Properties

Label 961.2.c.i.439.1
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.1
Root \(-0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.i.521.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69016 q^{2} +(0.709582 - 1.22903i) q^{3} +5.23694 q^{4} +(-0.304192 - 0.526876i) q^{5} +(-1.90889 + 3.30629i) q^{6} +(0.863440 - 1.49552i) q^{7} -8.70786 q^{8} +(0.492986 + 0.853878i) q^{9} +(0.818323 + 1.41738i) q^{10} +(-0.668696 - 1.15822i) q^{11} +(3.71604 - 6.43636i) q^{12} +(1.83533 + 3.17889i) q^{13} +(-2.32279 + 4.02318i) q^{14} -0.863396 q^{15} +12.9516 q^{16} +(-1.38141 + 2.39267i) q^{17} +(-1.32621 - 2.29706i) q^{18} +(1.28384 - 2.22367i) q^{19} +(-1.59303 - 2.75922i) q^{20} +(-1.22536 - 2.12239i) q^{21} +(1.79890 + 3.11578i) q^{22} +0.539261 q^{23} +(-6.17894 + 10.7022i) q^{24} +(2.31493 - 4.00958i) q^{25} +(-4.93733 - 8.55171i) q^{26} +5.65675 q^{27} +(4.52178 - 7.83195i) q^{28} +8.13087 q^{29} +2.32267 q^{30} -17.4262 q^{32} -1.89798 q^{33} +(3.71621 - 6.43666i) q^{34} -1.05061 q^{35} +(2.58174 + 4.47170i) q^{36} +(3.87249 - 6.70735i) q^{37} +(-3.45373 + 5.98203i) q^{38} +5.20928 q^{39} +(2.64886 + 4.58796i) q^{40} +(0.0520259 + 0.0901115i) q^{41} +(3.29642 + 5.70956i) q^{42} +(-1.50235 + 2.60215i) q^{43} +(-3.50192 - 6.06550i) q^{44} +(0.299925 - 0.519485i) q^{45} -1.45070 q^{46} -6.72498 q^{47} +(9.19025 - 15.9180i) q^{48} +(2.00894 + 3.47959i) q^{49} +(-6.22753 + 10.7864i) q^{50} +(1.96045 + 3.39559i) q^{51} +(9.61152 + 16.6476i) q^{52} +(1.39937 + 2.42378i) q^{53} -15.2175 q^{54} +(-0.406824 + 0.704640i) q^{55} +(-7.51871 + 13.0228i) q^{56} +(-1.82198 - 3.15576i) q^{57} -21.8733 q^{58} +(-0.233116 + 0.403769i) q^{59} -4.52155 q^{60} +5.11468 q^{61} +1.70266 q^{63} +20.9759 q^{64} +(1.11659 - 1.93398i) q^{65} +5.10586 q^{66} +(-4.14923 - 7.18668i) q^{67} +(-7.23436 + 12.5303i) q^{68} +(0.382650 - 0.662769i) q^{69} +2.82629 q^{70} +(-2.37935 - 4.12116i) q^{71} +(-4.29286 - 7.43545i) q^{72} +(3.75310 + 6.50055i) q^{73} +(-10.4176 + 18.0438i) q^{74} +(-3.28527 - 5.69026i) q^{75} +(6.72338 - 11.6452i) q^{76} -2.30951 q^{77} -14.0138 q^{78} +(-4.84948 + 8.39954i) q^{79} +(-3.93978 - 6.82390i) q^{80} +(2.53497 - 4.39070i) q^{81} +(-0.139958 - 0.242414i) q^{82} +(-8.34229 - 14.4493i) q^{83} +(-6.41715 - 11.1148i) q^{84} +1.68085 q^{85} +(4.04156 - 7.00019i) q^{86} +(5.76952 - 9.99310i) q^{87} +(5.82292 + 10.0856i) q^{88} +15.3163 q^{89} +(-0.806845 + 1.39750i) q^{90} +6.33879 q^{91} +2.82407 q^{92} +18.0912 q^{94} -1.56213 q^{95} +(-12.3653 + 21.4173i) q^{96} -1.27918 q^{97} +(-5.40437 - 9.36065i) q^{98} +(0.659316 - 1.14197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69016 −1.90223 −0.951114 0.308841i \(-0.900059\pi\)
−0.951114 + 0.308841i \(0.900059\pi\)
\(3\) 0.709582 1.22903i 0.409677 0.709582i −0.585176 0.810906i \(-0.698975\pi\)
0.994853 + 0.101324i \(0.0323079\pi\)
\(4\) 5.23694 2.61847
\(5\) −0.304192 0.526876i −0.136039 0.235626i 0.789955 0.613165i \(-0.210104\pi\)
−0.925994 + 0.377539i \(0.876770\pi\)
\(6\) −1.90889 + 3.30629i −0.779300 + 1.34979i
\(7\) 0.863440 1.49552i 0.326349 0.565254i −0.655435 0.755252i \(-0.727515\pi\)
0.981785 + 0.189998i \(0.0608480\pi\)
\(8\) −8.70786 −3.07869
\(9\) 0.492986 + 0.853878i 0.164329 + 0.284626i
\(10\) 0.818323 + 1.41738i 0.258777 + 0.448214i
\(11\) −0.668696 1.15822i −0.201619 0.349215i 0.747431 0.664340i \(-0.231287\pi\)
−0.949050 + 0.315124i \(0.897954\pi\)
\(12\) 3.71604 6.43636i 1.07273 1.85802i
\(13\) 1.83533 + 3.17889i 0.509030 + 0.881665i 0.999945 + 0.0104581i \(0.00332898\pi\)
−0.490916 + 0.871207i \(0.663338\pi\)
\(14\) −2.32279 + 4.02318i −0.620791 + 1.07524i
\(15\) −0.863396 −0.222928
\(16\) 12.9516 3.23791
\(17\) −1.38141 + 2.39267i −0.335041 + 0.580308i −0.983493 0.180948i \(-0.942084\pi\)
0.648452 + 0.761256i \(0.275417\pi\)
\(18\) −1.32621 2.29706i −0.312591 0.541423i
\(19\) 1.28384 2.22367i 0.294533 0.510146i −0.680343 0.732894i \(-0.738169\pi\)
0.974876 + 0.222748i \(0.0715026\pi\)
\(20\) −1.59303 2.75922i −0.356213 0.616979i
\(21\) −1.22536 2.12239i −0.267396 0.463143i
\(22\) 1.79890 + 3.11578i 0.383526 + 0.664287i
\(23\) 0.539261 0.112444 0.0562218 0.998418i \(-0.482095\pi\)
0.0562218 + 0.998418i \(0.482095\pi\)
\(24\) −6.17894 + 10.7022i −1.26127 + 2.18459i
\(25\) 2.31493 4.00958i 0.462987 0.801917i
\(26\) −4.93733 8.55171i −0.968290 1.67713i
\(27\) 5.65675 1.08864
\(28\) 4.52178 7.83195i 0.854536 1.48010i
\(29\) 8.13087 1.50986 0.754932 0.655803i \(-0.227670\pi\)
0.754932 + 0.655803i \(0.227670\pi\)
\(30\) 2.32267 0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −1.89798 −0.330396
\(34\) 3.71621 6.43666i 0.637324 1.10388i
\(35\) −1.05061 −0.177585
\(36\) 2.58174 + 4.47170i 0.430290 + 0.745284i
\(37\) 3.87249 6.70735i 0.636633 1.10268i −0.349533 0.936924i \(-0.613660\pi\)
0.986167 0.165757i \(-0.0530068\pi\)
\(38\) −3.45373 + 5.98203i −0.560268 + 0.970413i
\(39\) 5.20928 0.834152
\(40\) 2.64886 + 4.58796i 0.418822 + 0.725421i
\(41\) 0.0520259 + 0.0901115i 0.00812508 + 0.0140731i 0.870059 0.492947i \(-0.164080\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(42\) 3.29642 + 5.70956i 0.508648 + 0.881004i
\(43\) −1.50235 + 2.60215i −0.229106 + 0.396824i −0.957544 0.288289i \(-0.906914\pi\)
0.728437 + 0.685113i \(0.240247\pi\)
\(44\) −3.50192 6.06550i −0.527934 0.914409i
\(45\) 0.299925 0.519485i 0.0447102 0.0774403i
\(46\) −1.45070 −0.213893
\(47\) −6.72498 −0.980939 −0.490470 0.871458i \(-0.663175\pi\)
−0.490470 + 0.871458i \(0.663175\pi\)
\(48\) 9.19025 15.9180i 1.32650 2.29756i
\(49\) 2.00894 + 3.47959i 0.286992 + 0.497085i
\(50\) −6.22753 + 10.7864i −0.880706 + 1.52543i
\(51\) 1.96045 + 3.39559i 0.274518 + 0.475478i
\(52\) 9.61152 + 16.6476i 1.33288 + 2.30861i
\(53\) 1.39937 + 2.42378i 0.192219 + 0.332932i 0.945985 0.324210i \(-0.105098\pi\)
−0.753767 + 0.657142i \(0.771765\pi\)
\(54\) −15.2175 −2.07084
\(55\) −0.406824 + 0.704640i −0.0548561 + 0.0950136i
\(56\) −7.51871 + 13.0228i −1.00473 + 1.74024i
\(57\) −1.82198 3.15576i −0.241327 0.417990i
\(58\) −21.8733 −2.87210
\(59\) −0.233116 + 0.403769i −0.0303492 + 0.0525663i −0.880801 0.473487i \(-0.842995\pi\)
0.850452 + 0.526053i \(0.176329\pi\)
\(60\) −4.52155 −0.583730
\(61\) 5.11468 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 20.9759 2.62198
\(65\) 1.11659 1.93398i 0.138496 0.239881i
\(66\) 5.10586 0.628488
\(67\) −4.14923 7.18668i −0.506910 0.877993i −0.999968 0.00799701i \(-0.997454\pi\)
0.493058 0.869996i \(-0.335879\pi\)
\(68\) −7.23436 + 12.5303i −0.877294 + 1.51952i
\(69\) 0.382650 0.662769i 0.0460656 0.0797880i
\(70\) 2.82629 0.337806
\(71\) −2.37935 4.12116i −0.282377 0.489092i 0.689592 0.724198i \(-0.257790\pi\)
−0.971970 + 0.235106i \(0.924456\pi\)
\(72\) −4.29286 7.43545i −0.505918 0.876276i
\(73\) 3.75310 + 6.50055i 0.439267 + 0.760832i 0.997633 0.0687624i \(-0.0219050\pi\)
−0.558367 + 0.829594i \(0.688572\pi\)
\(74\) −10.4176 + 18.0438i −1.21102 + 2.09755i
\(75\) −3.28527 5.69026i −0.379351 0.657054i
\(76\) 6.72338 11.6452i 0.771225 1.33580i
\(77\) −2.30951 −0.263194
\(78\) −14.0138 −1.58675
\(79\) −4.84948 + 8.39954i −0.545609 + 0.945022i 0.452959 + 0.891531i \(0.350368\pi\)
−0.998568 + 0.0534912i \(0.982965\pi\)
\(80\) −3.93978 6.82390i −0.440481 0.762935i
\(81\) 2.53497 4.39070i 0.281663 0.487855i
\(82\) −0.139958 0.242414i −0.0154558 0.0267702i
\(83\) −8.34229 14.4493i −0.915686 1.58601i −0.805894 0.592059i \(-0.798315\pi\)
−0.109791 0.993955i \(-0.535018\pi\)
\(84\) −6.41715 11.1148i −0.700168 1.21273i
\(85\) 1.68085 0.182314
\(86\) 4.04156 7.00019i 0.435813 0.754850i
\(87\) 5.76952 9.99310i 0.618557 1.07137i
\(88\) 5.82292 + 10.0856i 0.620725 + 1.07513i
\(89\) 15.3163 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(90\) −0.806845 + 1.39750i −0.0850489 + 0.147309i
\(91\) 6.33879 0.664486
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −1.56213 −0.160271
\(96\) −12.3653 + 21.4173i −1.26203 + 2.18590i
\(97\) −1.27918 −0.129881 −0.0649404 0.997889i \(-0.520686\pi\)
−0.0649404 + 0.997889i \(0.520686\pi\)
\(98\) −5.40437 9.36065i −0.545924 0.945568i
\(99\) 0.659316 1.14197i 0.0662638 0.114772i
\(100\) 12.1232 20.9979i 1.21232 2.09979i
\(101\) 8.12024 0.807994 0.403997 0.914760i \(-0.367621\pi\)
0.403997 + 0.914760i \(0.367621\pi\)
\(102\) −5.27391 9.13468i −0.522195 0.904468i
\(103\) −7.57625 13.1225i −0.746511 1.29299i −0.949486 0.313810i \(-0.898394\pi\)
0.202975 0.979184i \(-0.434939\pi\)
\(104\) −15.9818 27.6813i −1.56715 2.71438i
\(105\) −0.745491 + 1.29123i −0.0727524 + 0.126011i
\(106\) −3.76453 6.52036i −0.365643 0.633313i
\(107\) 6.18781 10.7176i 0.598198 1.03611i −0.394889 0.918729i \(-0.629217\pi\)
0.993087 0.117380i \(-0.0374496\pi\)
\(108\) 29.6240 2.85057
\(109\) 7.20958 0.690553 0.345276 0.938501i \(-0.387785\pi\)
0.345276 + 0.938501i \(0.387785\pi\)
\(110\) 1.09442 1.89559i 0.104349 0.180737i
\(111\) −5.49570 9.51883i −0.521628 0.903487i
\(112\) 11.1830 19.3694i 1.05669 1.83024i
\(113\) −8.33590 14.4382i −0.784176 1.35823i −0.929490 0.368846i \(-0.879753\pi\)
0.145315 0.989385i \(-0.453580\pi\)
\(114\) 4.90140 + 8.48948i 0.459059 + 0.795113i
\(115\) −0.164039 0.284123i −0.0152967 0.0264946i
\(116\) 42.5808 3.95353
\(117\) −1.80959 + 3.13430i −0.167296 + 0.289766i
\(118\) 0.627119 1.08620i 0.0577310 0.0999930i
\(119\) 2.38553 + 4.13185i 0.218681 + 0.378767i
\(120\) 7.51834 0.686327
\(121\) 4.60569 7.97729i 0.418699 0.725208i
\(122\) −13.7593 −1.24571
\(123\) 0.147667 0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −4.58041 −0.408055
\(127\) −6.45472 + 11.1799i −0.572764 + 0.992056i 0.423517 + 0.905888i \(0.360795\pi\)
−0.996281 + 0.0861675i \(0.972538\pi\)
\(128\) −21.5760 −1.90707
\(129\) 2.13208 + 3.69288i 0.187720 + 0.325140i
\(130\) −3.00379 + 5.20272i −0.263450 + 0.456309i
\(131\) 1.21889 2.11118i 0.106495 0.184455i −0.807853 0.589384i \(-0.799370\pi\)
0.914348 + 0.404929i \(0.132704\pi\)
\(132\) −9.93960 −0.865131
\(133\) −2.21703 3.84002i −0.192241 0.332972i
\(134\) 11.1621 + 19.3333i 0.964257 + 1.67014i
\(135\) −1.72074 2.98040i −0.148097 0.256512i
\(136\) 12.0291 20.8351i 1.03149 1.78659i
\(137\) 4.07191 + 7.05276i 0.347887 + 0.602558i 0.985874 0.167489i \(-0.0535660\pi\)
−0.637987 + 0.770047i \(0.720233\pi\)
\(138\) −1.02939 + 1.78295i −0.0876273 + 0.151775i
\(139\) 1.35336 0.114791 0.0573954 0.998352i \(-0.481720\pi\)
0.0573954 + 0.998352i \(0.481720\pi\)
\(140\) −5.50195 −0.465000
\(141\) −4.77193 + 8.26522i −0.401869 + 0.696057i
\(142\) 6.40083 + 11.0866i 0.537146 + 0.930364i
\(143\) 2.45456 4.25142i 0.205261 0.355522i
\(144\) 6.38498 + 11.0591i 0.532082 + 0.921592i
\(145\) −2.47334 4.28396i −0.205400 0.355763i
\(146\) −10.0964 17.4875i −0.835585 1.44728i
\(147\) 5.70204 0.470297
\(148\) 20.2800 35.1260i 1.66700 2.88734i
\(149\) 4.50192 7.79756i 0.368812 0.638801i −0.620568 0.784153i \(-0.713098\pi\)
0.989380 + 0.145351i \(0.0464313\pi\)
\(150\) 8.83789 + 15.3077i 0.721611 + 1.24987i
\(151\) 3.20841 0.261097 0.130548 0.991442i \(-0.458326\pi\)
0.130548 + 0.991442i \(0.458326\pi\)
\(152\) −11.1795 + 19.3634i −0.906777 + 1.57058i
\(153\) −2.72407 −0.220228
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −3.32677 −0.265505 −0.132753 0.991149i \(-0.542382\pi\)
−0.132753 + 0.991149i \(0.542382\pi\)
\(158\) 13.0458 22.5961i 1.03787 1.79765i
\(159\) 3.97188 0.314991
\(160\) 5.30090 + 9.18143i 0.419073 + 0.725856i
\(161\) 0.465619 0.806476i 0.0366959 0.0635592i
\(162\) −6.81946 + 11.8117i −0.535788 + 0.928011i
\(163\) 1.74035 0.136314 0.0681572 0.997675i \(-0.478288\pi\)
0.0681572 + 0.997675i \(0.478288\pi\)
\(164\) 0.272456 + 0.471908i 0.0212753 + 0.0368499i
\(165\) 0.577350 + 0.999999i 0.0449466 + 0.0778499i
\(166\) 22.4421 + 38.8708i 1.74184 + 3.01696i
\(167\) −7.00824 + 12.1386i −0.542314 + 0.939315i 0.456457 + 0.889745i \(0.349118\pi\)
−0.998771 + 0.0495694i \(0.984215\pi\)
\(168\) 10.6703 + 18.4815i 0.823231 + 1.42588i
\(169\) −0.236891 + 0.410307i −0.0182224 + 0.0315621i
\(170\) −4.52176 −0.346803
\(171\) 2.53166 0.193601
\(172\) −7.86772 + 13.6273i −0.599908 + 1.03907i
\(173\) 0.00599044 + 0.0103757i 0.000455445 + 0.000788854i 0.866253 0.499606i \(-0.166522\pi\)
−0.865798 + 0.500394i \(0.833188\pi\)
\(174\) −15.5209 + 26.8830i −1.17664 + 2.03799i
\(175\) −3.99761 6.92407i −0.302191 0.523410i
\(176\) −8.66071 15.0008i −0.652825 1.13073i
\(177\) 0.330830 + 0.573015i 0.0248667 + 0.0430704i
\(178\) −41.2032 −3.08831
\(179\) −4.98900 + 8.64121i −0.372896 + 0.645874i −0.990010 0.141000i \(-0.954968\pi\)
0.617114 + 0.786874i \(0.288302\pi\)
\(180\) 1.57069 2.72051i 0.117072 0.202775i
\(181\) −9.30158 16.1108i −0.691381 1.19751i −0.971385 0.237509i \(-0.923669\pi\)
0.280004 0.959999i \(-0.409664\pi\)
\(182\) −17.0523 −1.26400
\(183\) 3.62928 6.28610i 0.268284 0.464682i
\(184\) −4.69581 −0.346180
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −35.2183 −2.56856
\(189\) 4.88426 8.45979i 0.355278 0.615359i
\(190\) 4.20238 0.304873
\(191\) −0.599059 1.03760i −0.0433464 0.0750782i 0.843538 0.537069i \(-0.180469\pi\)
−0.886885 + 0.461991i \(0.847135\pi\)
\(192\) 14.8841 25.7800i 1.07417 1.86051i
\(193\) −6.36328 + 11.0215i −0.458039 + 0.793347i −0.998857 0.0477928i \(-0.984781\pi\)
0.540818 + 0.841139i \(0.318115\pi\)
\(194\) 3.44118 0.247063
\(195\) −1.58462 2.74464i −0.113477 0.196548i
\(196\) 10.5207 + 18.2224i 0.751480 + 1.30160i
\(197\) −1.48430 2.57088i −0.105752 0.183168i 0.808293 0.588780i \(-0.200392\pi\)
−0.914045 + 0.405612i \(0.867058\pi\)
\(198\) −1.77366 + 3.07208i −0.126049 + 0.218323i
\(199\) −6.59203 11.4177i −0.467296 0.809381i 0.532005 0.846741i \(-0.321439\pi\)
−0.999302 + 0.0373598i \(0.988105\pi\)
\(200\) −20.1581 + 34.9149i −1.42540 + 2.46886i
\(201\) −11.7769 −0.830678
\(202\) −21.8447 −1.53699
\(203\) 7.02051 12.1599i 0.492743 0.853457i
\(204\) 10.2667 + 17.7825i 0.718815 + 1.24502i
\(205\) 0.0316517 0.0548224i 0.00221065 0.00382896i
\(206\) 20.3813 + 35.3015i 1.42003 + 2.45957i
\(207\) 0.265848 + 0.460463i 0.0184777 + 0.0320044i
\(208\) 23.7706 + 41.1718i 1.64819 + 2.85475i
\(209\) −3.43399 −0.237534
\(210\) 2.00549 3.47360i 0.138392 0.239701i
\(211\) −9.16614 + 15.8762i −0.631023 + 1.09296i 0.356320 + 0.934364i \(0.384031\pi\)
−0.987343 + 0.158600i \(0.949302\pi\)
\(212\) 7.32843 + 12.6932i 0.503318 + 0.871773i
\(213\) −6.75339 −0.462735
\(214\) −16.6462 + 28.8320i −1.13791 + 1.97091i
\(215\) 1.82801 0.124669
\(216\) −49.2582 −3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 10.6525 0.719830
\(220\) −2.13051 + 3.69015i −0.143639 + 0.248790i
\(221\) −10.1414 −0.682183
\(222\) 14.7843 + 25.6071i 0.992256 + 1.71864i
\(223\) 4.69801 8.13718i 0.314602 0.544906i −0.664751 0.747065i \(-0.731462\pi\)
0.979353 + 0.202159i \(0.0647957\pi\)
\(224\) −15.0465 + 26.0612i −1.00533 + 1.74129i
\(225\) 4.56493 0.304328
\(226\) 22.4249 + 38.8410i 1.49168 + 2.58367i
\(227\) −4.22971 7.32607i −0.280736 0.486249i 0.690830 0.723017i \(-0.257245\pi\)
−0.971566 + 0.236768i \(0.923912\pi\)
\(228\) −9.54158 16.5265i −0.631907 1.09449i
\(229\) 11.4217 19.7830i 0.754768 1.30730i −0.190721 0.981644i \(-0.561083\pi\)
0.945489 0.325653i \(-0.105584\pi\)
\(230\) 0.441290 + 0.764336i 0.0290978 + 0.0503988i
\(231\) −1.63879 + 2.83847i −0.107824 + 0.186758i
\(232\) −70.8025 −4.64841
\(233\) 16.2535 1.06480 0.532400 0.846493i \(-0.321290\pi\)
0.532400 + 0.846493i \(0.321290\pi\)
\(234\) 4.86807 8.43175i 0.318236 0.551201i
\(235\) 2.04568 + 3.54323i 0.133446 + 0.231135i
\(236\) −1.22082 + 2.11451i −0.0794683 + 0.137643i
\(237\) 6.88221 + 11.9203i 0.447047 + 0.774309i
\(238\) −6.41744 11.1153i −0.415981 0.720500i
\(239\) 9.13650 + 15.8249i 0.590991 + 1.02363i 0.994099 + 0.108474i \(0.0345964\pi\)
−0.403108 + 0.915152i \(0.632070\pi\)
\(240\) −11.1824 −0.721820
\(241\) −9.08577 + 15.7370i −0.585266 + 1.01371i 0.409576 + 0.912276i \(0.365677\pi\)
−0.994842 + 0.101435i \(0.967657\pi\)
\(242\) −12.3900 + 21.4602i −0.796461 + 1.37951i
\(243\) 4.88759 + 8.46555i 0.313539 + 0.543065i
\(244\) 26.7852 1.71475
\(245\) 1.22221 2.11693i 0.0780841 0.135246i
\(246\) −0.397246 −0.0253275
\(247\) 9.42508 0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 15.7607 0.996794
\(251\) −11.4651 + 19.8581i −0.723671 + 1.25344i 0.235848 + 0.971790i \(0.424213\pi\)
−0.959519 + 0.281645i \(0.909120\pi\)
\(252\) 8.91670 0.561699
\(253\) −0.360602 0.624580i −0.0226708 0.0392670i
\(254\) 17.3642 30.0757i 1.08953 1.88712i
\(255\) 1.19270 2.06582i 0.0746900 0.129367i
\(256\) 16.0910 1.00569
\(257\) −0.0530965 0.0919659i −0.00331207 0.00573667i 0.864365 0.502866i \(-0.167721\pi\)
−0.867677 + 0.497129i \(0.834388\pi\)
\(258\) −5.73564 9.93441i −0.357085 0.618490i
\(259\) −6.68732 11.5828i −0.415530 0.719719i
\(260\) 5.84749 10.1282i 0.362646 0.628121i
\(261\) 4.00841 + 6.94277i 0.248114 + 0.429746i
\(262\) −3.27901 + 5.67941i −0.202578 + 0.350875i
\(263\) 7.29731 0.449971 0.224986 0.974362i \(-0.427766\pi\)
0.224986 + 0.974362i \(0.427766\pi\)
\(264\) 16.5273 1.01719
\(265\) 0.851356 1.47459i 0.0522984 0.0905834i
\(266\) 5.96417 + 10.3302i 0.365687 + 0.633388i
\(267\) 10.8682 18.8242i 0.665120 1.15202i
\(268\) −21.7293 37.6362i −1.32733 2.29900i
\(269\) 8.10968 + 14.0464i 0.494456 + 0.856423i 0.999980 0.00638992i \(-0.00203399\pi\)
−0.505524 + 0.862813i \(0.668701\pi\)
\(270\) 4.62905 + 8.01775i 0.281715 + 0.487945i
\(271\) 5.14564 0.312575 0.156288 0.987712i \(-0.450047\pi\)
0.156288 + 0.987712i \(0.450047\pi\)
\(272\) −17.8915 + 30.9890i −1.08483 + 1.87898i
\(273\) 4.49790 7.79058i 0.272225 0.471508i
\(274\) −10.9541 18.9730i −0.661760 1.14620i
\(275\) −6.19195 −0.373389
\(276\) 2.00391 3.47088i 0.120621 0.208922i
\(277\) 16.9228 1.01679 0.508397 0.861123i \(-0.330238\pi\)
0.508397 + 0.861123i \(0.330238\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 1.90667 0.113742 0.0568711 0.998382i \(-0.481888\pi\)
0.0568711 + 0.998382i \(0.481888\pi\)
\(282\) 12.8372 22.2347i 0.764445 1.32406i
\(283\) −15.3098 −0.910074 −0.455037 0.890473i \(-0.650374\pi\)
−0.455037 + 0.890473i \(0.650374\pi\)
\(284\) −12.4605 21.5823i −0.739396 1.28067i
\(285\) −1.10846 + 1.91991i −0.0656596 + 0.113726i
\(286\) −6.60315 + 11.4370i −0.390452 + 0.676283i
\(287\) 0.179685 0.0106065
\(288\) −8.59087 14.8798i −0.506222 0.876802i
\(289\) 4.68341 + 8.11191i 0.275495 + 0.477171i
\(290\) 6.65368 + 11.5245i 0.390718 + 0.676743i
\(291\) −0.907681 + 1.57215i −0.0532092 + 0.0921610i
\(292\) 19.6547 + 34.0430i 1.15021 + 1.99221i
\(293\) −13.3968 + 23.2040i −0.782651 + 1.35559i 0.147741 + 0.989026i \(0.452800\pi\)
−0.930392 + 0.366566i \(0.880533\pi\)
\(294\) −15.3394 −0.894611
\(295\) 0.283648 0.0165146
\(296\) −33.7211 + 58.4067i −1.96000 + 3.39482i
\(297\) −3.78265 6.55174i −0.219491 0.380170i
\(298\) −12.1109 + 20.9767i −0.701564 + 1.21514i
\(299\) 0.989723 + 1.71425i 0.0572371 + 0.0991376i
\(300\) −17.2048 29.7995i −0.993317 1.72048i
\(301\) 2.59438 + 4.49360i 0.149538 + 0.259007i
\(302\) −8.63112 −0.496665
\(303\) 5.76198 9.98004i 0.331017 0.573338i
\(304\) 16.6278 28.8002i 0.953670 1.65181i
\(305\) −1.55584 2.69480i −0.0890873 0.154304i
\(306\) 7.32816 0.418923
\(307\) −4.47563 + 7.75202i −0.255438 + 0.442431i −0.965014 0.262197i \(-0.915553\pi\)
0.709577 + 0.704628i \(0.248886\pi\)
\(308\) −12.0948 −0.689164
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −45.3617 −2.56810
\(313\) 0.225660 0.390855i 0.0127551 0.0220924i −0.859577 0.511006i \(-0.829273\pi\)
0.872332 + 0.488913i \(0.162606\pi\)
\(314\) 8.94953 0.505051
\(315\) −0.517934 0.897088i −0.0291823 0.0505452i
\(316\) −25.3964 + 43.9879i −1.42866 + 2.47451i
\(317\) 2.79042 4.83315i 0.156726 0.271457i −0.776960 0.629550i \(-0.783239\pi\)
0.933686 + 0.358093i \(0.116573\pi\)
\(318\) −10.6850 −0.599184
\(319\) −5.43708 9.41730i −0.304418 0.527268i
\(320\) −6.38069 11.0517i −0.356691 0.617808i
\(321\) −8.78151 15.2100i −0.490136 0.848941i
\(322\) −1.25259 + 2.16955i −0.0698040 + 0.120904i
\(323\) 3.54701 + 6.14361i 0.197361 + 0.341840i
\(324\) 13.2755 22.9938i 0.737526 1.27743i
\(325\) 16.9947 0.942696
\(326\) −4.68180 −0.259301
\(327\) 5.11579 8.86081i 0.282904 0.490004i
\(328\) −0.453035 0.784679i −0.0250147 0.0433267i
\(329\) −5.80661 + 10.0574i −0.320129 + 0.554480i
\(330\) −1.55316 2.69015i −0.0854987 0.148088i
\(331\) 12.1027 + 20.9625i 0.665226 + 1.15221i 0.979224 + 0.202782i \(0.0649982\pi\)
−0.313998 + 0.949424i \(0.601668\pi\)
\(332\) −43.6881 75.6699i −2.39769 4.15293i
\(333\) 7.63634 0.418469
\(334\) 18.8532 32.6548i 1.03160 1.78679i
\(335\) −2.52433 + 4.37226i −0.137919 + 0.238882i
\(336\) −15.8704 27.4884i −0.865804 1.49962i
\(337\) −11.0360 −0.601168 −0.300584 0.953755i \(-0.597182\pi\)
−0.300584 + 0.953755i \(0.597182\pi\)
\(338\) 0.637273 1.10379i 0.0346631 0.0600382i
\(339\) −23.6600 −1.28504
\(340\) 8.80253 0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 19.0266 1.02734
\(344\) 13.0823 22.6592i 0.705349 1.22170i
\(345\) −0.465596 −0.0250668
\(346\) −0.0161152 0.0279124i −0.000866360 0.00150058i
\(347\) −9.28369 + 16.0798i −0.498375 + 0.863210i −0.999998 0.00187589i \(-0.999403\pi\)
0.501624 + 0.865086i \(0.332736\pi\)
\(348\) 30.2146 52.3332i 1.61967 2.80536i
\(349\) −32.1746 −1.72227 −0.861134 0.508378i \(-0.830245\pi\)
−0.861134 + 0.508378i \(0.830245\pi\)
\(350\) 10.7542 + 18.6268i 0.574836 + 0.995645i
\(351\) 10.3820 + 17.9822i 0.554151 + 0.959818i
\(352\) 11.6528 + 20.1833i 0.621097 + 1.07577i
\(353\) 16.1067 27.8976i 0.857273 1.48484i −0.0172478 0.999851i \(-0.505490\pi\)
0.874520 0.484989i \(-0.161176\pi\)
\(354\) −0.889985 1.54150i −0.0473022 0.0819298i
\(355\) −1.44756 + 2.50725i −0.0768285 + 0.133071i
\(356\) 80.2104 4.25114
\(357\) 6.77091 0.358355
\(358\) 13.4212 23.2462i 0.709332 1.22860i
\(359\) −10.5811 18.3271i −0.558451 0.967265i −0.997626 0.0688636i \(-0.978063\pi\)
0.439175 0.898401i \(-0.355271\pi\)
\(360\) −2.61171 + 4.52361i −0.137649 + 0.238415i
\(361\) 6.20352 + 10.7448i 0.326501 + 0.565516i
\(362\) 25.0227 + 43.3406i 1.31516 + 2.27793i
\(363\) −6.53623 11.3211i −0.343063 0.594203i
\(364\) 33.1959 1.73994
\(365\) 2.28332 3.95483i 0.119515 0.207005i
\(366\) −9.76334 + 16.9106i −0.510338 + 0.883931i
\(367\) 6.49822 + 11.2552i 0.339204 + 0.587519i 0.984283 0.176597i \(-0.0565089\pi\)
−0.645079 + 0.764116i \(0.723176\pi\)
\(368\) 6.98431 0.364082
\(369\) −0.0512962 + 0.0888475i −0.00267037 + 0.00462522i
\(370\) 12.6758 0.658983
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −9.94005 −0.513988
\(375\) −4.15720 + 7.20048i −0.214677 + 0.371831i
\(376\) 58.5602 3.02001
\(377\) 14.9228 + 25.8471i 0.768566 + 1.33119i
\(378\) −13.1394 + 22.7581i −0.675819 + 1.17055i
\(379\) 7.47787 12.9520i 0.384112 0.665302i −0.607533 0.794294i \(-0.707841\pi\)
0.991646 + 0.128992i \(0.0411742\pi\)
\(380\) −8.18079 −0.419666
\(381\) 9.16030 + 15.8661i 0.469297 + 0.812846i
\(382\) 1.61156 + 2.79131i 0.0824547 + 0.142816i
\(383\) −5.82517 10.0895i −0.297652 0.515549i 0.677946 0.735112i \(-0.262870\pi\)
−0.975598 + 0.219563i \(0.929537\pi\)
\(384\) −15.3099 + 26.5176i −0.781282 + 1.35322i
\(385\) 0.702536 + 1.21683i 0.0358045 + 0.0620153i
\(386\) 17.1182 29.6496i 0.871294 1.50913i
\(387\) −2.96256 −0.150595
\(388\) −6.69897 −0.340089
\(389\) 7.20097 12.4724i 0.365103 0.632378i −0.623689 0.781672i \(-0.714367\pi\)
0.988793 + 0.149295i \(0.0477003\pi\)
\(390\) 4.26287 + 7.38351i 0.215859 + 0.373879i
\(391\) −0.744940 + 1.29027i −0.0376732 + 0.0652520i
\(392\) −17.4936 30.2998i −0.883561 1.53037i
\(393\) −1.72981 2.99612i −0.0872573 0.151134i
\(394\) 3.99299 + 6.91607i 0.201164 + 0.348426i
\(395\) 5.90069 0.296896
\(396\) 3.45280 5.98042i 0.173510 0.300527i
\(397\) −7.89506 + 13.6746i −0.396242 + 0.686311i −0.993259 0.115918i \(-0.963019\pi\)
0.597017 + 0.802229i \(0.296352\pi\)
\(398\) 17.7336 + 30.7155i 0.888904 + 1.53963i
\(399\) −6.29267 −0.315028
\(400\) 29.9822 51.9307i 1.49911 2.59653i
\(401\) −31.0232 −1.54923 −0.774613 0.632436i \(-0.782055\pi\)
−0.774613 + 0.632436i \(0.782055\pi\)
\(402\) 31.6817 1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −3.08447 −0.153268
\(406\) −18.8863 + 32.7120i −0.937310 + 1.62347i
\(407\) −10.3581 −0.513431
\(408\) −17.0713 29.5684i −0.845156 1.46385i
\(409\) 3.29291 5.70349i 0.162824 0.282019i −0.773056 0.634337i \(-0.781273\pi\)
0.935880 + 0.352318i \(0.114606\pi\)
\(410\) −0.0851481 + 0.147481i −0.00420516 + 0.00728356i
\(411\) 11.5574 0.570086
\(412\) −39.6764 68.7215i −1.95471 3.38566i
\(413\) 0.402564 + 0.697261i 0.0198089 + 0.0343100i
\(414\) −0.715173 1.23872i −0.0351488 0.0608796i
\(415\) −5.07532 + 8.79070i −0.249137 + 0.431519i
\(416\) −31.9828 55.3959i −1.56809 2.71601i
\(417\) 0.960322 1.66333i 0.0470272 0.0814535i
\(418\) 9.23797 0.451844
\(419\) −14.6720 −0.716773 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(420\) −3.90409 + 6.76208i −0.190500 + 0.329956i
\(421\) 13.3579 + 23.1366i 0.651026 + 1.12761i 0.982874 + 0.184277i \(0.0589944\pi\)
−0.331848 + 0.943333i \(0.607672\pi\)
\(422\) 24.6583 42.7095i 1.20035 2.07907i
\(423\) −3.31532 5.74231i −0.161197 0.279201i
\(424\) −12.1855 21.1060i −0.591782 1.02500i
\(425\) 6.39575 + 11.0778i 0.310239 + 0.537350i
\(426\) 18.1677 0.880226
\(427\) 4.41621 7.64911i 0.213716 0.370166i
\(428\) 32.4052 56.1274i 1.56636 2.71302i
\(429\) −3.48342 6.03347i −0.168181 0.291299i
\(430\) −4.91764 −0.237150
\(431\) −1.99400 + 3.45372i −0.0960478 + 0.166360i −0.910045 0.414509i \(-0.863954\pi\)
0.813998 + 0.580868i \(0.197287\pi\)
\(432\) 73.2642 3.52492
\(433\) −18.0766 −0.868704 −0.434352 0.900743i \(-0.643023\pi\)
−0.434352 + 0.900743i \(0.643023\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 37.7561 1.80819
\(437\) 0.692324 1.19914i 0.0331183 0.0573626i
\(438\) −28.6569 −1.36928
\(439\) −11.4543 19.8394i −0.546684 0.946884i −0.998499 0.0547723i \(-0.982557\pi\)
0.451815 0.892112i \(-0.350777\pi\)
\(440\) 3.54257 6.13591i 0.168885 0.292518i
\(441\) −1.98076 + 3.43079i −0.0943221 + 0.163371i
\(442\) 27.2819 1.29767
\(443\) 10.7457 + 18.6120i 0.510542 + 0.884284i 0.999925 + 0.0122154i \(0.00388839\pi\)
−0.489384 + 0.872069i \(0.662778\pi\)
\(444\) −28.7806 49.8495i −1.36587 2.36575i
\(445\) −4.65909 8.06977i −0.220862 0.382544i
\(446\) −12.6384 + 21.8903i −0.598444 + 1.03654i
\(447\) −6.38897 11.0660i −0.302188 0.523405i
\(448\) 18.1114 31.3699i 0.855683 1.48209i
\(449\) −18.7996 −0.887209 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(450\) −12.2804 −0.578902
\(451\) 0.0695791 0.120515i 0.00327635 0.00567481i
\(452\) −43.6546 75.6120i −2.05334 3.55649i
\(453\) 2.27663 3.94324i 0.106965 0.185269i
\(454\) 11.3786 + 19.7083i 0.534023 + 0.924955i
\(455\) −1.92821 3.33976i −0.0903959 0.156570i
\(456\) 15.8655 + 27.4799i 0.742972 + 1.28686i
\(457\) −4.10599 −0.192070 −0.0960351 0.995378i \(-0.530616\pi\)
−0.0960351 + 0.995378i \(0.530616\pi\)
\(458\) −30.7262 + 53.2193i −1.43574 + 2.48678i
\(459\) −7.81429 + 13.5347i −0.364740 + 0.631748i
\(460\) −0.859060 1.48794i −0.0400539 0.0693754i
\(461\) 22.8750 1.06540 0.532698 0.846305i \(-0.321178\pi\)
0.532698 + 0.846305i \(0.321178\pi\)
\(462\) 4.40860 7.63592i 0.205107 0.355255i
\(463\) 16.5670 0.769932 0.384966 0.922931i \(-0.374213\pi\)
0.384966 + 0.922931i \(0.374213\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 38.1462 1.76520 0.882599 0.470127i \(-0.155792\pi\)
0.882599 + 0.470127i \(0.155792\pi\)
\(468\) −9.47670 + 16.4141i −0.438061 + 0.758743i
\(469\) −14.3305 −0.661719
\(470\) −5.50321 9.53184i −0.253844 0.439671i
\(471\) −2.36062 + 4.08871i −0.108771 + 0.188398i
\(472\) 2.02994 3.51597i 0.0934358 0.161836i
\(473\) 4.01847 0.184769
\(474\) −18.5142 32.0675i −0.850386 1.47291i
\(475\) −5.94401 10.2953i −0.272730 0.472382i
\(476\) 12.4929 + 21.6383i 0.572609 + 0.991788i
\(477\) −1.37974 + 2.38979i −0.0631741 + 0.109421i
\(478\) −24.5786 42.5714i −1.12420 1.94717i
\(479\) 16.8424 29.1719i 0.769548 1.33290i −0.168260 0.985743i \(-0.553815\pi\)
0.937808 0.347154i \(-0.112852\pi\)
\(480\) 15.0457 0.686739
\(481\) 28.4292 1.29626
\(482\) 24.4421 42.3350i 1.11331 1.92831i
\(483\) −0.660790 1.14452i −0.0300670 0.0520775i
\(484\) 24.1197 41.7766i 1.09635 1.89893i
\(485\) 0.389115 + 0.673967i 0.0176688 + 0.0306033i
\(486\) −13.1484 22.7736i −0.596422 1.03303i
\(487\) −10.3383 17.9065i −0.468475 0.811422i 0.530876 0.847449i \(-0.321863\pi\)
−0.999351 + 0.0360274i \(0.988530\pi\)
\(488\) −44.5379 −2.01614
\(489\) 1.23492 2.13894i 0.0558449 0.0967263i
\(490\) −3.28793 + 5.69487i −0.148534 + 0.257268i
\(491\) 12.3664 + 21.4192i 0.558087 + 0.966634i 0.997656 + 0.0684258i \(0.0217976\pi\)
−0.439570 + 0.898209i \(0.644869\pi\)
\(492\) 0.773321 0.0348640
\(493\) −11.2321 + 19.4545i −0.505867 + 0.876186i
\(494\) −25.3549 −1.14077
\(495\) −0.802235 −0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 63.6980 2.85437
\(499\) −12.2801 + 21.2697i −0.549732 + 0.952164i 0.448560 + 0.893753i \(0.351937\pi\)
−0.998293 + 0.0584115i \(0.981396\pi\)
\(500\) −30.6814 −1.37211
\(501\) 9.94584 + 17.2267i 0.444347 + 0.769632i
\(502\) 30.8429 53.4215i 1.37659 2.38432i
\(503\) −7.36956 + 12.7645i −0.328593 + 0.569139i −0.982233 0.187666i \(-0.939908\pi\)
0.653640 + 0.756805i \(0.273241\pi\)
\(504\) −14.8265 −0.660425
\(505\) −2.47011 4.27836i −0.109918 0.190384i
\(506\) 0.970074 + 1.68022i 0.0431251 + 0.0746948i
\(507\) 0.336187 + 0.582293i 0.0149306 + 0.0258605i
\(508\) −33.8029 + 58.5484i −1.49976 + 2.59767i
\(509\) 7.75315 + 13.4288i 0.343652 + 0.595223i 0.985108 0.171937i \(-0.0550025\pi\)
−0.641456 + 0.767160i \(0.721669\pi\)
\(510\) −3.20856 + 5.55739i −0.142077 + 0.246085i
\(511\) 12.9623 0.573418
\(512\) −0.135395 −0.00598366
\(513\) 7.26235 12.5788i 0.320641 0.555366i
\(514\) 0.142838 + 0.247402i 0.00630031 + 0.0109125i
\(515\) −4.60927 + 7.98349i −0.203109 + 0.351795i
\(516\) 11.1656 + 19.3394i 0.491538 + 0.851368i
\(517\) 4.49697 + 7.78898i 0.197776 + 0.342559i
\(518\) 17.9899 + 31.1595i 0.790432 + 1.36907i
\(519\) 0.0170028 0.000746342
\(520\) −9.72308 + 16.8409i −0.426385 + 0.738521i
\(521\) −14.7073 + 25.4738i −0.644337 + 1.11603i 0.340117 + 0.940383i \(0.389533\pi\)
−0.984454 + 0.175642i \(0.943800\pi\)
\(522\) −10.7832 18.6771i −0.471970 0.817475i
\(523\) −45.0260 −1.96885 −0.984424 0.175810i \(-0.943746\pi\)
−0.984424 + 0.175810i \(0.943746\pi\)
\(524\) 6.38326 11.0561i 0.278854 0.482989i
\(525\) −11.3465 −0.495203
\(526\) −19.6309 −0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −22.7092 −0.987356
\(530\) −2.29028 + 3.96688i −0.0994834 + 0.172310i
\(531\) −0.459693 −0.0199490
\(532\) −11.6105 20.1099i −0.503378 0.871876i
\(533\) −0.190970 + 0.330769i −0.00827182 + 0.0143272i
\(534\) −29.2370 + 50.6400i −1.26521 + 2.19141i
\(535\) −7.52912 −0.325512
\(536\) 36.1310 + 62.5807i 1.56062 + 2.70307i
\(537\) 7.08021 + 12.2633i 0.305534 + 0.529200i
\(538\) −21.8163 37.7869i −0.940568 1.62911i
\(539\) 2.68675 4.65358i 0.115726 0.200444i
\(540\) −9.01139 15.6082i −0.387789 0.671670i
\(541\) −18.8894 + 32.7173i −0.812117 + 1.40663i 0.0992628 + 0.995061i \(0.468352\pi\)
−0.911380 + 0.411567i \(0.864982\pi\)
\(542\) −13.8426 −0.594589
\(543\) −26.4009 −1.13297
\(544\) 24.0727 41.6951i 1.03211 1.78766i
\(545\) −2.19310 3.79855i −0.0939419 0.162712i
\(546\) −12.1000 + 20.9579i −0.517834 + 0.896914i
\(547\) 9.10438 + 15.7692i 0.389275 + 0.674244i 0.992352 0.123439i \(-0.0393922\pi\)
−0.603077 + 0.797683i \(0.706059\pi\)
\(548\) 21.3243 + 36.9349i 0.910931 + 1.57778i
\(549\) 2.52147 + 4.36731i 0.107614 + 0.186392i
\(550\) 16.6573 0.710270
\(551\) 10.4387 18.0804i 0.444705 0.770251i
\(552\) −3.33206 + 5.77130i −0.141822 + 0.245643i
\(553\) 8.37446 + 14.5050i 0.356118 + 0.616815i
\(554\) −45.5250 −1.93417
\(555\) −3.34349 + 5.79110i −0.141923 + 0.245818i
\(556\) 7.08748 0.300576
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −13.6071 −0.575003
\(561\) 2.62189 4.54124i 0.110696 0.191731i
\(562\) −5.12923 −0.216364
\(563\) 18.0809 + 31.3170i 0.762019 + 1.31986i 0.941808 + 0.336150i \(0.109125\pi\)
−0.179790 + 0.983705i \(0.557542\pi\)
\(564\) −24.9903 + 43.2844i −1.05228 + 1.82260i
\(565\) −5.07143 + 8.78397i −0.213356 + 0.369544i
\(566\) 41.1858 1.73117
\(567\) −4.37759 7.58220i −0.183841 0.318422i
\(568\) 20.7191 + 35.8865i 0.869354 + 1.50576i
\(569\) 20.7499 + 35.9399i 0.869880 + 1.50668i 0.862118 + 0.506707i \(0.169137\pi\)
0.00776221 + 0.999970i \(0.497529\pi\)
\(570\) 2.98193 5.16486i 0.124899 0.216332i
\(571\) −16.1966 28.0533i −0.677805 1.17399i −0.975641 0.219375i \(-0.929598\pi\)
0.297835 0.954617i \(-0.403735\pi\)
\(572\) 12.8544 22.2644i 0.537468 0.930923i
\(573\) −1.70033 −0.0710322
\(574\) −0.483381 −0.0201759
\(575\) 1.24835 2.16221i 0.0520599 0.0901704i
\(576\) 10.3408 + 17.9108i 0.430867 + 0.746284i
\(577\) −20.4913 + 35.4919i −0.853063 + 1.47755i 0.0253683 + 0.999678i \(0.491924\pi\)
−0.878431 + 0.477869i \(0.841409\pi\)
\(578\) −12.5991 21.8223i −0.524054 0.907688i
\(579\) 9.03054 + 15.6413i 0.375296 + 0.650032i
\(580\) −12.9527 22.4348i −0.537833 0.931555i
\(581\) −28.8123 −1.19533
\(582\) 2.44180 4.22933i 0.101216 0.175311i
\(583\) 1.87151 3.24155i 0.0775100 0.134251i
\(584\) −32.6814 56.6059i −1.35237 2.34237i
\(585\) 2.20185 0.0910352
\(586\) 36.0396 62.4224i 1.48878 2.57864i
\(587\) −25.5314 −1.05379 −0.526897 0.849929i \(-0.676644\pi\)
−0.526897 + 0.849929i \(0.676644\pi\)
\(588\) 29.8612 1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −4.21292 −0.173297
\(592\) 50.1550 86.8711i 2.06136 3.57038i
\(593\) 44.5318 1.82870 0.914350 0.404925i \(-0.132702\pi\)
0.914350 + 0.404925i \(0.132702\pi\)
\(594\) 10.1759 + 17.6252i 0.417523 + 0.723170i
\(595\) 1.45132 2.51375i 0.0594982 0.103054i
\(596\) 23.5763 40.8353i 0.965723 1.67268i
\(597\) −18.7103 −0.765763
\(598\) −2.66251 4.61160i −0.108878 0.188582i
\(599\) −9.48998 16.4371i −0.387750 0.671603i 0.604397 0.796684i \(-0.293414\pi\)
−0.992147 + 0.125081i \(0.960081\pi\)
\(600\) 28.6077 + 49.5500i 1.16790 + 2.02287i
\(601\) −6.41990 + 11.1196i −0.261873 + 0.453578i −0.966740 0.255762i \(-0.917674\pi\)
0.704866 + 0.709340i \(0.251007\pi\)
\(602\) −6.97928 12.0885i −0.284454 0.492689i
\(603\) 4.09103 7.08588i 0.166600 0.288559i
\(604\) 16.8022 0.683673
\(605\) −5.60405 −0.227837
\(606\) −15.5006 + 26.8478i −0.629669 + 1.09062i
\(607\) 19.0696 + 33.0296i 0.774013 + 1.34063i 0.935348 + 0.353730i \(0.115087\pi\)
−0.161335 + 0.986900i \(0.551580\pi\)
\(608\) −22.3724 + 38.7501i −0.907321 + 1.57153i
\(609\) −9.96326 17.2569i −0.403732 0.699284i
\(610\) 4.18546 + 7.24943i 0.169464 + 0.293521i
\(611\) −12.3426 21.3780i −0.499327 0.864860i
\(612\) −14.2658 −0.576659
\(613\) −9.27119 + 16.0582i −0.374460 + 0.648583i −0.990246 0.139330i \(-0.955505\pi\)
0.615786 + 0.787913i \(0.288838\pi\)
\(614\) 12.0401 20.8541i 0.485901 0.841605i
\(615\) −0.0449190 0.0778020i −0.00181131 0.00313728i
\(616\) 20.1109 0.810293
\(617\) −4.06777 + 7.04559i −0.163762 + 0.283645i −0.936215 0.351428i \(-0.885696\pi\)
0.772453 + 0.635072i \(0.219030\pi\)
\(618\) 57.8488 2.32702
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −55.5669 −2.22803
\(623\) 13.2247 22.9058i 0.529835 0.917702i
\(624\) 67.4686 2.70091
\(625\) −9.79252 16.9611i −0.391701 0.678446i
\(626\) −0.607062 + 1.05146i −0.0242631 + 0.0420249i
\(627\) −2.43670 + 4.22049i −0.0973124 + 0.168550i
\(628\) −17.4221 −0.695217
\(629\) 10.6990 + 18.5312i 0.426597 + 0.738887i
\(630\) 1.39332 + 2.41331i 0.0555113 + 0.0961484i
\(631\) 14.5235 + 25.1555i 0.578172 + 1.00142i 0.995689 + 0.0927538i \(0.0295670\pi\)
−0.417517 + 0.908669i \(0.637100\pi\)
\(632\) 42.2286 73.1421i 1.67976 2.90944i
\(633\) 13.0083 + 22.5310i 0.517032 + 0.895525i
\(634\) −7.50667 + 13.0019i −0.298128 + 0.516373i
\(635\) 7.85389 0.311672
\(636\) 20.8005 0.824793
\(637\) −7.37416 + 12.7724i −0.292175 + 0.506062i
\(638\) 14.6266 + 25.3340i 0.579072 + 1.00298i
\(639\) 2.34598 4.06335i 0.0928055 0.160744i
\(640\) 6.56324 + 11.3679i 0.259435 + 0.449354i
\(641\) −13.8028 23.9071i −0.545177 0.944274i −0.998596 0.0529762i \(-0.983129\pi\)
0.453419 0.891297i \(-0.350204\pi\)
\(642\) 23.6236 + 40.9173i 0.932351 + 1.61488i
\(643\) 4.22904 0.166777 0.0833885 0.996517i \(-0.473426\pi\)
0.0833885 + 0.996517i \(0.473426\pi\)
\(644\) 2.43842 4.22346i 0.0960871 0.166428i
\(645\) 1.29713 2.24669i 0.0510742 0.0884632i
\(646\) −9.54202 16.5273i −0.375426 0.650257i
\(647\) 26.2809 1.03321 0.516604 0.856225i \(-0.327196\pi\)
0.516604 + 0.856225i \(0.327196\pi\)
\(648\) −22.0742 + 38.2336i −0.867155 + 1.50196i
\(649\) 0.623536 0.0244759
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −13.3517 −0.522494 −0.261247 0.965272i \(-0.584134\pi\)
−0.261247 + 0.965272i \(0.584134\pi\)
\(654\) −13.7623 + 23.8370i −0.538147 + 0.932099i
\(655\) −1.48311 −0.0579498
\(656\) 0.673821 + 1.16709i 0.0263083 + 0.0455673i
\(657\) −3.70045 + 6.40937i −0.144368 + 0.250053i
\(658\) 15.6207 27.0558i 0.608958 1.05475i
\(659\) −15.4158 −0.600515 −0.300258 0.953858i \(-0.597073\pi\)
−0.300258 + 0.953858i \(0.597073\pi\)
\(660\) 3.02355 + 5.23693i 0.117691 + 0.203847i
\(661\) 2.36153 + 4.09029i 0.0918530 + 0.159094i 0.908291 0.418339i \(-0.137388\pi\)
−0.816438 + 0.577433i \(0.804054\pi\)
\(662\) −32.5582 56.3925i −1.26541 2.19176i
\(663\) −7.19615 + 12.4641i −0.279475 + 0.484065i
\(664\) 72.6436 + 125.822i 2.81912 + 4.88285i
\(665\) −1.34881 + 2.33620i −0.0523045 + 0.0905941i
\(666\) −20.5429 −0.796023
\(667\) 4.38466 0.169775
\(668\) −36.7017 + 63.5692i −1.42003 + 2.45957i
\(669\) −6.66724 11.5480i −0.257770 0.446472i
\(670\) 6.79083 11.7621i 0.262353 0.454408i
\(671\) −3.42017 5.92390i −0.132034 0.228690i
\(672\) 21.3534 + 36.9852i 0.823725 + 1.42673i
\(673\) −15.5365 26.9100i −0.598888 1.03730i −0.992986 0.118236i \(-0.962276\pi\)
0.394097 0.919069i \(-0.371057\pi\)
\(674\) 29.6885 1.14356
\(675\) 13.0950 22.6812i 0.504027 0.873000i
\(676\) −1.24058 + 2.14875i −0.0477147 + 0.0826443i
\(677\) −4.51998 7.82883i −0.173717 0.300886i 0.766000 0.642841i \(-0.222244\pi\)
−0.939716 + 0.341955i \(0.888911\pi\)
\(678\) 63.6491 2.44443
\(679\) −1.10449 + 1.91304i −0.0423865 + 0.0734156i
\(680\) −14.6367 −0.561290
\(681\) −12.0053 −0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 13.2581 0.506938
\(685\) 2.47729 4.29078i 0.0946522 0.163942i
\(686\) −51.1844 −1.95423
\(687\) −16.2093 28.0753i −0.618423 1.07114i
\(688\) −19.4579 + 33.7021i −0.741826 + 1.28488i
\(689\) −5.13663 + 8.89690i −0.195690 + 0.338945i
\(690\) 1.25252 0.0476828
\(691\) −18.2377 31.5886i −0.693795 1.20169i −0.970585 0.240758i \(-0.922604\pi\)
0.276790 0.960930i \(-0.410729\pi\)
\(692\) 0.0313716 + 0.0543371i 0.00119257 + 0.00206559i
\(693\) −1.13856 1.97204i −0.0432503 0.0749117i
\(694\) 24.9746 43.2572i 0.948022 1.64202i
\(695\) −0.411682 0.713054i −0.0156160 0.0270477i
\(696\) −50.2402 + 87.0185i −1.90435 + 3.29843i
\(697\) −0.287476 −0.0108889
\(698\) 86.5547 3.27615
\(699\) 11.5332 19.9760i 0.436225 0.755564i
\(700\) −20.9352 36.2609i −0.791278 1.37053i
\(701\) 0.807220 1.39815i 0.0304883 0.0528073i −0.850379 0.526171i \(-0.823627\pi\)
0.880867 + 0.473364i \(0.156960\pi\)
\(702\) −27.9292 48.3749i −1.05412 1.82579i
\(703\) −9.94330 17.2223i −0.375019 0.649551i
\(704\) −14.0265 24.2946i −0.528643 0.915637i
\(705\) 5.80632 0.218679
\(706\) −43.3295 + 75.0489i −1.63073 + 2.82450i
\(707\) 7.01134 12.1440i 0.263688 0.456722i
\(708\) 1.73254 + 3.00084i 0.0651127 + 0.112779i
\(709\) −11.4880 −0.431439 −0.215720 0.976455i \(-0.569210\pi\)
−0.215720 + 0.976455i \(0.569210\pi\)
\(710\) 3.89416 6.74489i 0.146145 0.253131i
\(711\) −9.56291 −0.358637
\(712\) −133.372 −4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −2.98663 −0.111694
\(716\) −26.1271 + 45.2534i −0.976415 + 1.69120i
\(717\) 25.9324 0.968462
\(718\) 28.4649 + 49.3026i 1.06230 + 1.83996i
\(719\) −7.08549 + 12.2724i −0.264244 + 0.457685i −0.967365 0.253386i \(-0.918456\pi\)
0.703121 + 0.711070i \(0.251789\pi\)
\(720\) 3.88452 6.72818i 0.144767 0.250745i
\(721\) −26.1666 −0.974493
\(722\) −16.6884 28.9052i −0.621079 1.07574i
\(723\) 12.8942 + 22.3334i 0.479541 + 0.830589i
\(724\) −48.7118 84.3713i −1.81036 3.13564i
\(725\) 18.8224 32.6014i 0.699047 1.21079i
\(726\) 17.5835 + 30.4555i 0.652584 + 1.13031i
\(727\) 13.4739 23.3374i 0.499718 0.865537i −0.500282 0.865863i \(-0.666770\pi\)
1.00000 0.000325630i \(0.000103651\pi\)
\(728\) −55.1974 −2.04575
\(729\) 29.0824 1.07713
\(730\) −6.14249 + 10.6391i −0.227344 + 0.393771i
\(731\) −4.15073 7.18927i −0.153520 0.265905i
\(732\) 19.0063 32.9199i 0.702494 1.21676i
\(733\) 14.2118 + 24.6155i 0.524924 + 0.909194i 0.999579 + 0.0290225i \(0.00923944\pi\)
−0.474655 + 0.880172i \(0.657427\pi\)
\(734\) −17.4812 30.2784i −0.645243 1.11759i
\(735\) −1.73452 3.00427i −0.0639786 0.110814i
\(736\) −9.39725 −0.346387
\(737\) −5.54915 + 9.61142i −0.204406 + 0.354041i
\(738\) 0.137995 0.239014i 0.00507965 0.00879822i
\(739\) −0.348653 0.603885i −0.0128254 0.0222143i 0.859541 0.511066i \(-0.170749\pi\)
−0.872367 + 0.488852i \(0.837416\pi\)
\(740\) −24.6760 −0.907108
\(741\) 6.68787 11.5837i 0.245685 0.425539i
\(742\) −13.0018 −0.477310
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 11.9064 0.435925
\(747\) 8.22528 14.2466i 0.300947 0.521256i
\(748\) 19.3503 0.707519
\(749\) −10.6856 18.5080i −0.390443 0.676267i
\(750\) 11.1835 19.3704i 0.408364 0.707307i
\(751\) 18.5330 32.1001i 0.676279 1.17135i −0.299815 0.953997i \(-0.596925\pi\)
0.976093 0.217352i \(-0.0697418\pi\)
\(752\) −87.0995 −3.17619
\(753\) 16.2709 + 28.1820i 0.592943 + 1.02701i
\(754\) −40.1448 69.5328i −1.46199 2.53223i
\(755\) −0.975972 1.69043i −0.0355192 0.0615211i
\(756\) 25.5786 44.3034i 0.930284 1.61130i
\(757\) 3.20100 + 5.54430i 0.116342 + 0.201511i 0.918316 0.395849i \(-0.129550\pi\)
−0.801973 + 0.597360i \(0.796216\pi\)
\(758\) −20.1166 + 34.8430i −0.730669 + 1.26556i
\(759\) −1.02351 −0.0371509
\(760\) 13.6028 0.493427
\(761\) −10.6694 + 18.4800i −0.386766 + 0.669898i −0.992012 0.126140i \(-0.959741\pi\)
0.605246 + 0.796038i \(0.293075\pi\)
\(762\) −24.6426 42.6823i −0.892709 1.54622i
\(763\) 6.22504 10.7821i 0.225361 0.390338i
\(764\) −3.13724 5.43385i −0.113501 0.196590i
\(765\) 0.828638 + 1.43524i 0.0299595 + 0.0518914i
\(766\) 15.6706 + 27.1423i 0.566203 + 0.980692i
\(767\) −1.71138 −0.0617945
\(768\) 11.4179 19.7764i 0.412008 0.713619i
\(769\) 6.12828 10.6145i 0.220991 0.382768i −0.734118 0.679022i \(-0.762404\pi\)
0.955109 + 0.296254i \(0.0957374\pi\)
\(770\) −1.88993 3.27346i −0.0681084 0.117967i
\(771\) −0.150705 −0.00542752
\(772\) −33.3241 + 57.7190i −1.19936 + 2.07735i
\(773\) 34.7035 1.24820 0.624098 0.781346i \(-0.285466\pi\)
0.624098 + 0.781346i \(0.285466\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −18.9808 −0.680933
\(778\) −19.3717 + 33.5528i −0.694510 + 1.20293i
\(779\) 0.267172 0.00957242
\(780\) −8.29855 14.3735i −0.297136 0.514654i
\(781\) −3.18213 + 5.51161i −0.113866 + 0.197221i
\(782\) 2.00400 3.47104i 0.0716630 0.124124i
\(783\) 45.9943 1.64370
\(784\) 26.0191 + 45.0664i 0.929254 + 1.60952i
\(785\) 1.01198 + 1.75279i 0.0361190 + 0.0625599i
\(786\) 4.65345 + 8.06002i 0.165983 + 0.287491i
\(787\) −10.0591 + 17.4229i −0.358568 + 0.621058i −0.987722 0.156223i \(-0.950068\pi\)
0.629154 + 0.777281i \(0.283402\pi\)
\(788\) −7.77317 13.4635i −0.276908 0.479618i
\(789\) 5.17804 8.96863i 0.184343 0.319292i
\(790\) −15.8738 −0.564763
\(791\) −28.7902 −1.02366
\(792\) −5.74124 + 9.94411i −0.204006 + 0.353349i
\(793\) 9.38713 + 16.2590i 0.333347 + 0.577374i
\(794\) 21.2389 36.7869i 0.753742 1.30552i
\(795\) −1.20821 2.09269i −0.0428509 0.0742200i
\(796\) −34.5220 59.7939i −1.22360 2.11934i
\(797\) 13.1010 + 22.6916i 0.464060 + 0.803776i 0.999159 0.0410138i \(-0.0130588\pi\)
−0.535098 + 0.844790i \(0.679725\pi\)
\(798\) 16.9283 0.599254
\(799\) 9.28995 16.0907i 0.328655 0.569247i
\(800\) −40.3405 + 69.8717i −1.42625 + 2.47034i
\(801\) 7.55072 + 13.0782i 0.266791 + 0.462096i
\(802\) 83.4573 2.94698
\(803\) 5.01936 8.69379i 0.177129 0.306797i
\(804\) −61.6748 −2.17510
\(805\) −0.566550 −0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −70.7099 −2.48757
\(809\) 18.2251 31.5668i 0.640759 1.10983i −0.344504 0.938785i \(-0.611953\pi\)
0.985264 0.171043i \(-0.0547138\pi\)
\(810\) 8.29770 0.291551
\(811\) 9.55322 + 16.5467i 0.335459 + 0.581032i 0.983573 0.180511i \(-0.0577753\pi\)
−0.648114 + 0.761543i \(0.724442\pi\)
\(812\) 36.7660 63.6805i 1.29023 2.23475i
\(813\) 3.65125 6.32416i 0.128055 0.221798i
\(814\) 27.8648 0.976662
\(815\) −0.529399 0.916946i −0.0185440 0.0321192i
\(816\) 25.3910 + 43.9785i 0.888863 + 1.53956i
\(817\) 3.85755 + 6.68148i 0.134959 + 0.233755i
\(818\) −8.85844 + 15.3433i −0.309728 + 0.536465i
\(819\) 3.12494 + 5.41255i 0.109194 + 0.189130i
\(820\) 0.165758 0.287101i 0.00578852 0.0100260i
\(821\) −39.4598 −1.37716 −0.688578 0.725162i \(-0.741765\pi\)
−0.688578 + 0.725162i \(0.741765\pi\)
\(822\) −31.0913 −1.08443
\(823\) −15.7940 + 27.3560i −0.550544 + 0.953570i 0.447691 + 0.894188i \(0.352246\pi\)
−0.998235 + 0.0593819i \(0.981087\pi\)
\(824\) 65.9730 + 114.269i 2.29828 + 3.98073i
\(825\) −4.39370 + 7.61011i −0.152969 + 0.264950i
\(826\) −1.08296 1.87574i −0.0376810 0.0652653i
\(827\) 9.91492 + 17.1731i 0.344776 + 0.597169i 0.985313 0.170758i \(-0.0546217\pi\)
−0.640537 + 0.767927i \(0.721288\pi\)
\(828\) 1.39223 + 2.41141i 0.0483833 + 0.0838024i
\(829\) −8.99987 −0.312578 −0.156289 0.987711i \(-0.549953\pi\)
−0.156289 + 0.987711i \(0.549953\pi\)
\(830\) 13.6534 23.6484i 0.473916 0.820847i
\(831\) 12.0081 20.7987i 0.416558 0.721499i
\(832\) 38.4977 + 66.6800i 1.33467 + 2.31171i
\(833\) −11.1007 −0.384617
\(834\) −2.58342 + 4.47461i −0.0894564 + 0.154943i
\(835\) 8.52740 0.295103
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −31.8452 −1.09942 −0.549709 0.835356i \(-0.685261\pi\)
−0.549709 + 0.835356i \(0.685261\pi\)
\(840\) 6.49163 11.2438i 0.223983 0.387949i
\(841\) 37.1110 1.27969
\(842\) −35.9349 62.2411i −1.23840 2.14497i
\(843\) 1.35294 2.34336i 0.0465976 0.0807095i
\(844\) −48.0025 + 83.1428i −1.65231 + 2.86189i
\(845\) 0.288241 0.00991579
\(846\) 8.91874 + 15.4477i 0.306633 + 0.531103i
\(847\) −7.95347 13.7758i −0.273284 0.473343i
\(848\) 18.1242 + 31.3920i 0.622386 + 1.07800i
\(849\) −10.8636 + 18.8163i −0.372837 + 0.645772i
\(850\) −17.2056 29.8009i −0.590146 1.02216i
\(851\) 2.08828 3.61701i 0.0715853 0.123989i
\(852\) −35.3671 −1.21166
\(853\) −49.0917 −1.68087 −0.840434 0.541914i \(-0.817700\pi\)
−0.840434 + 0.541914i \(0.817700\pi\)
\(854\) −11.8803 + 20.5773i −0.406536 + 0.704140i
\(855\) −0.770110 1.33387i −0.0263372 0.0456174i
\(856\) −53.8826 + 93.3274i −1.84167 + 3.18986i
\(857\) −9.62023 16.6627i −0.328621 0.569188i 0.653618 0.756825i \(-0.273251\pi\)
−0.982238 + 0.187637i \(0.939917\pi\)
\(858\) 9.37095 + 16.2310i 0.319919 + 0.554116i
\(859\) 2.32107 + 4.02022i 0.0791940 + 0.137168i 0.902902 0.429846i \(-0.141432\pi\)
−0.823708 + 0.567014i \(0.808099\pi\)
\(860\) 9.57319 0.326443
\(861\) 0.127501 0.220839i 0.00434523 0.00752616i
\(862\) 5.36418 9.29104i 0.182705 0.316454i
\(863\) −19.2652 33.3683i −0.655795 1.13587i −0.981694 0.190466i \(-0.939000\pi\)
0.325899 0.945405i \(-0.394333\pi\)
\(864\) −98.5755 −3.35361
\(865\) 0.00364449 0.00631244i 0.000123916 0.000214629i
\(866\) 48.6287 1.65247
\(867\) 13.2931 0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 18.8853 0.640273
\(871\) 15.2304 26.3799i 0.516064 0.893849i
\(872\) −62.7800 −2.12600
\(873\) −0.630617 1.09226i −0.0213431 0.0369674i
\(874\) −1.86246 + 3.22587i −0.0629986 + 0.109117i
\(875\) −5.05859 + 8.76174i −0.171012 + 0.296201i
\(876\) 55.7866 1.88485
\(877\) 4.62917 + 8.01796i 0.156316 + 0.270747i 0.933537 0.358480i \(-0.116705\pi\)
−0.777221 + 0.629227i \(0.783372\pi\)
\(878\) 30.8138 + 53.3711i 1.03992 + 1.80119i
\(879\) 19.0123 + 32.9303i 0.641269 + 1.11071i
\(880\) −5.26903 + 9.12623i −0.177619 + 0.307645i
\(881\) −8.93954 15.4837i −0.301181 0.521660i 0.675223 0.737614i \(-0.264047\pi\)
−0.976404 + 0.215953i \(0.930714\pi\)
\(882\) 5.32857 9.22935i 0.179422 0.310768i
\(883\) 48.3156 1.62595 0.812975 0.582299i \(-0.197847\pi\)
0.812975 + 0.582299i \(0.197847\pi\)
\(884\) −53.1098 −1.78628
\(885\) 0.201272 0.348613i 0.00676568 0.0117185i
\(886\) −28.9075 50.0692i −0.971166 1.68211i
\(887\) −11.7561 + 20.3622i −0.394732 + 0.683695i −0.993067 0.117551i \(-0.962496\pi\)
0.598335 + 0.801246i \(0.295829\pi\)
\(888\) 47.8558 + 82.8886i 1.60593 + 2.78156i
\(889\) 11.1465 + 19.3063i 0.373842 + 0.647514i
\(890\) 12.5337 + 21.7089i 0.420129 + 0.727686i
\(891\) −6.78050 −0.227155
\(892\) 24.6032 42.6139i 0.823775 1.42682i
\(893\) −8.63379 + 14.9542i −0.288919 + 0.500422i
\(894\) 17.1873 + 29.7693i 0.574830 + 0.995635i
\(895\) 6.07046 0.202913
\(896\) −18.6296 + 32.2673i −0.622370 + 1.07798i
\(897\) 2.80916 0.0937951
\(898\) 50.5739 1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −7.73243 −0.257605
\(902\) −0.187179 + 0.324203i −0.00623236 + 0.0107948i
\(903\) 7.36370 0.245049
\(904\) 72.5879 + 125.726i 2.41424 + 4.18158i
\(905\) −5.65893 + 9.80156i −0.188109 + 0.325815i
\(906\) −6.12449 + 10.6079i −0.203472 + 0.352425i
\(907\) −12.5821 −0.417783 −0.208892 0.977939i \(-0.566986\pi\)
−0.208892 + 0.977939i \(0.566986\pi\)
\(908\) −22.1507 38.3662i −0.735098 1.27323i
\(909\) 4.00317 + 6.93369i 0.132777 + 0.229976i
\(910\) 5.18718 + 8.98447i 0.171953 + 0.297832i
\(911\) −23.6422 + 40.9496i −0.783302 + 1.35672i 0.146706 + 0.989180i \(0.453133\pi\)
−0.930008 + 0.367539i \(0.880200\pi\)
\(912\) −23.5976 40.8722i −0.781394 1.35341i
\(913\) −11.1569 + 19.3244i −0.369240 + 0.639543i
\(914\) 11.0458 0.365361
\(915\) −4.41599 −0.145988
\(916\) 59.8148 103.602i 1.97634 3.42312i
\(917\) −2.10488 3.64576i −0.0695092 0.120394i
\(918\) 21.0217 36.4106i 0.693818 1.20173i
\(919\) 11.5659 + 20.0328i 0.381525 + 0.660821i 0.991280 0.131769i \(-0.0420657\pi\)
−0.609755 + 0.792590i \(0.708732\pi\)
\(920\) 1.42843 + 2.47411i 0.0470938 + 0.0815689i
\(921\) 6.35165 + 11.0014i 0.209294 + 0.362508i
\(922\) −61.5374 −2.02663
\(923\) 8.73381 15.1274i 0.287477 0.497925i
\(924\) −8.58224 + 14.8649i −0.282335 + 0.489019i
\(925\) −17.9291 31.0541i −0.589506 1.02105i
\(926\) −44.5677 −1.46459
\(927\) 7.46998 12.9384i 0.245346 0.424952i
\(928\) −141.690 −4.65120
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 85.1184 2.78815
\(933\) 14.6569 25.3864i 0.479844 0.831115i
\(934\) −102.619 −3.35781
\(935\) −1.12398 1.94679i −0.0367581 0.0636669i
\(936\) 15.7576 27.2930i 0.515055 0.892101i
\(937\) −9.86333 + 17.0838i −0.322221 + 0.558103i −0.980946 0.194281i \(-0.937763\pi\)
0.658725 + 0.752384i \(0.271096\pi\)
\(938\) 38.5511 1.25874
\(939\) −0.320249 0.554688i −0.0104509 0.0181016i
\(940\) 10.7131 + 18.5557i 0.349423 + 0.605219i
\(941\) −4.41163 7.64117i −0.143815 0.249095i 0.785115 0.619350i \(-0.212604\pi\)
−0.928930 + 0.370255i \(0.879270\pi\)
\(942\) 6.35043 10.9993i 0.206908 0.358375i
\(943\) 0.0280555 + 0.0485936i 0.000913614 + 0.00158243i
\(944\) −3.01924 + 5.22947i −0.0982678 + 0.170205i
\(945\) −5.94301 −0.193326
\(946\) −10.8103 −0.351473
\(947\) 7.78059 13.4764i 0.252835 0.437923i −0.711470 0.702716i \(-0.751970\pi\)
0.964305 + 0.264793i \(0.0853036\pi\)
\(948\) 36.0417 + 62.4260i 1.17058 + 2.02750i
\(949\) −13.7764 + 23.8613i −0.447199 + 0.774572i
\(950\) 15.9903 + 27.6960i 0.518794 + 0.898577i
\(951\) −3.96007 6.85904i −0.128414 0.222420i
\(952\) −20.7728 35.9796i −0.673252 1.16611i
\(953\) −9.65172 −0.312650 −0.156325 0.987706i \(-0.549965\pi\)
−0.156325 + 0.987706i \(0.549965\pi\)
\(954\) 3.71172 6.42890i 0.120172 0.208143i
\(955\) −0.364458 + 0.631260i −0.0117936 + 0.0204271i
\(956\) 47.8473 + 82.8739i 1.54749 + 2.68033i
\(957\) −15.4322 −0.498853
\(958\) −45.3086 + 78.4768i −1.46386 + 2.53547i
\(959\) 14.0634 0.454131
\(960\) −18.1105 −0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 12.2020 0.393205
\(964\) −47.5816 + 82.4138i −1.53250 + 2.65437i
\(965\) 7.74263 0.249244
\(966\) 1.77763 + 3.07894i 0.0571942 + 0.0990633i
\(967\) 14.1988 24.5930i 0.456602 0.790858i −0.542177 0.840264i \(-0.682400\pi\)
0.998779 + 0.0494066i \(0.0157330\pi\)
\(968\) −40.1057 + 69.4652i −1.28905 + 2.23269i
\(969\) 10.0676 0.323418
\(970\) −1.04678 1.81308i −0.0336101 0.0582144i
\(971\) 11.0635 + 19.1626i 0.355046 + 0.614957i 0.987126 0.159946i \(-0.0511319\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(972\) 25.5960 + 44.3335i 0.820992 + 1.42200i
\(973\) 1.16855 2.02398i 0.0374619 0.0648859i
\(974\) 27.8117 + 48.1713i 0.891145 + 1.54351i
\(975\) 12.0591 20.8870i 0.386201 0.668920i
\(976\) 66.2434 2.12040
\(977\) −19.9123 −0.637051 −0.318525 0.947914i \(-0.603188\pi\)
−0.318525 + 0.947914i \(0.603188\pi\)
\(978\) −3.32212 + 5.75408i −0.106230 + 0.183995i
\(979\) −10.2419 17.7396i −0.327334 0.566959i
\(980\) 6.40063 11.0862i 0.204461 0.354136i
\(981\) 3.55423 + 6.15610i 0.113478 + 0.196549i
\(982\) −33.2675 57.6209i −1.06161 1.83876i
\(983\) −12.4652 21.5903i −0.397578 0.688625i 0.595849 0.803097i \(-0.296816\pi\)
−0.993427 + 0.114472i \(0.963482\pi\)
\(984\) −1.28586 −0.0409918
\(985\) −0.903023 + 1.56408i −0.0287727 + 0.0498358i
\(986\) 30.2160 52.3356i 0.962273 1.66671i
\(987\) 8.24054 + 14.2730i 0.262299 + 0.454316i
\(988\) 49.3586 1.57031
\(989\) −0.810159 + 1.40324i −0.0257616 + 0.0446203i
\(990\) 2.15814 0.0685901
\(991\) 42.0512 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 22.1069 0.701189
\(995\) −4.01048 + 6.94636i −0.127141 + 0.220214i
\(996\) −124.001 −3.92912
\(997\) −7.23233 12.5268i −0.229050 0.396727i 0.728477 0.685071i \(-0.240229\pi\)
−0.957527 + 0.288344i \(0.906895\pi\)
\(998\) 33.0353 57.2189i 1.04572 1.81123i
\(999\) 21.9057 37.9418i 0.693066 1.20042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.439.1 16
31.2 even 5 961.2.g.l.547.1 16
31.3 odd 30 31.2.g.a.14.1 16
31.4 even 5 961.2.g.m.235.2 16
31.5 even 3 961.2.a.j.1.1 8
31.6 odd 6 961.2.c.j.521.1 16
31.7 even 15 961.2.g.n.338.2 16
31.8 even 5 961.2.g.n.816.2 16
31.9 even 15 961.2.d.q.374.4 16
31.10 even 15 961.2.d.n.531.1 16
31.11 odd 30 961.2.d.p.388.4 16
31.12 odd 30 961.2.g.k.844.1 16
31.13 odd 30 961.2.d.o.628.1 16
31.14 even 15 961.2.g.m.732.2 16
31.15 odd 10 961.2.g.k.846.1 16
31.16 even 5 961.2.g.j.846.1 16
31.17 odd 30 961.2.g.s.732.2 16
31.18 even 15 961.2.d.n.628.1 16
31.19 even 15 961.2.g.j.844.1 16
31.20 even 15 961.2.d.q.388.4 16
31.21 odd 30 961.2.d.o.531.1 16
31.22 odd 30 961.2.d.p.374.4 16
31.23 odd 10 961.2.g.t.816.2 16
31.24 odd 30 961.2.g.t.338.2 16
31.25 even 3 inner 961.2.c.i.521.1 16
31.26 odd 6 961.2.a.i.1.1 8
31.27 odd 10 961.2.g.s.235.2 16
31.28 even 15 961.2.g.l.448.1 16
31.29 odd 10 31.2.g.a.20.1 yes 16
31.30 odd 2 961.2.c.j.439.1 16
93.5 odd 6 8649.2.a.be.1.8 8
93.26 even 6 8649.2.a.bf.1.8 8
93.29 even 10 279.2.y.c.82.2 16
93.65 even 30 279.2.y.c.262.2 16
124.3 even 30 496.2.bg.c.417.1 16
124.91 even 10 496.2.bg.c.113.1 16
155.3 even 60 775.2.ck.a.324.4 32
155.29 odd 10 775.2.bl.a.51.2 16
155.34 odd 30 775.2.bl.a.76.2 16
155.122 even 20 775.2.ck.a.299.4 32
155.127 even 60 775.2.ck.a.324.1 32
155.153 even 20 775.2.ck.a.299.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.3 odd 30
31.2.g.a.20.1 yes 16 31.29 odd 10
279.2.y.c.82.2 16 93.29 even 10
279.2.y.c.262.2 16 93.65 even 30
496.2.bg.c.113.1 16 124.91 even 10
496.2.bg.c.417.1 16 124.3 even 30
775.2.bl.a.51.2 16 155.29 odd 10
775.2.bl.a.76.2 16 155.34 odd 30
775.2.ck.a.299.1 32 155.153 even 20
775.2.ck.a.299.4 32 155.122 even 20
775.2.ck.a.324.1 32 155.127 even 60
775.2.ck.a.324.4 32 155.3 even 60
961.2.a.i.1.1 8 31.26 odd 6
961.2.a.j.1.1 8 31.5 even 3
961.2.c.i.439.1 16 1.1 even 1 trivial
961.2.c.i.521.1 16 31.25 even 3 inner
961.2.c.j.439.1 16 31.30 odd 2
961.2.c.j.521.1 16 31.6 odd 6
961.2.d.n.531.1 16 31.10 even 15
961.2.d.n.628.1 16 31.18 even 15
961.2.d.o.531.1 16 31.21 odd 30
961.2.d.o.628.1 16 31.13 odd 30
961.2.d.p.374.4 16 31.22 odd 30
961.2.d.p.388.4 16 31.11 odd 30
961.2.d.q.374.4 16 31.9 even 15
961.2.d.q.388.4 16 31.20 even 15
961.2.g.j.844.1 16 31.19 even 15
961.2.g.j.846.1 16 31.16 even 5
961.2.g.k.844.1 16 31.12 odd 30
961.2.g.k.846.1 16 31.15 odd 10
961.2.g.l.448.1 16 31.28 even 15
961.2.g.l.547.1 16 31.2 even 5
961.2.g.m.235.2 16 31.4 even 5
961.2.g.m.732.2 16 31.14 even 15
961.2.g.n.338.2 16 31.7 even 15
961.2.g.n.816.2 16 31.8 even 5
961.2.g.s.235.2 16 31.27 odd 10
961.2.g.s.732.2 16 31.17 odd 30
961.2.g.t.338.2 16 31.24 odd 30
961.2.g.t.816.2 16 31.23 odd 10
8649.2.a.be.1.8 8 93.5 odd 6
8649.2.a.bf.1.8 8 93.26 even 6