709i 0.486110 0.216430i
\(87\) 2.20891 3.82595i 0.236820 0.410184i
\(88\) 5.00086 + 8.66175i 0.533094 + 0.923346i
\(89\) 3.58784 + 2.60672i 0.380310 + 0.276311i 0.761473 0.648196i \(-0.224476\pi\)
−0.381163 + 0.924508i \(0.624476\pi\)
\(90\) −5.46515 1.16165i −0.576078 0.122449i
\(91\) −0.686415 + 2.11257i −0.0719559 + 0.221457i
\(92\) 5.00520 0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) −4.35308 + 13.3974i −0.446617 + 1.37454i
\(96\) −5.12614 1.08959i −0.523184 0.111206i
\(97\) 4.26970 + 3.10212i 0.433522 + 0.314972i 0.783056 0.621951i \(-0.213660\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(98\) −2.21232 3.83184i −0.223478 0.387075i
\(99\) −4.49770 + 7.79025i −0.452036 + 0.782949i
\(100\) −12.1809 + 5.42329i −1.21809 + 0.542329i
\(101\) −3.08028 + 2.23795i −0.306499 + 0.222684i −0.730393 0.683027i \(-0.760663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(102\) 0.743774 + 0.331150i 0.0736446 + 0.0327887i
\(103\) 6.10921 1.29855i 0.601958 0.127950i 0.103155 0.994665i \(-0.467106\pi\)
0.498804 + 0.866715i \(0.333773\pi\)
\(104\) 0.739145 7.03250i 0.0724792 0.689593i
\(105\) −1.70900 1.89804i −0.166781 0.185229i
\(106\) −1.64969 + 1.83217i −0.160232 + 0.177956i
\(107\) −0.243278 2.31464i −0.0235186 0.223764i −0.999968 0.00801720i \(-0.997448\pi\)
0.976449 0.215747i \(-0.0692186\pi\)
\(108\) −2.20467 6.78526i −0.212144 0.652912i
\(109\) 0.456365 + 1.40455i 0.0437118 + 0.134531i 0.970531 0.240978i \(-0.0774680\pi\)
−0.926819 + 0.375509i \(0.877468\pi\)
\(110\) −1.09972 10.4632i −0.104854 0.997623i
\(111\) 6.28749 6.98296i 0.596782 0.662794i
\(112\) 0.701651 + 0.779262i 0.0662998 + 0.0736334i
\(113\) −0.666949 + 6.34559i −0.0627413 + 0.596943i 0.917307 + 0.398182i \(0.130359\pi\)
−0.980048 + 0.198762i \(0.936308\pi\)
\(114\) 2.31241 0.491518i 0.216577 0.0460349i
\(115\) −11.1193 4.95064i −1.03688 0.461650i
\(116\) 6.03840 4.38716i 0.560652 0.407337i
\(117\) 5.80993 2.58675i 0.537128 0.239145i
\(118\) 0.319673 0.553690i 0.0294283 0.0509713i
\(119\) −0.499460 0.865089i −0.0457854 0.0793026i
\(120\) 6.57779 + 4.77904i 0.600467 + 0.436265i
\(121\) −5.80858 1.23465i −0.528053 0.112241i
\(122\) −0.493680 + 1.51939i −0.0446957 + 0.137559i
\(123\) −0.682166 −0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 0.355505 1.09413i 0.0316709 0.0974730i
\(127\) 1.40072 + 0.297732i 0.124294 + 0.0264195i 0.269639 0.962962i \(-0.413096\pi\)
−0.145345 + 0.989381i \(0.546429\pi\)
\(128\) −8.69550 6.31765i −0.768581 0.558407i
\(129\) −3.22919 5.59312i −0.284314 0.492447i
\(130\) −3.71911 + 6.44168i −0.326187 + 0.564973i
\(131\) 5.74885 2.55955i 0.502279 0.223629i −0.139926 0.990162i \(-0.544686\pi\)
0.642205 + 0.766533i \(0.278020\pi\)
\(132\) 4.58088 3.32820i 0.398714 0.289683i
\(133\) −2.64978 1.17976i −0.229765 0.102298i
\(134\) −1.40746 + 0.299164i −0.121586 + 0.0258439i
\(135\) −1.81352 + 17.2545i −0.156083 + 1.48503i
\(136\) 2.12781 + 2.36317i 0.182458 + 0.202640i
\(137\) 8.53135 9.47503i 0.728883 0.809506i −0.258808 0.965929i \(-0.583330\pi\)
0.987690 + 0.156423i \(0.0499962\pi\)
\(138\) 0.213515 + 2.03146i 0.0181756 + 0.172930i
\(139\) 5.78287 + 17.7978i 0.490496 + 1.50959i 0.823860 + 0.566794i \(0.191816\pi\)
−0.333363 + 0.942798i \(0.608184\pi\)
\(140\) −1.33343 4.10387i −0.112695 0.346841i
\(141\) −0.0826364 0.786233i −0.00695924 0.0662127i
\(142\) 3.56913 3.96392i 0.299514 0.332644i
\(143\) 8.01313 + 8.89948i 0.670092 + 0.744212i
\(144\) 0.313820 2.98580i 0.0261517 0.248817i
\(145\) −17.7540 + 3.77373i −1.47439 + 0.313391i
\(146\) 3.56355 + 1.58659i 0.294921 + 0.131307i
\(147\) −4.68495 + 3.40381i −0.386408 + 0.280742i
\(148\) 14.5028 6.45708i 1.19213 0.530768i
\(149\) 10.0677 17.4377i 0.824774 1.42855i −0.0773172 0.997007i \(-0.524635\pi\)
0.902092 0.431545i \(-0.142031\pi\)
\(150\) −2.72078 4.71252i −0.222150 0.384776i
\(151\) −12.4366 9.03571i −1.01207 0.735315i −0.0474314 0.998874i \(-0.515104\pi\)
−0.964643 + 0.263559i \(0.915104\pi\)
\(152\) 9.03182 + 1.91977i 0.732577 + 0.155714i
\(153\) −0.883790 + 2.72003i −0.0714502 + 0.219901i
\(154\) 2.16628 0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) 4.68076 14.4059i 0.373566 1.14972i −0.570876 0.821037i \(-0.693396\pi\)
0.944441 0.328680i \(-0.106604\pi\)
\(158\) −9.50584 2.02053i −0.756244 0.160745i
\(159\) 2.61047 + 1.89662i 0.207024 + 0.150412i
\(160\) 10.7656 + 18.6466i 0.851098 + 1.47414i
\(161\) 1.25310 2.17042i 0.0987577 0.171053i
\(162\) −1.47026 + 0.654603i −0.115515 + 0.0514305i
\(163\) 0.845317 0.614159i 0.0662103 0.0481046i −0.554188 0.832392i \(-0.686971\pi\)
0.620398 + 0.784287i \(0.286971\pi\)
\(164\) −1.05287 0.468770i −0.0822157 0.0366048i
\(165\) −13.4686 + 2.86284i −1.04853 + 0.222872i
\(166\) −1.01677 + 9.67388i −0.0789163 + 0.750839i
\(167\) −7.55409 8.38966i −0.584553 0.649212i 0.376226 0.926528i \(-0.377222\pi\)
−0.960779 + 0.277316i \(0.910555\pi\)
\(168\) −1.12021 + 1.24412i −0.0864259 + 0.0959857i
\(169\) 0.473864 + 4.50851i 0.0364511 + 0.346809i
\(170\) −1.03366 3.18127i −0.0792779 0.243992i
\(171\) 2.56625 + 7.89810i 0.196246 + 0.603983i
\(172\) −1.14055 10.8516i −0.0869662 0.827428i
\(173\) −13.8193 + 15.3479i −1.05067 + 1.16688i −0.0650489 + 0.997882i \(0.520720\pi\)
−0.985616 + 0.169000i \(0.945946\pi\)
\(174\) 2.03821 + 2.26366i 0.154516 + 0.171608i
\(175\) −0.697873 + 6.63982i −0.0527543 + 0.501923i
\(176\) 5.52970 1.17537i 0.416817 0.0885971i
\(177\) −0.764427 0.340345i −0.0574578 0.0255819i
\(178\) −2.47379 + 1.79731i −0.185418 + 0.134714i
\(179\) −0.120280 + 0.0535519i −0.00899012 + 0.00400266i −0.411227 0.911533i \(-0.634900\pi\)
0.402237 + 0.915536i \(0.368233\pi\)
\(180\) −6.17723 + 10.6993i −0.460424 + 0.797477i
\(181\) −3.86599 6.69610i −0.287357 0.497717i 0.685821 0.727770i \(-0.259443\pi\)
−0.973178 + 0.230053i \(0.926110\pi\)
\(182\) −1.23906 0.900229i −0.0918451 0.0667294i
\(183\) 2.04521 + 0.434722i 0.151186 + 0.0321356i
\(184\) −2.46540 + 7.58772i −0.181752 + 0.559374i
\(185\) −38.6056 −2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) 0.412739 1.27028i 0.0301021 0.0926447i
\(189\) −3.49428 0.742732i −0.254171 0.0540258i
\(190\) −7.85781 5.70903i −0.570066 0.414177i
\(191\) 10.5513 + 18.2755i 0.763468 + 1.32237i 0.941053 + 0.338260i \(0.109838\pi\)
−0.177585 + 0.984106i \(0.556828\pi\)
\(192\) 0.567157 0.982344i 0.0409310 0.0708946i
\(193\) 5.17362 2.30345i 0.372406 0.165806i −0.211995 0.977271i \(-0.567996\pi\)
0.584401 + 0.811465i \(0.301330\pi\)
\(194\) −2.94393 + 2.13889i −0.211362 + 0.153563i
\(195\) 8.89342 + 3.95960i 0.636871 + 0.283553i
\(196\) −9.56991 + 2.03415i −0.683565 + 0.145296i
\(197\) −1.66355 + 15.8276i −0.118523 + 1.12767i 0.759984 + 0.649942i \(0.225207\pi\)
−0.878507 + 0.477729i \(0.841460\pi\)
\(198\) −4.15013 4.60918i −0.294937 0.327560i
\(199\) −2.85147 + 3.16688i −0.202135 + 0.224494i −0.835686 0.549207i \(-0.814930\pi\)
0.633551 + 0.773701i \(0.281597\pi\)
\(200\) −2.22161 21.1372i −0.157091 1.49463i
\(201\) 0.581946 + 1.79105i 0.0410473 + 0.126331i
\(202\) −0.811230 2.49671i −0.0570779 0.175668i
\(203\) −0.390654 3.71682i −0.0274185 0.260870i
\(204\) 1.20461 1.33786i 0.0843399 0.0936689i
\(205\) 1.87536 + 2.08280i 0.130981 + 0.145469i
\(206\) −0.450137 + 4.28277i −0.0313625 + 0.298395i
\(207\) −7.01867 + 1.49186i −0.487831 + 0.103692i
\(208\) −3.65130 1.62566i −0.253172 0.112719i
\(209\) −12.6510 + 9.19148i −0.875087 + 0.635788i
\(210\) 1.60876 0.716266i 0.111015 0.0494270i
\(211\) 5.75414 9.96646i 0.396131 0.686120i −0.597113 0.802157i \(-0.703686\pi\)
0.993245 + 0.116037i \(0.0370191\pi\)
\(212\) 2.72576 + 4.72115i 0.187206 + 0.324250i
\(213\) −5.64779 4.10336i −0.386980 0.281157i
\(214\) 1.56965 + 0.333639i 0.107299 + 0.0228071i
\(215\) −8.19954 + 25.2356i −0.559204 + 1.72105i
\(216\) 11.3722 0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) 1.57763 4.85544i 0.106606 0.328100i
\(220\) −22.7551 4.83675i −1.53415 0.326093i
\(221\) 3.08032 + 2.23798i 0.207204 + 0.150543i
\(222\) 3.23941 + 5.61082i 0.217415 + 0.376574i
\(223\) −4.71196 + 8.16135i −0.315536 + 0.546524i −0.979551 0.201195i \(-0.935518\pi\)
0.664015 + 0.747719i \(0.268851\pi\)
\(224\) −4.05010 + 1.80322i −0.270608 + 0.120483i
\(225\) 15.4645 11.2356i 1.03097 0.749042i
\(226\) −4.01900 1.78937i −0.267340 0.119027i
\(227\) −21.2875 + 4.52479i −1.41290 + 0.300321i −0.850251 0.526377i \(-0.823550\pi\)
−0.562646 + 0.826698i \(0.690217\pi\)
\(228\) 0.546413 5.19877i 0.0361871 0.344297i
\(229\) 11.3457 + 12.6007i 0.749745 + 0.832677i 0.990443 0.137924i \(-0.0440428\pi\)
−0.240697 + 0.970600i \(0.577376\pi\)
\(230\) 5.61551 6.23665i 0.370276 0.411233i
\(231\) −0.296359 2.81967i −0.0194990 0.185521i
\(232\) 3.67647 + 11.3150i 0.241372 + 0.742866i
\(233\) −3.03952 9.35469i −0.199126 0.612846i −0.999904 0.0138848i \(-0.995580\pi\)
0.800778 0.598962i \(-0.204420\pi\)
\(234\) 0.458358 + 4.36099i 0.0299638 + 0.285087i
\(235\) −2.17336 + 2.41376i −0.141774 + 0.157456i
\(236\) −0.945960 1.05060i −0.0615768 0.0683879i
\(237\) −1.32951 + 12.6494i −0.0863607 + 0.821667i
\(238\) 0.673697 0.143199i 0.0436693 0.00928219i
\(239\) 0.539572 + 0.240233i 0.0349020 + 0.0155394i 0.424113 0.905609i \(-0.360586\pi\)
−0.389211 + 0.921148i \(0.627252\pi\)
\(240\) 3.71793 2.70124i 0.239992 0.174364i
\(241\) 14.0416 6.25172i 0.904499 0.402709i 0.0988501 0.995102i \(-0.468484\pi\)
0.805649 + 0.592393i \(0.201817\pi\)
\(242\) 2.04722 3.54590i 0.131601 0.227939i
\(243\) 8.07252 + 13.9820i 0.517852 + 0.896946i
\(244\) 2.85790 + 2.07639i 0.182958 + 0.132927i
\(245\) 23.2721 + 4.94663i 1.48680 + 0.316029i
\(246\) 0.145346 0.447328i 0.00926690 0.0285206i
\(247\) 11.0557 0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) −2.95887 + 9.10646i −0.187135 + 0.575943i
\(251\) 5.91926 + 1.25818i 0.373621 + 0.0794155i 0.390895 0.920435i \(-0.372166\pi\)
−0.0172744 + 0.999851i \(0.505499\pi\)
\(252\) −2.05801 1.49523i −0.129642 0.0941907i
\(253\) −6.75571 11.7012i −0.424728 0.735650i
\(254\) −0.493682 + 0.855082i −0.0309763 + 0.0536526i
\(255\) −3.99940 + 1.78065i −0.250452 + 0.111508i
\(256\) 8.02935 5.83366i 0.501834 0.364604i
\(257\) −4.13639 1.84164i −0.258021 0.114878i 0.273650 0.961829i \(-0.411769\pi\)
−0.531671 + 0.846951i \(0.678436\pi\)
\(258\) 4.35570 0.925833i 0.271174 0.0576398i
\(259\) 0.830903 7.90551i 0.0516298 0.491224i
\(260\) 11.0054 + 12.2227i 0.682526 + 0.758022i
\(261\) −7.15986 + 7.95183i −0.443184 + 0.492206i
\(262\) 0.453539 + 4.31514i 0.0280198 + 0.266590i
\(263\) −0.775281 2.38607i −0.0478059 0.147131i 0.924304 0.381657i \(-0.124646\pi\)
−0.972110 + 0.234525i \(0.924646\pi\)
\(264\) 2.78905 + 8.58383i 0.171654 + 0.528298i
\(265\) −1.38573 13.1844i −0.0851248 0.809909i
\(266\) 1.33820 1.48622i 0.0820502 0.0911260i
\(267\) 2.67785 + 2.97405i 0.163882 + 0.182009i
\(268\) −0.332576 + 3.16425i −0.0203153 + 0.193288i
\(269\) −13.0483 + 2.77349i −0.795567 + 0.169103i −0.587726 0.809060i \(-0.699977\pi\)
−0.207840 + 0.978163i \(0.566643\pi\)
\(270\) −10.9282 4.86554i −0.665067 0.296107i
\(271\) −11.1840 + 8.12564i −0.679379 + 0.493598i −0.873152 0.487449i \(-0.837928\pi\)
0.193773 + 0.981046i \(0.437928\pi\)
\(272\) 1.64200 0.731066i 0.0995609 0.0443274i
\(273\) −1.00225 + 1.73594i −0.0606586 + 0.105064i
\(274\) 4.39548 + 7.61320i 0.265541 + 0.459930i
\(275\) 29.1197 + 21.1567i 1.75598 + 1.27580i
\(276\) 4.41799 + 0.939074i 0.265932 + 0.0565256i
\(277\) 3.57556 11.0044i 0.214834 0.661192i −0.784331 0.620343i \(-0.786994\pi\)
0.999165 0.0408496i \(-0.0130065\pi\)
\(278\) −12.9030 −0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) −4.75866 + 14.6457i −0.283878 + 0.873686i 0.702855 + 0.711333i \(0.251908\pi\)
−0.986733 + 0.162353i \(0.948092\pi\)
\(282\) 0.533176 + 0.113330i 0.0317502 + 0.00674871i
\(283\) 18.3612 + 13.3402i 1.09146 + 0.792993i 0.979645 0.200736i \(-0.0643333\pi\)
0.111816 + 0.993729i \(0.464333\pi\)
\(284\) −5.89722 10.2143i −0.349935 0.606106i
\(285\) −6.35600 + 11.0089i −0.376497 + 0.652112i
\(286\) −7.54312 + 3.35842i −0.446034 + 0.198587i
\(287\) −0.466871 + 0.339202i −0.0275585 + 0.0200224i
\(288\) 11.5958 + 5.16279i 0.683291 + 0.304221i
\(289\) 14.9537 3.17851i 0.879629 0.186971i
\(290\) 1.30815 12.4462i 0.0768169 0.730864i
\(291\) 3.18677 + 3.53926i 0.186812 + 0.207475i
\(292\) 5.77151 6.40991i 0.337752 0.375112i
\(293\) −1.29624 12.3329i −0.0757273 0.720497i −0.964845 0.262819i \(-0.915348\pi\)
0.889118 0.457678i \(-0.151319\pi\)
\(294\) −1.23384 3.79737i −0.0719591 0.221467i
\(295\) 1.06236 + 3.26961i 0.0618530 + 0.190364i
\(296\) 2.64509 + 25.1664i 0.153743 + 1.46277i
\(297\) −12.8870 + 14.3124i −0.747778 + 0.830492i
\(298\) 9.28964 + 10.3172i 0.538134 + 0.597659i
\(299\) −0.998518 + 9.50026i −0.0577458 + 0.549414i
\(300\) −11.7694 + 2.50166i −0.679505 + 0.144433i
\(301\) −4.99118 2.22222i −0.287687 0.128086i
\(302\) 8.57493 6.23005i 0.493432 0.358499i
\(303\) −3.13878 + 1.39748i −0.180318 + 0.0802830i
\(304\) 2.60953 4.51984i 0.149667 0.259231i
\(305\) −4.29523 7.43956i −0.245944 0.425988i
\(306\) −1.59534 1.15908i −0.0911997 0.0662605i
\(307\) −30.0487 6.38704i −1.71497 0.364528i −0.757449 0.652894i \(-0.773554\pi\)
−0.957520 + 0.288367i \(0.906888\pi\)
\(308\) 1.48021 4.55561i 0.0843426 0.259580i
\(309\) 5.63612 0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) 1.97187 6.06878i 0.111635 0.343577i
\(313\) −10.5108 2.23413i −0.594104 0.126281i −0.0989597 0.995091i \(-0.531551\pi\)
−0.495144 + 0.868811i \(0.664885\pi\)
\(314\) 8.44932 + 6.13879i 0.476823 + 0.346432i
\(315\) 3.09305 + 5.35732i 0.174274 + 0.301851i
\(316\) −10.7444 + 18.6098i −0.604420 + 1.04689i
\(317\) 7.99019 3.55746i 0.448774 0.199807i −0.169890 0.985463i \(-0.554341\pi\)
0.618663 + 0.785656i \(0.287674\pi\)
\(318\) −1.79990 + 1.30770i −0.100933 + 0.0733324i
\(319\) −18.4066 8.19516i −1.03057 0.458841i
\(320\) −4.55849 + 0.968937i −0.254827 + 0.0541652i
\(321\) 0.219534 2.08873i 0.0122532 0.116581i
\(322\) 1.15626 + 1.28415i 0.0644357 + 0.0715631i
\(323\) −3.32678 + 3.69476i −0.185107 + 0.205582i
\(324\) 0.371985 + 3.53920i 0.0206658 + 0.196622i
\(325\) −7.86379 24.2022i −0.436204 1.34250i
\(326\) 0.222625 + 0.685170i 0.0123301 + 0.0379480i
\(327\) 0.139304 + 1.32539i 0.00770353 + 0.0732942i
\(328\) 1.22925 1.36522i 0.0678741 0.0753818i
\(329\) −0.447504 0.497003i −0.0246717 0.0274007i
\(330\) 0.992390 9.44196i 0.0546293 0.519763i
\(331\) 31.6618 6.72991i 1.74029 0.369910i 0.775175 0.631746i \(-0.217661\pi\)
0.965112 + 0.261837i \(0.0843281\pi\)
\(332\) 19.6491 + 8.74834i 1.07838 + 0.480128i
\(333\) −18.4124 + 13.3774i −1.00899 + 0.733075i
\(334\) 7.11100 3.16602i 0.389097 0.173237i
\(335\) 3.86860 6.70062i 0.211364 0.366094i
\(336\) 0.473129 + 0.819484i 0.0258113 + 0.0447065i
\(337\) −22.4371 16.3015i −1.22223 0.888000i −0.225944 0.974140i \(-0.572547\pi\)
−0.996283 + 0.0861400i \(0.972547\pi\)
\(338\) −3.05741 0.649872i −0.166301 0.0353484i
\(339\) −1.77926 + 5.47600i −0.0966362 + 0.297416i
\(340\) −7.39640 −0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) −3.16515 + 9.74132i −0.170902 + 0.525982i
\(344\) 17.0125 + 3.61612i 0.917253 + 0.194968i
\(345\) −8.88598 6.45605i −0.478405 0.347582i
\(346\) −7.11994 12.3321i −0.382770 0.662977i
\(347\) 12.9580 22.4440i 0.695624 1.20486i −0.274347 0.961631i \(-0.588462\pi\)
0.969970 0.243224i \(-0.0782051\pi\)
\(348\) 6.15310 2.73954i 0.329841 0.146855i
\(349\) −4.52559 + 3.28803i −0.242249 + 0.176004i −0.702285 0.711896i \(-0.747837\pi\)
0.460036 + 0.887900i \(0.347837\pi\)
\(350\) −4.20535 1.87234i −0.224785 0.100081i
\(351\) 13.3188 2.83100i 0.710905 0.151107i
\(352\) −2.49837 + 23.7704i −0.133163 + 1.26697i
\(353\) 7.80807 + 8.67174i 0.415582 + 0.461550i 0.914195 0.405274i \(-0.132824\pi\)
−0.498614 + 0.866824i \(0.666157\pi\)
\(354\) 0.386052 0.428755i 0.0205185 0.0227881i
\(355\) 2.99805 + 28.5245i 0.159120 + 1.51393i
\(356\) 2.08936 + 6.43039i 0.110736 + 0.340810i
\(357\) −0.278556 0.857307i −0.0147427 0.0453735i
\(358\) −0.00948912 0.0902830i −0.000501516 0.00477160i
\(359\) 17.5311 19.4703i 0.925257 1.02760i −0.0742818 0.997237i \(-0.523666\pi\)
0.999539 0.0303649i \(-0.00966692\pi\)
\(360\) −13.1771 14.6346i −0.694492 0.771312i
\(361\) 0.477014 4.53848i 0.0251060 0.238868i
\(362\) 5.21465 1.10841i 0.274076 0.0582566i
\(363\) −4.89548 2.17961i −0.256946 0.114400i
\(364\) −2.73979 + 1.99058i −0.143604 + 0.104335i
\(365\) −19.1618 + 8.53138i −1.00297 + 0.446553i
\(366\) −0.720830 + 1.24851i −0.0376784 + 0.0652608i
\(367\) −13.5073 23.3953i −0.705076 1.22123i −0.966664 0.256047i \(-0.917580\pi\)
0.261589 0.965179i \(-0.415754\pi\)
\(368\) 3.64825 + 2.65061i 0.190178 + 0.138173i
\(369\) 1.61614 + 0.343522i 0.0841331 + 0.0178830i
\(370\) 8.22549 25.3155i 0.427623 1.31609i
\(371\) 2.72967 0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 1.14744 3.53145i 0.0593326 0.182607i
\(375\) 12.2579 + 2.60550i 0.632997 + 0.134548i
\(376\) 1.72240 + 1.25140i 0.0888261 + 0.0645359i
\(377\) 7.12253 + 12.3366i 0.366829 + 0.635367i
\(378\) 1.23155 2.13311i 0.0633442 0.109715i
\(379\) −4.23795 + 1.88686i −0.217689 + 0.0969213i −0.512684 0.858577i \(-0.671349\pi\)
0.294995 + 0.955499i \(0.404682\pi\)
\(380\) −17.3751 + 12.6238i −0.891325 + 0.647585i
\(381\) 1.18053 + 0.525606i 0.0604804 + 0.0269276i
\(382\) −14.2322 + 3.02514i −0.728182 + 0.154780i
\(383\) 0.524872 4.99383i 0.0268197 0.255173i −0.972894 0.231251i \(-0.925718\pi\)
0.999714 0.0239216i \(-0.00761520\pi\)
\(384\) −6.49004 7.20792i −0.331194 0.367828i
\(385\) −7.79432 + 8.65647i −0.397235 + 0.441175i
\(386\) 0.408159 + 3.88337i 0.0207747 + 0.197658i
\(387\) 4.83383 + 14.8770i 0.245718 + 0.756241i
\(388\) 2.48644 + 7.65247i 0.126230 + 0.388496i
\(389\) −1.94442 18.4999i −0.0985861 0.937984i −0.926288 0.376816i \(-0.877019\pi\)
0.827702 0.561168i \(-0.189648\pi\)
\(390\) −4.49137 + 4.98817i −0.227429 + 0.252586i
\(391\) −2.87447 3.19242i −0.145368 0.161448i
\(392\) 1.63013 15.5096i 0.0823339 0.783355i
\(393\) 5.55462 1.18067i 0.280194 0.0595570i
\(394\) −10.0245 4.46318i −0.505025 0.224852i
\(395\) 42.2763 30.7155i 2.12715 1.54547i
\(396\) −12.5287 + 5.57815i −0.629592 + 0.280312i
\(397\) −16.2794 + 28.1968i −0.817040 + 1.41515i 0.0908142 + 0.995868i \(0.471053\pi\)
−0.907854 + 0.419287i \(0.862280\pi\)
\(398\) −1.46912 2.54459i −0.0736404 0.127549i
\(399\) −2.11757 1.53850i −0.106011 0.0770214i
\(400\) −11.7506 2.49766i −0.587529 0.124883i
\(401\) −3.82880 + 11.7838i −0.191201 + 0.588457i 0.808799 + 0.588086i \(0.200118\pi\)
−1.00000 0.000371451i \(0.999882\pi\)
\(402\) −1.29847 −0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) 2.67424 8.23046i 0.132884 0.408975i
\(406\) 2.52053 + 0.535755i 0.125092 + 0.0265891i
\(407\) −34.6705 25.1896i −1.71855 1.24860i
\(408\) 1.43480 + 2.48514i 0.0710331 + 0.123033i
\(409\) 1.72404 2.98613i 0.0852484 0.147654i −0.820249 0.572007i \(-0.806165\pi\)
0.905497 + 0.424353i \(0.139498\pi\)
\(410\) −1.76536 + 0.785989i −0.0871850 + 0.0388173i
\(411\) 9.30817 6.76278i 0.459138 0.333583i
\(412\) 8.69895 + 3.87302i 0.428566 + 0.190810i
\(413\) −0.692404 + 0.147175i −0.0340709 + 0.00724200i
\(414\) 0.517148 4.92033i 0.0254164 0.241821i
\(415\) −34.9986 38.8699i −1.71801 1.90805i
\(416\) 11.3071 12.5579i 0.554379 0.615700i
\(417\) 1.76520 + 16.7948i 0.0864424 + 0.822444i
\(418\) −3.33180 10.2542i −0.162964 0.501550i
\(419\) −12.3752 38.0871i −0.604570 1.86068i −0.499717 0.866189i \(-0.666563\pi\)
−0.104854 0.994488i \(-0.533437\pi\)
\(420\) −0.407026 3.87259i −0.0198608 0.188963i
\(421\) 14.5097 16.1147i 0.707160 0.785381i −0.277339 0.960772i \(-0.589452\pi\)
0.984499 + 0.175392i \(0.0561191\pi\)
\(422\) 5.30947 + 5.89676i 0.258461 + 0.287050i
\(423\) −0.200151 + 1.90431i −0.00973165 + 0.0925905i
\(424\) −8.49974 + 1.80667i −0.412784 + 0.0877399i
\(425\) 10.4545 + 4.65467i 0.507120 + 0.225784i
\(426\) 3.89411 2.82924i 0.188670 0.137077i
\(427\) 1.61589 0.719441i 0.0781985 0.0348162i
\(428\) 1.77417 3.07294i 0.0857575 0.148536i
\(429\) 5.40332 + 9.35883i 0.260875 + 0.451849i
\(430\) −14.8011 10.7536i −0.713774 0.518587i
\(431\) 11.3667 + 2.41607i 0.547516 + 0.116378i 0.473361 0.880869i \(-0.343041\pi\)
0.0741552 + 0.997247i \(0.476374\pi\)
\(432\) 1.98632 6.11325i 0.0955667 0.294124i
\(433\) 24.5964 1.18203 0.591015 0.806661i \(-0.298728\pi\)
0.591015 + 0.806661i \(0.298728\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) −0.695773 + 2.14137i −0.0333215 + 0.102553i
\(437\) −12.2012 2.59344i −0.583660 0.124061i
\(438\) 2.84780 + 2.06905i 0.136073 + 0.0988630i
\(439\) −9.09662 15.7558i −0.434158 0.751984i 0.563068 0.826410i \(-0.309621\pi\)
−0.997227 + 0.0744265i \(0.976287\pi\)
\(440\) 18.5408 32.1136i 0.883897 1.53096i
\(441\) 12.8134 5.70487i 0.610160 0.271661i
\(442\) −2.12386 + 1.54307i −0.101021 + 0.0733964i
\(443\) 16.2249 + 7.22378i 0.770867 + 0.343212i 0.754196 0.656649i \(-0.228027\pi\)
0.0166706 + 0.999861i \(0.494693\pi\)
\(444\) 14.0129 2.97852i 0.665021 0.141354i
\(445\) 1.71867 16.3521i 0.0814728 0.775162i
\(446\) −4.34782 4.82875i −0.205875 0.228648i
\(447\) 12.1582 13.5030i 0.575062 0.638671i
\(448\) −0.100304 0.954326i −0.00473890 0.0450876i
\(449\) −2.84252 8.74836i −0.134147 0.412861i 0.861310 0.508080i \(-0.169645\pi\)
−0.995456 + 0.0952196i \(0.969645\pi\)
\(450\) 4.07278 + 12.5347i 0.191993 + 0.590892i
\(451\) 0.325208 + 3.09414i 0.0153134 + 0.145698i
\(452\) −6.50915 + 7.22915i −0.306165 + 0.340031i
\(453\) −9.28226 10.3090i −0.436119 0.484359i
\(454\) 1.56850 14.9232i 0.0736132 0.700383i
\(455\) 8.05549 1.71225i 0.377647 0.0802714i
\(456\) 7.61203 + 3.38909i 0.356466 + 0.158709i
\(457\) 25.2412 18.3388i 1.18074 0.857855i 0.188481 0.982077i \(-0.439644\pi\)
0.992254 + 0.124222i \(0.0396436\pi\)
\(458\) −10.6802 + 4.75514i −0.499054 + 0.222193i
\(459\) −3.06166 + 5.30294i −0.142906 + 0.247520i
\(460\) −9.27842 16.0707i −0.432609 0.749300i
\(461\) 5.39491 + 3.91963i 0.251266 + 0.182555i 0.706288 0.707925i \(-0.250369\pi\)
−0.455022 + 0.890480i \(0.650369\pi\)
\(462\) 1.91213 + 0.406436i 0.0889604 + 0.0189091i
\(463\) 10.9140 33.5899i 0.507217 1.56105i −0.289795 0.957089i \(-0.593587\pi\)
0.797011 0.603964i \(-0.206413\pi\)
\(464\) 6.72466 0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) 11.1071 34.1842i 0.513977 1.58186i −0.271159 0.962535i \(-0.587407\pi\)
0.785136 0.619324i \(-0.212593\pi\)
\(468\) 9.48421 + 2.01593i 0.438408 + 0.0931865i
\(469\) 1.28886 + 0.936415i 0.0595143 + 0.0432396i
\(470\) −1.11975 1.93946i −0.0516501 0.0894606i
\(471\) 6.83446 11.8376i 0.314915 0.545449i
\(472\) 2.05862 0.916556i 0.0947556 0.0421879i
\(473\) −23.8296 + 17.3132i −1.09569 + 0.796064i
\(474\) −8.01154 3.56697i −0.367982 0.163836i
\(475\) 32.5034 6.90882i 1.49136 0.316998i
\(476\) 0.159192 1.51461i 0.00729655 0.0694220i
\(477\) −5.22947 5.80791i −0.239441 0.265926i
\(478\) −0.272496 + 0.302637i −0.0124637 + 0.0138423i
\(479\) −3.47499 33.0623i −0.158776 1.51065i −0.726346 0.687329i \(-0.758783\pi\)
0.567570 0.823325i \(-0.307884\pi\)
\(480\) 6.00415 + 18.4789i 0.274051 + 0.843441i
\(481\) 9.36278 + 28.8157i 0.426906 + 1.31388i
\(482\) 1.10777 + 10.5398i 0.0504577 + 0.480073i
\(483\) 1.51330 1.68069i 0.0688574 0.0764739i
\(484\) −6.05805 6.72814i −0.275366 0.305825i
\(485\) 2.04530 19.4597i 0.0928724 0.883621i
\(486\) −10.8886 + 2.31445i −0.493918 + 0.104986i
\(487\) 26.0501 + 11.5982i 1.18044 + 0.525566i 0.900672 0.434501i \(-0.143075\pi\)
0.279770 + 0.960067i \(0.409742\pi\)
\(488\) −4.55544 + 3.30972i −0.206215 + 0.149824i
\(489\) 0.861374 0.383508i 0.0389527 0.0173428i
\(490\) −8.20220 + 14.2066i −0.370538 + 0.641790i
\(491\) 13.9818 + 24.2172i 0.630991 + 1.09291i 0.987350 + 0.158559i \(0.0506848\pi\)
−0.356359 + 0.934349i \(0.615982\pi\)
\(492\) −0.841402 0.611315i −0.0379333 0.0275602i
\(493\) −6.26606 1.33189i −0.282209 0.0599854i
\(494\) −2.35559 + 7.24975i −0.105983 + 0.326182i
\(495\) 33.3506 1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) −2.71249 + 8.34819i −0.121550 + 0.374091i
\(499\) 40.4024 + 8.58778i 1.80866 + 0.384442i 0.983565 0.180555i \(-0.0577895\pi\)
0.825093 + 0.564997i \(0.191123\pi\)
\(500\) 17.1288 + 12.4448i 0.766023 + 0.556548i
\(501\) −5.09378 8.82269i −0.227573 0.394169i
\(502\) −2.08623 + 3.61346i −0.0931132 + 0.161277i
\(503\) −23.3740 + 10.4068i −1.04220 + 0.464015i −0.855174 0.518341i \(-0.826550\pi\)
−0.187021 + 0.982356i \(0.559883\pi\)
\(504\) 3.28043 2.38337i 0.146122 0.106164i
\(505\) 12.8957 + 5.74154i 0.573851 + 0.255495i
\(506\) 9.11245 1.93691i 0.405098 0.0861062i
\(507\) −0.427615 + 4.06849i −0.0189911 + 0.180688i
\(508\) 1.46088 + 1.62247i 0.0648160 + 0.0719855i
\(509\) −16.3721 + 18.1831i −0.725683 + 0.805952i −0.987241 0.159236i \(-0.949097\pi\)
0.261558 + 0.965188i \(0.415764\pi\)
\(510\) −0.315521 3.00198i −0.0139715 0.132930i
\(511\) −1.33461 4.10750i −0.0590396 0.181705i
\(512\) −4.52814 13.9362i −0.200118 0.615898i
\(513\) 1.85853 + 17.6828i 0.0820563 + 0.780713i
\(514\) 2.08897 2.32003i 0.0921404 0.102332i
\(515\) −15.4944 17.2083i −0.682765 0.758287i
\(516\) 1.02923 9.79251i 0.0453095 0.431091i
\(517\) −3.52677 + 0.749638i −0.155107 + 0.0329690i
\(518\) 5.00697 + 2.22925i 0.219994 + 0.0979476i
\(519\) −15.0776 + 10.9546i −0.661835 + 0.480851i
\(520\) −23.9502 + 10.6633i −1.05028 + 0.467617i
\(521\) −7.48279 + 12.9606i −0.327827 + 0.567813i −0.982080 0.188462i \(-0.939650\pi\)
0.654253 + 0.756275i \(0.272983\pi\)
\(522\) −3.68887 6.38931i −0.161458 0.279653i
\(523\) 16.9615 + 12.3233i 0.741677 + 0.538860i 0.893236 0.449589i \(-0.148429\pi\)
−0.151559 + 0.988448i \(0.548429\pi\)
\(524\) 9.38450 + 1.99474i 0.409964 + 0.0871405i
\(525\) −1.86176 + 5.72991i −0.0812539 + 0.250074i
\(526\) 1.72984 0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) −3.77686 + 11.6240i −0.164211 + 0.505391i
\(530\) 8.94085 + 1.90044i 0.388366 + 0.0825497i
\(531\) 1.63964 + 1.19127i 0.0711544 + 0.0516967i
\(532\) −2.21109 3.82971i −0.0958628 0.166039i
\(533\) 1.09981 1.90492i 0.0476379 0.0825113i
\(534\) −2.52078 + 1.12232i −0.109085 + 0.0485676i
\(535\) −6.98086 + 5.07189i −0.301809 + 0.219277i
\(536\) −4.63309 2.06278i −0.200119 0.0890987i
\(537\) −0.116216 + 0.0247025i −0.00501509 + 0.00106599i
\(538\) 0.961419 9.14729i 0.0414497 0.394368i
\(539\) 17.6723 + 19.6271i 0.761202 + 0.845400i
\(540\) −17.6992 + 19.6570i −0.761654 + 0.845902i
\(541\) −0.180970 1.72182i −0.00778052 0.0740267i 0.989943 0.141469i \(-0.0451827\pi\)
−0.997723 + 0.0674427i \(0.978516\pi\)
\(542\) −2.94545 9.06515i −0.126518 0.389382i
\(543\) −2.15612 6.63586i −0.0925280 0.284772i
\(544\) 0.794333 + 7.55757i 0.0340567 + 0.324028i
\(545\) 3.66373 4.06898i 0.156937 0.174296i
\(546\) −0.924793 1.02709i −0.0395775 0.0439553i
\(547\) 1.37156 13.0495i 0.0586438 0.557958i −0.925269 0.379311i \(-0.876161\pi\)
0.983913 0.178648i \(-0.0571722\pi\)
\(548\) 19.0137 4.04149i 0.812226 0.172644i
\(549\) −4.62646 2.05983i −0.197452 0.0879115i
\(550\) −20.0778 + 14.5874i −0.856121 + 0.622008i
\(551\) −16.9930 + 7.56577i −0.723926 + 0.322313i
\(552\) −3.59977 + 6.23498i −0.153216 + 0.265378i
\(553\) 5.37991 + 9.31828i 0.228777 + 0.396254i
\(554\) 6.45429 + 4.68932i 0.274217 + 0.199230i
\(555\) −34.0764 7.24316i −1.44646 0.307455i
\(556\) −8.81656 + 27.1346i −0.373905 + 1.15076i
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) 1.20137 3.69743i 0.0507670 0.156245i
\(561\) −4.75358 1.01041i −0.200696 0.0426594i
\(562\) −8.58993 6.24095i −0.362344 0.263259i
\(563\) −11.3259 19.6171i −0.477331 0.826762i 0.522331 0.852743i \(-0.325062\pi\)
−0.999662 + 0.0259808i \(0.991729\pi\)
\(564\) 0.602646 1.04381i 0.0253760 0.0439525i
\(565\) 21.6108 9.62175i 0.909174 0.404790i
\(566\) −12.6599 + 9.19798i −0.532136 + 0.386620i
\(567\) 1.62785 + 0.724764i 0.0683632 + 0.0304372i
\(568\) 18.3893 3.90877i 0.771598 0.164008i
\(569\) 4.85451 46.1876i 0.203512 1.93629i −0.125783 0.992058i \(-0.540144\pi\)
0.329294 0.944227i \(-0.393189\pi\)
\(570\) −5.86482 6.51354i −0.245650 0.272822i
\(571\) −8.36303 + 9.28809i −0.349982 + 0.388694i −0.892273 0.451496i \(-0.850890\pi\)
0.542291 + 0.840191i \(0.317557\pi\)
\(572\) 1.90845 + 18.1577i 0.0797965 + 0.759213i
\(573\) 5.88463 + 18.1110i 0.245834 + 0.756600i
\(574\) −0.122956 0.378421i −0.00513210 0.0157950i
\(575\) 3.00119 + 28.5544i 0.125158 + 1.19080i
\(576\) −1.83836 + 2.04170i −0.0765982 + 0.0850709i
\(577\) −20.3980 22.6542i −0.849179 0.943109i 0.149780 0.988719i \(-0.452143\pi\)
−0.998959 + 0.0456107i \(0.985477\pi\)
\(578\) −1.10181 + 10.4831i −0.0458294 + 0.436038i
\(579\) 4.99883 1.06253i 0.207744 0.0441574i
\(580\) −25.2800 11.2554i −1.04970 0.467355i
\(581\) 8.71290 6.33030i 0.361472 0.262625i
\(582\) −2.99985 + 1.33562i −0.124348 + 0.0553631i
\(583\) 7.35812 12.7446i 0.304742 0.527829i
\(584\) 6.87436 + 11.9067i 0.284463 + 0.492705i
\(585\) −19.0758 13.8593i −0.788685 0.573013i
\(586\) 8.36346 + 1.77771i 0.345491 + 0.0734364i
\(587\) 10.4009 32.0107i 0.429292 1.32123i −0.469532 0.882915i \(-0.655577\pi\)
0.898824 0.438310i \(-0.144423\pi\)
\(588\) −8.82883 −0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) −4.43796 + 13.6586i −0.182553 + 0.561841i
\(592\) 13.9905 + 2.97377i 0.575005 + 0.122221i
\(593\) 36.3151 + 26.3844i 1.49128 + 1.08348i 0.973697 + 0.227847i \(0.0731687\pi\)
0.517585 + 0.855632i \(0.326831\pi\)
\(594\) −6.63957 11.5001i −0.272425 0.471854i
\(595\) −1.85175 + 3.20733i −0.0759145 + 0.131488i
\(596\) 28.0443 12.4861i 1.14874 0.511451i
\(597\) −3.11111 + 2.26035i −0.127329 + 0.0925100i
\(598\) −6.01701 2.67895i −0.246054 0.109550i
\(599\) 19.1566 4.07187i 0.782719 0.166372i 0.200815 0.979629i \(-0.435641\pi\)
0.581905 + 0.813257i \(0.302308\pi\)
\(600\) 2.00478 19.0742i 0.0818449 0.778702i
\(601\) 20.3814 + 22.6358i 0.831373 + 0.923333i 0.998034 0.0626811i \(-0.0199651\pi\)
−0.166661 + 0.986014i \(0.553298\pi\)
\(602\) 2.52066 2.79947i 0.102734 0.114098i
\(603\) −0.476783 4.53629i −0.0194161 0.184732i
\(604\) −7.24238 22.2898i −0.294688 0.906958i
\(605\) 6.80348 + 20.9390i 0.276601 + 0.851290i
\(606\) −0.247626 2.35600i −0.0100591 0.0957060i
\(607\) −8.94933 + 9.93924i −0.363242 + 0.403421i −0.896867 0.442300i \(-0.854163\pi\)
0.533625 + 0.845721i \(0.320829\pi\)
\(608\) 14.7648 + 16.3980i 0.598793 + 0.665027i
\(609\) 0.352526 3.35406i 0.0142851 0.135914i
\(610\) 5.79363 1.23147i 0.234577 0.0498609i
\(611\) 2.32875 + 1.03683i 0.0942112 + 0.0419455i
\(612\) −3.52761 + 2.56296i −0.142595 + 0.103601i
\(613\) −4.74606 + 2.11308i −0.191691 + 0.0853465i −0.500338 0.865830i \(-0.666791\pi\)
0.308646 + 0.951177i \(0.400124\pi\)
\(614\) 10.5906 18.3435i 0.427402 0.740282i
\(615\) 1.26457 + 2.19030i 0.0509924 + 0.0883215i
\(616\) 6.17705 + 4.48789i 0.248881 + 0.180822i
\(617\) 29.3572 + 6.24007i 1.18188 + 0.251216i 0.756619 0.653856i \(-0.226850\pi\)
0.425258 + 0.905072i \(0.360183\pi\)
\(618\) −1.20086 + 3.69587i −0.0483057 + 0.148670i
\(619\) 18.3260 0.736584 0.368292 0.929710i \(-0.379943\pi\)
0.368292 + 0.929710i \(0.379943\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) −0.507396 + 1.56160i −0.0203447 + 0.0626146i
\(623\) 3.31153 + 0.703887i 0.132674 + 0.0282006i
\(624\) −2.91793 2.12000i −0.116811 0.0848679i
\(625\) −3.87924 6.71905i −0.155170 0.268762i
\(626\) 3.70450 6.41639i 0.148062 0.256450i
\(627\) −12.8913 + 5.73957i −0.514829 + 0.229216i
\(628\) 18.6831 13.5740i 0.745535 0.541663i
\(629\) −12.4474 5.54194i −0.496310 0.220972i
\(630\) −4.17206 + 0.886800i −0.166219 + 0.0353309i
\(631\) −1.08032 + 10.2786i −0.0430070 + 0.409184i 0.951747 + 0.306885i \(0.0992867\pi\)
−0.994754 + 0.102299i \(0.967380\pi\)
\(632\) −22.9196 25.4548i −0.911692 1.01254i
\(633\) 6.94898 7.71762i 0.276197 0.306748i
\(634\) 0.630363 + 5.99751i 0.0250349 + 0.238191i
\(635\) −1.64064 5.04936i −0.0651067 0.200378i
\(636\) 1.52020 + 4.67868i 0.0602797 + 0.185522i
\(637\) −1.95181 18.5703i −0.0773336 0.735780i
\(638\) 9.29576 10.3240i 0.368023 0.408731i
\(639\) 11.3140 + 12.5655i 0.447576 + 0.497083i
\(640\) −4.16538 + 39.6310i −0.164651 + 1.56655i
\(641\) −0.0990394 + 0.0210515i −0.00391182 + 0.000831483i −0.209867 0.977730i \(-0.567303\pi\)
0.205955 + 0.978561i \(0.433970\pi\)
\(642\) 1.32290 + 0.588994i 0.0522108 + 0.0232457i
\(643\) 11.0931 8.05961i 0.437469 0.317840i −0.347159 0.937806i \(-0.612854\pi\)
0.784629 + 0.619966i \(0.212854\pi\)
\(644\) 3.49060 1.55412i 0.137549 0.0612407i
\(645\) −11.9723 + 20.7366i −0.471408 + 0.816503i
\(646\) −1.71401 2.96875i −0.0674367 0.116804i
\(647\) 8.76519 + 6.36828i 0.344595 + 0.250363i 0.746598 0.665275i \(-0.231686\pi\)
−0.402003 + 0.915638i \(0.631686\pi\)
\(648\) −5.54854 1.17938i −0.217967 0.0463304i
\(649\) −1.17930 + 3.62951i −0.0462916 + 0.142471i
\(650\) 17.5460 0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) −7.49434 + 23.0652i −0.293276 + 0.902611i 0.690519 + 0.723314i \(0.257382\pi\)
−0.983795 + 0.179297i \(0.942618\pi\)
\(654\) −0.898800 0.191046i −0.0351459 0.00747049i
\(655\) −18.8752 13.7136i −0.737515 0.535836i
\(656\) −0.519185 0.899255i −0.0202708 0.0351100i
\(657\) −6.18270 + 10.7087i −0.241210 + 0.417788i
\(658\) 0.421256 0.187555i 0.0164223 0.00731166i
\(659\) 6.90374 5.01586i 0.268932 0.195390i −0.445144 0.895459i \(-0.646847\pi\)
0.714075 + 0.700069i \(0.246847\pi\)
\(660\) −19.1780 8.53861i −0.746504 0.332365i
\(661\) −37.0563 + 7.87657i −1.44132 + 0.306363i −0.861242 0.508195i \(-0.830313\pi\)
−0.580083 + 0.814558i \(0.696980\pi\)
\(662\) −2.33289 + 22.1960i −0.0906705 + 0.862672i
\(663\) 2.29905 + 2.55335i 0.0892876 + 0.0991639i
\(664\) −22.9407 + 25.4783i −0.890273 + 0.988748i
\(665\) 1.12408 + 10.6949i 0.0435900 + 0.414731i
\(666\) −4.84913 14.9241i −0.187900 0.578297i
\(667\) −4.96657 15.2855i −0.192306 0.591858i
\(668\) −1.79913 17.1175i −0.0696102 0.662297i
\(669\) −5.69038 + 6.31981i −0.220003 + 0.244338i
\(670\) 3.56964 + 3.96449i 0.137907 + 0.153162i
\(671\) 0.996790 9.48382i 0.0384806 0.366119i
\(672\) −3.91326 + 0.831790i −0.150957 + 0.0320870i
\(673\) 6.50454 + 2.89601i 0.250732 + 0.111633i 0.528254 0.849086i \(-0.322847\pi\)
−0.277523 + 0.960719i \(0.589513\pi\)
\(674\) 15.4702 11.2398i 0.595891 0.432940i
\(675\) 37.3877 16.6461i 1.43905 0.640707i
\(676\) −3.45577 + 5.98557i −0.132914 + 0.230214i
\(677\) −24.0305 41.6220i −0.923567 1.59966i −0.793850 0.608113i \(-0.791927\pi\)
−0.129716 0.991551i \(-0.541407\pi\)
\(678\) −3.21177 2.33349i −0.123347 0.0896171i
\(679\) 3.94088 + 0.837659i 0.151237 + 0.0321464i
\(680\) 3.64323 11.2127i 0.139712 0.429988i
\(681\) −19.6390 −0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) −3.91250 + 12.0414i −0.149598 + 0.460416i
\(685\) −46.2375 9.82809i −1.76664 0.375512i
\(686\) −5.71346 4.15107i −0.218141 0.158489i
\(687\) 7.65051 + 13.2511i 0.291885 + 0.505560i
\(688\) 4.91537 8.51366i 0.187397 0.324580i
\(689\) −9.50490 + 4.23185i −0.362108 + 0.161221i
\(690\) 6.12682 4.45140i 0.233244 0.169462i
\(691\) 24.8969 + 11.0848i 0.947124 + 0.421687i 0.821383 0.570376i \(-0.193203\pi\)
0.125740 + 0.992063i \(0.459869\pi\)
\(692\) −30.7990 + 6.54653i −1.17080 + 0.248862i
\(693\) −0.717801 + 6.82942i −0.0272670 + 0.259428i
\(694\) 11.9567 + 13.2792i 0.453868 + 0.504072i
\(695\) 46.4253 51.5605i 1.76101 1.95580i
\(696\) 1.12223 + 10.6773i 0.0425381 + 0.404723i
\(697\) 0.305671 + 0.940760i 0.0115781 + 0.0356338i
\(698\) −1.19187 3.66820i −0.0451130 0.138844i
\(699\) −0.927806 8.82749i −0.0350929 0.333886i
\(700\) −6.81097 + 7.56435i −0.257430 + 0.285905i
\(701\) 5.68035 + 6.30867i 0.214544 + 0.238275i 0.840805 0.541338i \(-0.182082\pi\)
−0.626261 + 0.779614i \(0.715416\pi\)
\(702\) −0.981352 + 9.33694i −0.0370387 + 0.352400i
\(703\) −38.6992 + 8.22578i −1.45957 + 0.310241i
\(704\) −4.72606 2.10418i −0.178120 0.0793042i
\(705\) −2.37125 + 1.72281i −0.0893065 + 0.0648849i
\(706\) −7.35009 + 3.27247i −0.276624 + 0.123161i
\(707\) −1.45328 + 2.51716i −0.0546564 + 0.0946676i
\(708\) −0.637869 1.10482i −0.0239726 0.0415217i
\(709\) 18.9198 + 13.7460i 0.710546 + 0.516242i 0.883350 0.468714i \(-0.155283\pi\)
−0.172804 + 0.984956i \(0.555283\pi\)
\(710\) −19.3436 4.11162i −0.725954 0.154306i
\(711\) 9.51971 29.2987i 0.357017 1.09879i
\(712\) −10.7774 −0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) 13.7201 42.2261i 0.513102 1.57917i
\(716\) −0.196346 0.0417346i −0.00733779 0.00155970i
\(717\) 0.431198 + 0.313283i 0.0161034 + 0.0116998i
\(718\) 9.03230 + 15.6444i 0.337083 + 0.583844i
\(719\) −6.48843 + 11.2383i −0.241978 + 0.419118i −0.961278 0.275582i \(-0.911129\pi\)
0.719300 + 0.694700i \(0.244463\pi\)
\(720\) −10.1686 + 4.52734i −0.378960 + 0.168724i
\(721\) 3.85733 2.80252i 0.143655 0.104371i
\(722\) 2.87446 + 1.27979i 0.106976 + 0.0476289i
\(723\) 13.5672 2.88380i 0.504570 0.107250i
\(724\) 1.23220 11.7236i 0.0457944 0.435704i
\(725\) 28.6492 + 31.8182i 1.06401 + 1.18170i
\(726\) 2.47233 2.74580i 0.0917567 0.101906i
\(727\) 1.29856 + 12.3550i 0.0481609 + 0.458220i 0.991852 + 0.127393i \(0.0406610\pi\)
−0.943691 + 0.330827i \(0.892672\pi\)
\(728\) −1.66812 5.13393i −0.0618245 0.190276i
\(729\) 2.33825 + 7.19640i 0.0866020 + 0.266533i
\(730\) −1.51172 14.3830i −0.0559511 0.532339i
\(731\) −6.26638 + 6.95952i −0.231771 + 0.257407i
\(732\) 2.13304 + 2.36898i 0.0788395 + 0.0875602i
\(733\) 3.57041 33.9702i 0.131876 1.25472i −0.705744 0.708467i \(-0.749387\pi\)
0.837621 0.546252i \(-0.183946\pi\)
\(734\) 18.2193 3.87264i 0.672488 0.142942i
\(735\) 19.6137 + 8.73260i 0.723464 + 0.322107i
\(736\) −15.4244 + 11.2065i −0.568552 + 0.413077i
\(737\) 7.84633 3.49341i 0.289023 0.128682i
\(738\) −0.569607 + 0.986589i −0.0209675 + 0.0363168i
\(739\) 6.18747 + 10.7170i 0.227610 + 0.394231i 0.957099 0.289761i \(-0.0935757\pi\)
−0.729490 + 0.683992i \(0.760242\pi\)
\(740\) −47.6171 34.5959i −1.75044 1.27177i
\(741\) 9.75868 + 2.07427i 0.358494 + 0.0762002i
\(742\) −0.581597 + 1.78997i −0.0213511 + 0.0657119i
\(743\) −16.2455 −0.595990 −0.297995 0.954567i \(-0.596318\pi\)
−0.297995 + 0.954567i \(0.596318\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 2.64325 8.13509i 0.0967763 0.297847i
\(747\) −30.1610 6.41092i −1.10353 0.234563i
\(748\) −6.64249 4.82605i −0.242873 0.176458i
\(749\) −0.888356 1.53868i −0.0324598 0.0562220i
\(750\) −4.32029 + 7.48296i −0.157755 + 0.273239i
\(751\) −9.85558 + 4.38799i −0.359635 + 0.160120i −0.578597 0.815614i \(-0.696400\pi\)
0.218962 + 0.975733i \(0.429733\pi\)
\(752\) 0.973546 0.707322i 0.0355016 0.0257934i
\(753\) 4.98876 + 2.22114i 0.181801 + 0.0809429i
\(754\) −9.60724 + 2.04208i −0.349875 + 0.0743682i
\(755\) −5.95746 + 56.6814i −0.216814 + 2.06285i
\(756\) −3.64435 4.04746i −0.132544 0.147205i
\(757\) 27.5024 30.5445i 0.999591 1.11016i 0.00567884 0.999984i \(-0.498192\pi\)
0.993912 0.110175i \(-0.0351410\pi\)
\(758\) −0.334341 3.18104i −0.0121438 0.115541i
\(759\) −3.76776 11.5960i −0.136761 0.420907i
\(760\) −10.5788 32.5582i −0.383733 1.18101i
\(761\) −2.05508 19.5528i −0.0744967 0.708789i −0.966484 0.256728i \(-0.917356\pi\)
0.891987 0.452061i \(-0.149311\pi\)
\(762\) −0.596194 + 0.662140i −0.0215978 + 0.0239868i
\(763\) 0.754378 + 0.837822i 0.0273103 + 0.0303312i
\(764\) −3.36301 + 31.9969i −0.121669 + 1.15761i
\(765\) 10.3718 2.20459i 0.374993 0.0797073i
\(766\) 3.16285 + 1.40819i 0.114279 + 0.0508801i
\(767\) 2.18283 1.58592i 0.0788174 0.0572642i
\(768\) 8.18186 3.64280i 0.295238 0.131448i
\(769\) −1.89417 + 3.28080i −0.0683055 + 0.118309i −0.898155 0.439678i \(-0.855093\pi\)
0.829850 + 0.557986i \(0.188426\pi\)
\(770\) −4.01575 6.95549i −0.144718 0.250658i
\(771\) −3.30558 2.40165i −0.119048 0.0864932i
\(772\) 8.44549 + 1.79514i 0.303960 + 0.0646087i
\(773\) −7.83963 + 24.1279i −0.281972 + 0.867820i 0.705318 + 0.708891i \(0.250804\pi\)
−0.987290 + 0.158929i \(0.949196\pi\)
\(774\) −10.7855 −0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) 2.21665 6.82215i 0.0795219 0.244743i
\(778\) 12.5456 + 2.66664i 0.449780 + 0.0956037i
\(779\) 2.32370 + 1.68826i 0.0832551 + 0.0604884i
\(780\) 7.42103 + 12.8536i 0.265716 + 0.460233i
\(781\) −15.9194 + 27.5732i −0.569641 + 0.986647i
\(782\) 2.70587 1.20473i 0.0967617 0.0430811i
\(783\) −18.5341 + 13.4658i −0.662354 + 0.481228i
\(784\) −8.05266 3.58527i −0.287595 0.128046i
\(785\) −54.9316 + 11.6761i −1.96059 + 0.416737i
\(786\) −0.409274 + 3.89399i −0.0145983 + 0.138894i
\(787\) −17.3617 19.2821i −0.618876 0.687332i 0.349469 0.936948i \(-0.386362\pi\)
−0.968345 + 0.249616i \(0.919695\pi\)
\(788\) −16.2356 + 18.0314i −0.578369 + 0.642344i
\(789\) −0.236653 2.25160i −0.00842505 0.0801590i
\(790\) 11.1340 + 34.2670i 0.396130 + 1.21916i
\(791\) 1.50518 + 4.63247i 0.0535181 + 0.164712i
\(792\) −2.28504 21.7408i −0.0811955 0.772524i
\(793\) −4.51128 + 5.01029i −0.160200 + 0.177921i
\(794\) −15.0214 16.6829i −0.533088 0.592054i
\(795\) 1.25049 11.8976i 0.0443502 0.421964i
\(796\) −6.35504 + 1.35080i −0.225248 + 0.0478780i
\(797\) −16.9030 7.52569i −0.598734 0.266574i 0.0849105 0.996389i \(-0.472940\pi\)
−0.683645 + 0.729815i \(0.739606\pi\)
\(798\) 1.46005 1.06079i 0.0516851 0.0375514i
\(799\) −1.04725 + 0.466264i −0.0370489 + 0.0164952i
\(800\) 25.3951 43.9856i 0.897852 1.55513i
\(801\) −4.84652 8.39442i −0.171243 0.296602i
\(802\) −6.91143 5.02145i −0.244051 0.177314i
\(803\) −22.7752 4.84102i −0.803720 0.170836i
\(804\) −0.887235 + 2.73063i −0.0312904 + 0.0963019i
\(805\) −9.29174 −0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) 2.85926 8.79990i 0.100588 0.309579i
\(809\) −35.9448 7.64030i −1.26375 0.268619i −0.473168 0.880972i \(-0.656890\pi\)
−0.790584 + 0.612353i \(0.790223\pi\)
\(810\) 4.82731 + 3.50725i 0.169614 + 0.123232i
\(811\) 19.7151 + 34.1475i 0.692289 + 1.19908i 0.971086 + 0.238730i \(0.0767310\pi\)
−0.278797 + 0.960350i \(0.589936\pi\)
\(812\) 2.84894 4.93451i 0.0999782 0.173167i
\(813\) −11.3964 + 5.07402i −0.399690 + 0.177954i
\(814\) 23.9051 17.3680i 0.837872 0.608749i
\(815\) −3.53896 1.57565i −0.123964 0.0551924i
\(816\) 1.58653 0.337226i 0.0555395 0.0118053i
\(817\) −2.84243 + 27.0439i −0.0994441 + 0.946147i
\(818\) 1.59081 + 1.76677i 0.0556214 + 0.0617738i
\(819\) 3.24863 3.60797i 0.113516 0.126073i
\(820\) 0.446647 + 4.24956i 0.0155976 + 0.148401i
\(821\) 0.457525 + 1.40812i 0.0159677 + 0.0491436i 0.958723 0.284342i \(-0.0917751\pi\)
−0.942755 + 0.333486i \(0.891775\pi\)
\(822\) 2.45142 + 7.54471i 0.0855032 + 0.263152i
\(823\) 4.06252 + 38.6523i 0.141611 + 1.34733i 0.802410 + 0.596773i \(0.203551\pi\)
−0.660800 + 0.750562i \(0.729783\pi\)
\(824\) −10.1562 + 11.2796i −0.353808 + 0.392943i
\(825\) 21.7340 + 24.1380i 0.756680 + 0.840379i
\(826\) 0.0510175 0.485399i 0.00177513 0.0168892i
\(827\) −33.1947 + 7.05575i −1.15429 + 0.245352i −0.745009 0.667055i \(-0.767555\pi\)
−0.409284 + 0.912407i \(0.634221\pi\)
\(828\) −9.99393 4.44959i −0.347313 0.154634i
\(829\) −13.3736 + 9.71650i −0.464485 + 0.337468i −0.795288 0.606232i \(-0.792680\pi\)
0.330803 + 0.943700i \(0.392680\pi\)
\(830\) 32.9458 14.6684i 1.14356 0.509148i
\(831\) 5.22073 9.04256i 0.181105 0.313683i
\(832\) 1.82877 + 3.16752i 0.0634012 + 0.109814i
\(833\) 6.79340 + 4.93569i 0.235377 + 0.171012i
\(834\) −11.3892 2.42086i −0.394377 0.0838274i
\(835\) −12.9341 + 39.8071i −0.447603 + 1.37758i
\(836\) −23.8409 −0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) −16.7110 + 51.4313i −0.576929 + 1.77561i 0.0525843 + 0.998616i \(0.483254\pi\)
−0.629514 + 0.776989i \(0.716746\pi\)
\(840\) 6.07121 + 1.29048i 0.209477 + 0.0445256i
\(841\) 4.07162 + 2.95820i 0.140401 + 0.102007i
\(842\) 7.47562 + 12.9482i 0.257627 + 0.446223i
\(843\) −6.94819 + 12.0346i −0.239308 + 0.414494i
\(844\) 16.0286 7.13641i 0.551728 0.245645i
\(845\) 13.5975 9.87918i 0.467769 0.339854i
\(846\) −1.20610 0.536989i −0.0414665 0.0184621i
\(847\) −4.43424 + 0.942526i −0.152362 + 0.0323856i
\(848\) −0.513402 + 4.88470i −0.0176303 + 0.167741i
\(849\) 13.7042 + 15.2201i 0.470328 + 0.522352i
\(850\) −5.27978 + 5.86379i −0.181095 + 0.201126i
\(851\) −3.57328 33.9975i −0.122490 1.16542i
\(852\) −3.28896 10.1224i −0.112678 0.346787i
\(853\) 12.2297 + 37.6392i 0.418738 + 1.28874i 0.908865 + 0.417091i \(0.136950\pi\)
−0.490127 + 0.871651i \(0.663050\pi\)
\(854\) 0.127481 + 1.21290i 0.00436232 + 0.0415047i
\(855\) 20.6020 22.8809i 0.704575 0.782510i
\(856\) 3.78459 + 4.20321i 0.129355 + 0.143663i
\(857\) −1.33013 + 12.6553i −0.0454363 + 0.432298i 0.948031 + 0.318179i \(0.103071\pi\)
−0.993467 + 0.114119i \(0.963595\pi\)
\(858\) −7.28828 + 1.54917i −0.248818 + 0.0528878i
\(859\) −19.3255 8.60425i −0.659376 0.293573i 0.0496383 0.998767i \(-0.484193\pi\)
−0.709014 + 0.705194i \(0.750860\pi\)
\(860\) −32.7281 + 23.7784i −1.11602 + 0.810835i
\(861\) −0.475739 + 0.211813i −0.0162132 + 0.00721856i
\(862\) −4.00618 + 6.93891i −0.136451 + 0.236340i
\(863\) −4.66987 8.08845i −0.158964 0.275334i 0.775531 0.631309i \(-0.217482\pi\)
−0.934495 + 0.355975i \(0.884149\pi\)
\(864\) 21.9861 + 15.9739i 0.747983 + 0.543441i
\(865\) 74.8969 + 15.9198i 2.54657 + 0.541290i
\(866\) −5.24064 + 16.1290i −0.178084 + 0.548087i
\(867\) 13.7957 0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 3.48982 10.7406i 0.118316 0.364139i
\(871\) −5.93966 1.26251i −0.201258 0.0427786i
\(872\) −2.90353 2.10954i −0.0983260 0.0714380i
\(873\) −5.76760 9.98977i −0.195204 0.338102i
\(874\) 4.30028 7.44830i 0.145459 0.251942i
\(875\) 9.68484 4.31197i 0.327407 0.145771i
\(876\) 6.29703 4.57506i 0.212757 0.154577i
\(877\) 20.4956 + 9.12524i 0.692088 + 0.308137i 0.722471 0.691401i \(-0.243006\pi\)
−0.0303833 + 0.999538i \(0.509673\pi\)
\(878\) 12.2700 2.60807i 0.414092 0.0880180i
\(879\) 1.16973 11.1292i 0.0394540 0.375380i
\(880\) −14.0246 15.5759i −0.472770 0.525064i
\(881\) −31.0687 + 34.5053i −1.04673 + 1.16251i −0.0603272 + 0.998179i \(0.519214\pi\)
−0.986405 + 0.164335i \(0.947452\pi\)
\(882\) 1.01087 + 9.61782i 0.0340379 + 0.323849i
\(883\) 11.2913 + 34.7512i 0.379984 + 1.16947i 0.940054 + 0.341026i \(0.110774\pi\)
−0.560070 + 0.828445i \(0.689226\pi\)
\(884\) 1.79381 + 5.52077i 0.0603323 + 0.185684i
\(885\) 0.324282 + 3.08534i 0.0109006 + 0.103713i
\(886\) −8.19392 + 9.10027i −0.275280 + 0.305730i
\(887\) 19.1940 + 21.3171i 0.644473 + 0.715760i 0.973532 0.228550i \(-0.0733983\pi\)
−0.329059 + 0.944309i \(0.606732\pi\)
\(888\) −2.38693 + 22.7102i −0.0801003 + 0.762103i
\(889\) 1.06930 0.227287i 0.0358632 0.00762297i
\(890\) 10.3566 + 4.61107i 0.347155 + 0.154563i
\(891\) 7.77192 5.64663i 0.260369 0.189169i
\(892\) −13.1255 + 5.84387i −0.439476 + 0.195667i
\(893\) −1.66433 + 2.88270i −0.0556945 + 0.0964658i
\(894\) 6.26408 + 10.8497i 0.209502 + 0.362869i
\(895\) 0.394914 + 0.286922i 0.0132005 + 0.00959074i
\(896\) −8.02583 1.70594i −0.268124 0.0569916i
\(897\) −2.66381 + 8.19836i −0.0889420 + 0.273735i
\(898\) 6.34235 0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) 1.44586 4.44989i 0.0481685 0.148247i
\(902\) −2.09826 0.446000i −0.0698646 0.0148502i
\(903\) −3.98869 2.89795i −0.132735 0.0964378i
\(904\) −7.75296 13.4285i −0.257860 0.446626i
\(905\) −14.3332 + 24.8259i −0.476453 + 0.825240i
\(906\) 8.73781 3.89032i 0.290294 0.129247i
\(907\) 17.9518 13.0427i 0.596079 0.433077i −0.248406 0.968656i \(-0.579907\pi\)
0.844485 + 0.535579i \(0.179907\pi\)
\(908\) −30.3113 13.4955i −1.00592 0.447863i
\(909\) 8.13994 1.73020i 0.269985 0.0573871i
\(910\) −0.593543 + 5.64718i −0.0196757 + 0.187202i
\(911\) −19.2927 21.4267i −0.639194 0.709897i 0.333301 0.942821i \(-0.391838\pi\)
−0.972495 + 0.232923i \(0.925171\pi\)
\(912\) 3.15140 3.49998i 0.104353 0.115896i
\(913\) −6.06913 57.7440i −0.200859 1.91105i
\(914\) 6.64760 + 20.4592i 0.219883 + 0.676731i
\(915\) −2.39551 7.37263i −0.0791932 0.243732i
\(916\) 2.70216 + 25.7093i 0.0892819 + 0.849460i
\(917\) 3.21448 3.57004i 0.106151 0.117893i
\(918\) −2.82505 3.13754i −0.0932407 0.103554i
\(919\) −5.02388 + 47.7990i −0.165723 + 1.57675i 0.523392 + 0.852092i \(0.324667\pi\)
−0.689114 + 0.724653i \(0.742000\pi\)
\(920\) 28.9329 6.14988i 0.953890 0.202756i
\(921\) −25.3251 11.2754i −0.834490 0.371539i
\(922\) −3.71975 + 2.70256i −0.122503 + 0.0890039i
\(923\) 20.5640 9.15567i 0.676872 0.301363i
\(924\) 2.16127 3.74343i 0.0711007 0.123150i
\(925\) 45.5334 + 78.8662i 1.49713 + 2.59310i
\(926\) 19.7010 + 14.3136i 0.647416 + 0.470376i
\(927\) −13.3527 2.83821i −0.438561 0.0932191i
\(928\) −8.78572 + 27.0397i −0.288405 + 0.887621i
\(929\) 7.01617 0.230193 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) 4.63406 14.2622i 0.151794 0.467173i
\(933\) 2.10203 + 0.446800i 0.0688173 + 0.0146276i
\(934\) 20.0497 + 14.5669i 0.656045 + 0.476644i
\(935\) 9.98321 + 17.2914i 0.326486 + 0.565490i
\(936\) −7.72770 + 13.3848i −0.252588 + 0.437495i
\(937\) −11.7671 + 5.23903i −0.384413 + 0.171152i −0.589839 0.807521i \(-0.700809\pi\)
0.205426 + 0.978673i \(0.434142\pi\)
\(938\) −0.888663 + 0.645651i −0.0290159 + 0.0210813i
\(939\) −8.85850 3.94406i −0.289086 0.128709i
\(940\) −4.84374 + 1.02957i −0.157985 + 0.0335808i
\(941\) 5.23053 49.7651i 0.170510 1.62230i −0.490168 0.871628i \(-0.663065\pi\)
0.660679 0.750669i \(-0.270269\pi\)
\(942\) 6.30630 + 7.00385i 0.205470 + 0.228198i
\(943\) −1.66061 + 1.84429i −0.0540768 + 0.0600584i
\(944\) −0.133138 1.26672i −0.00433328 0.0412284i
\(945\) 4.09278 + 12.5963i 0.133138 + 0.409757i
\(946\) −6.27584 19.3151i −0.204045 0.627987i
\(947\) −5.42168 51.5838i −0.176181 1.67625i −0.623461 0.781854i \(-0.714274\pi\)
0.447280 0.894394i \(-0.352393\pi\)
\(948\) −12.9755 + 14.4107i −0.421423 + 0.468038i
\(949\) 11.0151 + 12.2335i 0.357566 + 0.397118i
\(950\) −2.39491 + 22.7860i −0.0777011 + 0.739277i
\(951\) 7.72024 1.64099i 0.250346 0.0532127i
\(952\) 2.21769 + 0.987377i 0.0718756 + 0.0320011i
\(953\) −15.1571 + 11.0123i −0.490987 + 0.356723i −0.805564 0.592509i \(-0.798137\pi\)
0.314577 + 0.949232i \(0.398137\pi\)
\(954\) 4.92274 2.19174i 0.159379 0.0709603i
\(955\) 39.1193 67.7565i 1.26587 2.19255i
\(956\) 0.450241 + 0.779840i 0.0145618 + 0.0252218i
\(957\) −14.7096 10.6872i −0.475494 0.345467i
\(958\) 22.4209 + 4.76571i 0.724386 + 0.153973i
\(959\) 3.00772 9.25682i 0.0971245 0.298918i
\(960\) −4.20549 −0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) −1.57194 + 4.83793i −0.0506550 + 0.155900i
\(964\) 22.9217 + 4.87216i 0.738258 + 0.156922i
\(965\) −16.9866 12.3415i −0.546817 0.397285i
\(966\) 0.779674 + 1.35044i 0.0250856 + 0.0434496i
\(967\) 23.8923 41.3827i 0.768324 1.33078i −0.170146 0.985419i \(-0.554424\pi\)
0.938471 0.345358i \(-0.112243\pi\)
\(968\) 13.1836 5.86974i 0.423738 0.188660i
\(969\) −3.62969 + 2.63713i −0.116603 + 0.0847167i
\(970\) 12.3249 + 5.48739i 0.395728 + 0.176189i
\(971\) 30.4210 6.46619i 0.976257 0.207510i 0.307956 0.951401i \(-0.400355\pi\)
0.668301 + 0.743891i \(0.267022\pi\)
\(972\) −2.57294 + 24.4799i −0.0825270 + 0.785192i
\(973\) 9.55917 + 10.6165i 0.306453 + 0.340351i
\(974\) −13.1559 + 14.6111i −0.421541 + 0.468169i
\(975\) −2.40040 22.8383i −0.0768743 0.731410i
\(976\) 0.983507 + 3.02692i 0.0314813 + 0.0968894i
\(977\) −6.82283 20.9985i −0.218282 0.671802i −0.998904 0.0467994i \(-0.985098\pi\)
0.780623 0.625003i \(-0.214902\pi\)
\(978\) 0.0679557 + 0.646555i 0.00217298 + 0.0206746i
\(979\) 12.2130 13.5639i 0.390329 0.433504i
\(980\) 24.2715 + 26.9563i 0.775326 + 0.861087i
\(981\) 0.337403 3.21018i 0.0107725 0.102493i
\(982\) −18.8594 + 4.00869i −0.601828 + 0.127922i
\(983\) −34.3282 15.2839i −1.09490 0.487480i −0.221834 0.975084i \(-0.571204\pi\)
−0.873065 + 0.487604i \(0.837871\pi\)
\(984\) 1.34118 0.974425i 0.0427553 0.0310635i
\(985\) 53.9032 23.9992i 1.71750 0.764679i
\(986\) 2.20846 3.82517i 0.0703318 0.121818i
\(987\) −0.301756 0.522656i −0.00960499 0.0166363i
\(988\) 13.6364 + 9.90744i 0.433832 + 0.315198i
\(989\) −22.9823 4.88504i −0.730796 0.155335i
\(990\) −7.10585 + 21.8695i −0.225839 + 0.695060i
\(991\) −6.77397 −0.215182 −0.107591 0.994195i \(-0.534314\pi\)
−0.107591 + 0.994195i \(0.534314\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 1.25829 3.87263i 0.0399106 0.122832i
\(995\) 15.4542 + 3.28488i 0.489930 + 0.104138i
\(996\) 15.7025 + 11.4086i 0.497554 + 0.361494i
\(997\) 14.7866 + 25.6112i 0.468298 + 0.811115i 0.999344 0.0362278i \(-0.0115342\pi\)
−0.531046 + 0.847343i \(0.678201\pi\)
\(998\) −14.2397 + 24.6639i −0.450751 + 0.780724i
\(999\) −44.5145 + 19.8191i −1.40838 + 0.627050i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.s.846.1 16
31.2 even 5 961.2.c.j.439.3 16
31.3 odd 30 961.2.g.l.732.2 16
31.4 even 5 961.2.g.t.547.1 16
31.5 even 3 961.2.d.p.628.1 16
31.6 odd 6 961.2.g.n.448.1 16
31.7 even 15 inner 961.2.g.s.844.1 16
31.8 even 5 31.2.g.a.18.2 16
31.9 even 15 961.2.d.o.388.4 16
31.10 even 15 961.2.a.i.1.3 8
31.11 odd 30 961.2.d.q.531.1 16
31.12 odd 30 961.2.c.i.521.3 16
31.13 odd 30 961.2.d.n.374.4 16
31.14 even 15 961.2.g.k.338.2 16
31.15 odd 10 961.2.g.j.816.2 16
31.16 even 5 961.2.g.k.816.2 16
31.17 odd 30 961.2.g.j.338.2 16
31.18 even 15 961.2.d.o.374.4 16
31.19 even 15 961.2.c.j.521.3 16
31.20 even 15 961.2.d.p.531.1 16
31.21 odd 30 961.2.a.j.1.3 8
31.22 odd 30 961.2.d.n.388.4 16
31.23 odd 10 961.2.g.l.235.2 16
31.24 odd 30 961.2.g.m.844.1 16
31.25 even 3 961.2.g.t.448.1 16
31.26 odd 6 961.2.d.q.628.1 16
31.27 odd 10 961.2.g.n.547.1 16
31.28 even 15 31.2.g.a.19.2 yes 16
31.29 odd 10 961.2.c.i.439.3 16
31.30 odd 2 961.2.g.m.846.1 16
93.8 odd 10 279.2.y.c.235.1 16
93.41 odd 30 8649.2.a.bf.1.6 8
93.59 odd 30 279.2.y.c.19.1 16
93.83 even 30 8649.2.a.be.1.6 8
124.39 odd 10 496.2.bg.c.49.1 16
124.59 odd 30 496.2.bg.c.81.1 16
155.8 odd 20 775.2.ck.a.49.2 32
155.28 odd 60 775.2.ck.a.174.3 32
155.39 even 10 775.2.bl.a.576.1 16
155.59 even 30 775.2.bl.a.701.1 16
155.132 odd 20 775.2.ck.a.49.3 32
155.152 odd 60 775.2.ck.a.174.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.8 even 5
31.2.g.a.19.2 yes 16 31.28 even 15
279.2.y.c.19.1 16 93.59 odd 30
279.2.y.c.235.1 16 93.8 odd 10
496.2.bg.c.49.1 16 124.39 odd 10
496.2.bg.c.81.1 16 124.59 odd 30
775.2.bl.a.576.1 16 155.39 even 10
775.2.bl.a.701.1 16 155.59 even 30
775.2.ck.a.49.2 32 155.8 odd 20
775.2.ck.a.49.3 32 155.132 odd 20
775.2.ck.a.174.2 32 155.152 odd 60
775.2.ck.a.174.3 32 155.28 odd 60
961.2.a.i.1.3 8 31.10 even 15
961.2.a.j.1.3 8 31.21 odd 30
961.2.c.i.439.3 16 31.29 odd 10
961.2.c.i.521.3 16 31.12 odd 30
961.2.c.j.439.3 16 31.2 even 5
961.2.c.j.521.3 16 31.19 even 15
961.2.d.n.374.4 16 31.13 odd 30
961.2.d.n.388.4 16 31.22 odd 30
961.2.d.o.374.4 16 31.18 even 15
961.2.d.o.388.4 16 31.9 even 15
961.2.d.p.531.1 16 31.20 even 15
961.2.d.p.628.1 16 31.5 even 3
961.2.d.q.531.1 16 31.11 odd 30
961.2.d.q.628.1 16 31.26 odd 6
961.2.g.j.338.2 16 31.17 odd 30
961.2.g.j.816.2 16 31.15 odd 10
961.2.g.k.338.2 16 31.14 even 15
961.2.g.k.816.2 16 31.16 even 5
961.2.g.l.235.2 16 31.23 odd 10
961.2.g.l.732.2 16 31.3 odd 30
961.2.g.m.844.1 16 31.24 odd 30
961.2.g.m.846.1 16 31.30 odd 2
961.2.g.n.448.1 16 31.6 odd 6
961.2.g.n.547.1 16 31.27 odd 10
961.2.g.s.844.1 16 31.7 even 15 inner
961.2.g.s.846.1 16 1.1 even 1 trivial
961.2.g.t.448.1 16 31.25 even 3
961.2.g.t.547.1 16 31.4 even 5
8649.2.a.be.1.6 8 93.83 even 30
8649.2.a.bf.1.6 8 93.41 odd 30