Properties

Label 961.2.c.i.521.1
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.1
Root \(0.333129i\) of defining polynomial
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.i.439.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69016 q^{2} +(0.709582 + 1.22903i) q^{3} +5.23694 q^{4} +(-0.304192 + 0.526876i) q^{5} +(-1.90889 - 3.30629i) q^{6} +(0.863440 + 1.49552i) q^{7} -8.70786 q^{8} +(0.492986 - 0.853878i) q^{9} +(0.818323 - 1.41738i) q^{10} +(-0.668696 + 1.15822i) q^{11} +(3.71604 + 6.43636i) q^{12} +(1.83533 - 3.17889i) q^{13} +(-2.32279 - 4.02318i) q^{14} -0.863396 q^{15} +12.9516 q^{16} +(-1.38141 - 2.39267i) q^{17} +(-1.32621 + 2.29706i) q^{18} +(1.28384 + 2.22367i) q^{19} +(-1.59303 + 2.75922i) q^{20} +(-1.22536 + 2.12239i) q^{21} +(1.79890 - 3.11578i) q^{22} +0.539261 q^{23} +(-6.17894 - 10.7022i) q^{24} +(2.31493 + 4.00958i) q^{25} +(-4.93733 + 8.55171i) q^{26} +5.65675 q^{27} +(4.52178 + 7.83195i) q^{28} +8.13087 q^{29} +2.32267 q^{30} -17.4262 q^{32} -1.89798 q^{33} +(3.71621 + 6.43666i) q^{34} -1.05061 q^{35} +(2.58174 - 4.47170i) q^{36} +(3.87249 + 6.70735i) q^{37} +(-3.45373 - 5.98203i) q^{38} +5.20928 q^{39} +(2.64886 - 4.58796i) q^{40} +(0.0520259 - 0.0901115i) q^{41} +(3.29642 - 5.70956i) q^{42} +(-1.50235 - 2.60215i) q^{43} +(-3.50192 + 6.06550i) q^{44} +(0.299925 + 0.519485i) q^{45} -1.45070 q^{46} -6.72498 q^{47} +(9.19025 + 15.9180i) q^{48} +(2.00894 - 3.47959i) q^{49} +(-6.22753 - 10.7864i) q^{50} +(1.96045 - 3.39559i) q^{51} +(9.61152 - 16.6476i) q^{52} +(1.39937 - 2.42378i) q^{53} -15.2175 q^{54} +(-0.406824 - 0.704640i) q^{55} +(-7.51871 - 13.0228i) q^{56} +(-1.82198 + 3.15576i) q^{57} -21.8733 q^{58} +(-0.233116 - 0.403769i) q^{59} -4.52155 q^{60} +5.11468 q^{61} +1.70266 q^{63} +20.9759 q^{64} +(1.11659 + 1.93398i) q^{65} +5.10586 q^{66} +(-4.14923 + 7.18668i) q^{67} +(-7.23436 - 12.5303i) q^{68} +(0.382650 + 0.662769i) q^{69} +2.82629 q^{70} +(-2.37935 + 4.12116i) q^{71} +(-4.29286 + 7.43545i) q^{72} +(3.75310 - 6.50055i) q^{73} +(-10.4176 - 18.0438i) q^{74} +(-3.28527 + 5.69026i) q^{75} +(6.72338 + 11.6452i) q^{76} -2.30951 q^{77} -14.0138 q^{78} +(-4.84948 - 8.39954i) q^{79} +(-3.93978 + 6.82390i) q^{80} +(2.53497 + 4.39070i) q^{81} +(-0.139958 + 0.242414i) q^{82} +(-8.34229 + 14.4493i) q^{83} +(-6.41715 + 11.1148i) q^{84} +1.68085 q^{85} +(4.04156 + 7.00019i) q^{86} +(5.76952 + 9.99310i) q^{87} +(5.82292 - 10.0856i) q^{88} +15.3163 q^{89} +(-0.806845 - 1.39750i) q^{90} +6.33879 q^{91} +2.82407 q^{92} +18.0912 q^{94} -1.56213 q^{95} +(-12.3653 - 21.4173i) q^{96} -1.27918 q^{97} +(-5.40437 + 9.36065i) q^{98} +(0.659316 + 1.14197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69016 −1.90223 −0.951114 0.308841i \(-0.900059\pi\)
−0.951114 + 0.308841i \(0.900059\pi\)
\(3\) 0.709582 + 1.22903i 0.409677 + 0.709582i 0.994853 0.101324i \(-0.0323079\pi\)
−0.585176 + 0.810906i \(0.698975\pi\)
\(4\) 5.23694 2.61847
\(5\) −0.304192 + 0.526876i −0.136039 + 0.235626i −0.925994 0.377539i \(-0.876770\pi\)
0.789955 + 0.613165i \(0.210104\pi\)
\(6\) −1.90889 3.30629i −0.779300 1.34979i
\(7\) 0.863440 + 1.49552i 0.326349 + 0.565254i 0.981785 0.189998i \(-0.0608480\pi\)
−0.655435 + 0.755252i \(0.727515\pi\)
\(8\) −8.70786 −3.07869
\(9\) 0.492986 0.853878i 0.164329 0.284626i
\(10\) 0.818323 1.41738i 0.258777 0.448214i
\(11\) −0.668696 + 1.15822i −0.201619 + 0.349215i −0.949050 0.315124i \(-0.897954\pi\)
0.747431 + 0.664340i \(0.231287\pi\)
\(12\) 3.71604 + 6.43636i 1.07273 + 1.85802i
\(13\) 1.83533 3.17889i 0.509030 0.881665i −0.490916 0.871207i \(-0.663338\pi\)
0.999945 0.0104581i \(-0.00332898\pi\)
\(14\) −2.32279 4.02318i −0.620791 1.07524i
\(15\) −0.863396 −0.222928
\(16\) 12.9516 3.23791
\(17\) −1.38141 2.39267i −0.335041 0.580308i 0.648452 0.761256i \(-0.275417\pi\)
−0.983493 + 0.180948i \(0.942084\pi\)
\(18\) −1.32621 + 2.29706i −0.312591 + 0.541423i
\(19\) 1.28384 + 2.22367i 0.294533 + 0.510146i 0.974876 0.222748i \(-0.0715026\pi\)
−0.680343 + 0.732894i \(0.738169\pi\)
\(20\) −1.59303 + 2.75922i −0.356213 + 0.616979i
\(21\) −1.22536 + 2.12239i −0.267396 + 0.463143i
\(22\) 1.79890 3.11578i 0.383526 0.664287i
\(23\) 0.539261 0.112444 0.0562218 0.998418i \(-0.482095\pi\)
0.0562218 + 0.998418i \(0.482095\pi\)
\(24\) −6.17894 10.7022i −1.26127 2.18459i
\(25\) 2.31493 + 4.00958i 0.462987 + 0.801917i
\(26\) −4.93733 + 8.55171i −0.968290 + 1.67713i
\(27\) 5.65675 1.08864
\(28\) 4.52178 + 7.83195i 0.854536 + 1.48010i
\(29\) 8.13087 1.50986 0.754932 0.655803i \(-0.227670\pi\)
0.754932 + 0.655803i \(0.227670\pi\)
\(30\) 2.32267 0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −1.89798 −0.330396
\(34\) 3.71621 + 6.43666i 0.637324 + 1.10388i
\(35\) −1.05061 −0.177585
\(36\) 2.58174 4.47170i 0.430290 0.745284i
\(37\) 3.87249 + 6.70735i 0.636633 + 1.10268i 0.986167 + 0.165757i \(0.0530068\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(38\) −3.45373 5.98203i −0.560268 0.970413i
\(39\) 5.20928 0.834152
\(40\) 2.64886 4.58796i 0.418822 0.725421i
\(41\) 0.0520259 0.0901115i 0.00812508 0.0140731i −0.861934 0.507020i \(-0.830747\pi\)
0.870059 + 0.492947i \(0.164080\pi\)
\(42\) 3.29642 5.70956i 0.508648 0.881004i
\(43\) −1.50235 2.60215i −0.229106 0.396824i 0.728437 0.685113i \(-0.240247\pi\)
−0.957544 + 0.288289i \(0.906914\pi\)
\(44\) −3.50192 + 6.06550i −0.527934 + 0.914409i
\(45\) 0.299925 + 0.519485i 0.0447102 + 0.0774403i
\(46\) −1.45070 −0.213893
\(47\) −6.72498 −0.980939 −0.490470 0.871458i \(-0.663175\pi\)
−0.490470 + 0.871458i \(0.663175\pi\)
\(48\) 9.19025 + 15.9180i 1.32650 + 2.29756i
\(49\) 2.00894 3.47959i 0.286992 0.497085i
\(50\) −6.22753 10.7864i −0.880706 1.52543i
\(51\) 1.96045 3.39559i 0.274518 0.475478i
\(52\) 9.61152 16.6476i 1.33288 2.30861i
\(53\) 1.39937 2.42378i 0.192219 0.332932i −0.753767 0.657142i \(-0.771765\pi\)
0.945985 + 0.324210i \(0.105098\pi\)
\(54\) −15.2175 −2.07084
\(55\) −0.406824 0.704640i −0.0548561 0.0950136i
\(56\) −7.51871 13.0228i −1.00473 1.74024i
\(57\) −1.82198 + 3.15576i −0.241327 + 0.417990i
\(58\) −21.8733 −2.87210
\(59\) −0.233116 0.403769i −0.0303492 0.0525663i 0.850452 0.526053i \(-0.176329\pi\)
−0.880801 + 0.473487i \(0.842995\pi\)
\(60\) −4.52155 −0.583730
\(61\) 5.11468 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 20.9759 2.62198
\(65\) 1.11659 + 1.93398i 0.138496 + 0.239881i
\(66\) 5.10586 0.628488
\(67\) −4.14923 + 7.18668i −0.506910 + 0.877993i 0.493058 + 0.869996i \(0.335879\pi\)
−0.999968 + 0.00799701i \(0.997454\pi\)
\(68\) −7.23436 12.5303i −0.877294 1.51952i
\(69\) 0.382650 + 0.662769i 0.0460656 + 0.0797880i
\(70\) 2.82629 0.337806
\(71\) −2.37935 + 4.12116i −0.282377 + 0.489092i −0.971970 0.235106i \(-0.924456\pi\)
0.689592 + 0.724198i \(0.257790\pi\)
\(72\) −4.29286 + 7.43545i −0.505918 + 0.876276i
\(73\) 3.75310 6.50055i 0.439267 0.760832i −0.558367 0.829594i \(-0.688572\pi\)
0.997633 + 0.0687624i \(0.0219050\pi\)
\(74\) −10.4176 18.0438i −1.21102 2.09755i
\(75\) −3.28527 + 5.69026i −0.379351 + 0.657054i
\(76\) 6.72338 + 11.6452i 0.771225 + 1.33580i
\(77\) −2.30951 −0.263194
\(78\) −14.0138 −1.58675
\(79\) −4.84948 8.39954i −0.545609 0.945022i −0.998568 0.0534912i \(-0.982965\pi\)
0.452959 0.891531i \(-0.350368\pi\)
\(80\) −3.93978 + 6.82390i −0.440481 + 0.762935i
\(81\) 2.53497 + 4.39070i 0.281663 + 0.487855i
\(82\) −0.139958 + 0.242414i −0.0154558 + 0.0267702i
\(83\) −8.34229 + 14.4493i −0.915686 + 1.58601i −0.109791 + 0.993955i \(0.535018\pi\)
−0.805894 + 0.592059i \(0.798315\pi\)
\(84\) −6.41715 + 11.1148i −0.700168 + 1.21273i
\(85\) 1.68085 0.182314
\(86\) 4.04156 + 7.00019i 0.435813 + 0.754850i
\(87\) 5.76952 + 9.99310i 0.618557 + 1.07137i
\(88\) 5.82292 10.0856i 0.620725 1.07513i
\(89\) 15.3163 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(90\) −0.806845 1.39750i −0.0850489 0.147309i
\(91\) 6.33879 0.664486
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −1.56213 −0.160271
\(96\) −12.3653 21.4173i −1.26203 2.18590i
\(97\) −1.27918 −0.129881 −0.0649404 0.997889i \(-0.520686\pi\)
−0.0649404 + 0.997889i \(0.520686\pi\)
\(98\) −5.40437 + 9.36065i −0.545924 + 0.945568i
\(99\) 0.659316 + 1.14197i 0.0662638 + 0.114772i
\(100\) 12.1232 + 20.9979i 1.21232 + 2.09979i
\(101\) 8.12024 0.807994 0.403997 0.914760i \(-0.367621\pi\)
0.403997 + 0.914760i \(0.367621\pi\)
\(102\) −5.27391 + 9.13468i −0.522195 + 0.904468i
\(103\) −7.57625 + 13.1225i −0.746511 + 1.29299i 0.202975 + 0.979184i \(0.434939\pi\)
−0.949486 + 0.313810i \(0.898394\pi\)
\(104\) −15.9818 + 27.6813i −1.56715 + 2.71438i
\(105\) −0.745491 1.29123i −0.0727524 0.126011i
\(106\) −3.76453 + 6.52036i −0.365643 + 0.633313i
\(107\) 6.18781 + 10.7176i 0.598198 + 1.03611i 0.993087 + 0.117380i \(0.0374496\pi\)
−0.394889 + 0.918729i \(0.629217\pi\)
\(108\) 29.6240 2.85057
\(109\) 7.20958 0.690553 0.345276 0.938501i \(-0.387785\pi\)
0.345276 + 0.938501i \(0.387785\pi\)
\(110\) 1.09442 + 1.89559i 0.104349 + 0.180737i
\(111\) −5.49570 + 9.51883i −0.521628 + 0.903487i
\(112\) 11.1830 + 19.3694i 1.05669 + 1.83024i
\(113\) −8.33590 + 14.4382i −0.784176 + 1.35823i 0.145315 + 0.989385i \(0.453580\pi\)
−0.929490 + 0.368846i \(0.879753\pi\)
\(114\) 4.90140 8.48948i 0.459059 0.795113i
\(115\) −0.164039 + 0.284123i −0.0152967 + 0.0264946i
\(116\) 42.5808 3.95353
\(117\) −1.80959 3.13430i −0.167296 0.289766i
\(118\) 0.627119 + 1.08620i 0.0577310 + 0.0999930i
\(119\) 2.38553 4.13185i 0.218681 0.378767i
\(120\) 7.51834 0.686327
\(121\) 4.60569 + 7.97729i 0.418699 + 0.725208i
\(122\) −13.7593 −1.24571
\(123\) 0.147667 0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −4.58041 −0.408055
\(127\) −6.45472 11.1799i −0.572764 0.992056i −0.996281 0.0861675i \(-0.972538\pi\)
0.423517 0.905888i \(-0.360795\pi\)
\(128\) −21.5760 −1.90707
\(129\) 2.13208 3.69288i 0.187720 0.325140i
\(130\) −3.00379 5.20272i −0.263450 0.456309i
\(131\) 1.21889 + 2.11118i 0.106495 + 0.184455i 0.914348 0.404929i \(-0.132704\pi\)
−0.807853 + 0.589384i \(0.799370\pi\)
\(132\) −9.93960 −0.865131
\(133\) −2.21703 + 3.84002i −0.192241 + 0.332972i
\(134\) 11.1621 19.3333i 0.964257 1.67014i
\(135\) −1.72074 + 2.98040i −0.148097 + 0.256512i
\(136\) 12.0291 + 20.8351i 1.03149 + 1.78659i
\(137\) 4.07191 7.05276i 0.347887 0.602558i −0.637987 0.770047i \(-0.720233\pi\)
0.985874 + 0.167489i \(0.0535660\pi\)
\(138\) −1.02939 1.78295i −0.0876273 0.151775i
\(139\) 1.35336 0.114791 0.0573954 0.998352i \(-0.481720\pi\)
0.0573954 + 0.998352i \(0.481720\pi\)
\(140\) −5.50195 −0.465000
\(141\) −4.77193 8.26522i −0.401869 0.696057i
\(142\) 6.40083 11.0866i 0.537146 0.930364i
\(143\) 2.45456 + 4.25142i 0.205261 + 0.355522i
\(144\) 6.38498 11.0591i 0.532082 0.921592i
\(145\) −2.47334 + 4.28396i −0.205400 + 0.355763i
\(146\) −10.0964 + 17.4875i −0.835585 + 1.44728i
\(147\) 5.70204 0.470297
\(148\) 20.2800 + 35.1260i 1.66700 + 2.88734i
\(149\) 4.50192 + 7.79756i 0.368812 + 0.638801i 0.989380 0.145351i \(-0.0464313\pi\)
−0.620568 + 0.784153i \(0.713098\pi\)
\(150\) 8.83789 15.3077i 0.721611 1.24987i
\(151\) 3.20841 0.261097 0.130548 0.991442i \(-0.458326\pi\)
0.130548 + 0.991442i \(0.458326\pi\)
\(152\) −11.1795 19.3634i −0.906777 1.57058i
\(153\) −2.72407 −0.220228
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −3.32677 −0.265505 −0.132753 0.991149i \(-0.542382\pi\)
−0.132753 + 0.991149i \(0.542382\pi\)
\(158\) 13.0458 + 22.5961i 1.03787 + 1.79765i
\(159\) 3.97188 0.314991
\(160\) 5.30090 9.18143i 0.419073 0.725856i
\(161\) 0.465619 + 0.806476i 0.0366959 + 0.0635592i
\(162\) −6.81946 11.8117i −0.535788 0.928011i
\(163\) 1.74035 0.136314 0.0681572 0.997675i \(-0.478288\pi\)
0.0681572 + 0.997675i \(0.478288\pi\)
\(164\) 0.272456 0.471908i 0.0212753 0.0368499i
\(165\) 0.577350 0.999999i 0.0449466 0.0778499i
\(166\) 22.4421 38.8708i 1.74184 3.01696i
\(167\) −7.00824 12.1386i −0.542314 0.939315i −0.998771 0.0495694i \(-0.984215\pi\)
0.456457 0.889745i \(-0.349118\pi\)
\(168\) 10.6703 18.4815i 0.823231 1.42588i
\(169\) −0.236891 0.410307i −0.0182224 0.0315621i
\(170\) −4.52176 −0.346803
\(171\) 2.53166 0.193601
\(172\) −7.86772 13.6273i −0.599908 1.03907i
\(173\) 0.00599044 0.0103757i 0.000455445 0.000788854i −0.865798 0.500394i \(-0.833188\pi\)
0.866253 + 0.499606i \(0.166522\pi\)
\(174\) −15.5209 26.8830i −1.17664 2.03799i
\(175\) −3.99761 + 6.92407i −0.302191 + 0.523410i
\(176\) −8.66071 + 15.0008i −0.652825 + 1.13073i
\(177\) 0.330830 0.573015i 0.0248667 0.0430704i
\(178\) −41.2032 −3.08831
\(179\) −4.98900 8.64121i −0.372896 0.645874i 0.617114 0.786874i \(-0.288302\pi\)
−0.990010 + 0.141000i \(0.954968\pi\)
\(180\) 1.57069 + 2.72051i 0.117072 + 0.202775i
\(181\) −9.30158 + 16.1108i −0.691381 + 1.19751i 0.280004 + 0.959999i \(0.409664\pi\)
−0.971385 + 0.237509i \(0.923669\pi\)
\(182\) −17.0523 −1.26400
\(183\) 3.62928 + 6.28610i 0.268284 + 0.464682i
\(184\) −4.69581 −0.346180
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −35.2183 −2.56856
\(189\) 4.88426 + 8.45979i 0.355278 + 0.615359i
\(190\) 4.20238 0.304873
\(191\) −0.599059 + 1.03760i −0.0433464 + 0.0750782i −0.886885 0.461991i \(-0.847135\pi\)
0.843538 + 0.537069i \(0.180469\pi\)
\(192\) 14.8841 + 25.7800i 1.07417 + 1.86051i
\(193\) −6.36328 11.0215i −0.458039 0.793347i 0.540818 0.841139i \(-0.318115\pi\)
−0.998857 + 0.0477928i \(0.984781\pi\)
\(194\) 3.44118 0.247063
\(195\) −1.58462 + 2.74464i −0.113477 + 0.196548i
\(196\) 10.5207 18.2224i 0.751480 1.30160i
\(197\) −1.48430 + 2.57088i −0.105752 + 0.183168i −0.914045 0.405612i \(-0.867058\pi\)
0.808293 + 0.588780i \(0.200392\pi\)
\(198\) −1.77366 3.07208i −0.126049 0.218323i
\(199\) −6.59203 + 11.4177i −0.467296 + 0.809381i −0.999302 0.0373598i \(-0.988105\pi\)
0.532005 + 0.846741i \(0.321439\pi\)
\(200\) −20.1581 34.9149i −1.42540 2.46886i
\(201\) −11.7769 −0.830678
\(202\) −21.8447 −1.53699
\(203\) 7.02051 + 12.1599i 0.492743 + 0.853457i
\(204\) 10.2667 17.7825i 0.718815 1.24502i
\(205\) 0.0316517 + 0.0548224i 0.00221065 + 0.00382896i
\(206\) 20.3813 35.3015i 1.42003 2.45957i
\(207\) 0.265848 0.460463i 0.0184777 0.0320044i
\(208\) 23.7706 41.1718i 1.64819 2.85475i
\(209\) −3.43399 −0.237534
\(210\) 2.00549 + 3.47360i 0.138392 + 0.239701i
\(211\) −9.16614 15.8762i −0.631023 1.09296i −0.987343 0.158600i \(-0.949302\pi\)
0.356320 0.934364i \(-0.384031\pi\)
\(212\) 7.32843 12.6932i 0.503318 0.871773i
\(213\) −6.75339 −0.462735
\(214\) −16.6462 28.8320i −1.13791 1.97091i
\(215\) 1.82801 0.124669
\(216\) −49.2582 −3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 10.6525 0.719830
\(220\) −2.13051 3.69015i −0.143639 0.248790i
\(221\) −10.1414 −0.682183
\(222\) 14.7843 25.6071i 0.992256 1.71864i
\(223\) 4.69801 + 8.13718i 0.314602 + 0.544906i 0.979353 0.202159i \(-0.0647957\pi\)
−0.664751 + 0.747065i \(0.731462\pi\)
\(224\) −15.0465 26.0612i −1.00533 1.74129i
\(225\) 4.56493 0.304328
\(226\) 22.4249 38.8410i 1.49168 2.58367i
\(227\) −4.22971 + 7.32607i −0.280736 + 0.486249i −0.971566 0.236768i \(-0.923912\pi\)
0.690830 + 0.723017i \(0.257245\pi\)
\(228\) −9.54158 + 16.5265i −0.631907 + 1.09449i
\(229\) 11.4217 + 19.7830i 0.754768 + 1.30730i 0.945489 + 0.325653i \(0.105584\pi\)
−0.190721 + 0.981644i \(0.561083\pi\)
\(230\) 0.441290 0.764336i 0.0290978 0.0503988i
\(231\) −1.63879 2.83847i −0.107824 0.186758i
\(232\) −70.8025 −4.64841
\(233\) 16.2535 1.06480 0.532400 0.846493i \(-0.321290\pi\)
0.532400 + 0.846493i \(0.321290\pi\)
\(234\) 4.86807 + 8.43175i 0.318236 + 0.551201i
\(235\) 2.04568 3.54323i 0.133446 0.231135i
\(236\) −1.22082 2.11451i −0.0794683 0.137643i
\(237\) 6.88221 11.9203i 0.447047 0.774309i
\(238\) −6.41744 + 11.1153i −0.415981 + 0.720500i
\(239\) 9.13650 15.8249i 0.590991 1.02363i −0.403108 0.915152i \(-0.632070\pi\)
0.994099 0.108474i \(-0.0345964\pi\)
\(240\) −11.1824 −0.721820
\(241\) −9.08577 15.7370i −0.585266 1.01371i −0.994842 0.101435i \(-0.967657\pi\)
0.409576 0.912276i \(-0.365677\pi\)
\(242\) −12.3900 21.4602i −0.796461 1.37951i
\(243\) 4.88759 8.46555i 0.313539 0.543065i
\(244\) 26.7852 1.71475
\(245\) 1.22221 + 2.11693i 0.0780841 + 0.135246i
\(246\) −0.397246 −0.0253275
\(247\) 9.42508 0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 15.7607 0.996794
\(251\) −11.4651 19.8581i −0.723671 1.25344i −0.959519 0.281645i \(-0.909120\pi\)
0.235848 0.971790i \(-0.424213\pi\)
\(252\) 8.91670 0.561699
\(253\) −0.360602 + 0.624580i −0.0226708 + 0.0392670i
\(254\) 17.3642 + 30.0757i 1.08953 + 1.88712i
\(255\) 1.19270 + 2.06582i 0.0746900 + 0.129367i
\(256\) 16.0910 1.00569
\(257\) −0.0530965 + 0.0919659i −0.00331207 + 0.00573667i −0.867677 0.497129i \(-0.834388\pi\)
0.864365 + 0.502866i \(0.167721\pi\)
\(258\) −5.73564 + 9.93441i −0.357085 + 0.618490i
\(259\) −6.68732 + 11.5828i −0.415530 + 0.719719i
\(260\) 5.84749 + 10.1282i 0.362646 + 0.628121i
\(261\) 4.00841 6.94277i 0.248114 0.429746i
\(262\) −3.27901 5.67941i −0.202578 0.350875i
\(263\) 7.29731 0.449971 0.224986 0.974362i \(-0.427766\pi\)
0.224986 + 0.974362i \(0.427766\pi\)
\(264\) 16.5273 1.01719
\(265\) 0.851356 + 1.47459i 0.0522984 + 0.0905834i
\(266\) 5.96417 10.3302i 0.365687 0.633388i
\(267\) 10.8682 + 18.8242i 0.665120 + 1.15202i
\(268\) −21.7293 + 37.6362i −1.32733 + 2.29900i
\(269\) 8.10968 14.0464i 0.494456 0.856423i −0.505524 0.862813i \(-0.668701\pi\)
0.999980 + 0.00638992i \(0.00203399\pi\)
\(270\) 4.62905 8.01775i 0.281715 0.487945i
\(271\) 5.14564 0.312575 0.156288 0.987712i \(-0.450047\pi\)
0.156288 + 0.987712i \(0.450047\pi\)
\(272\) −17.8915 30.9890i −1.08483 1.87898i
\(273\) 4.49790 + 7.79058i 0.272225 + 0.471508i
\(274\) −10.9541 + 18.9730i −0.661760 + 1.14620i
\(275\) −6.19195 −0.373389
\(276\) 2.00391 + 3.47088i 0.120621 + 0.208922i
\(277\) 16.9228 1.01679 0.508397 0.861123i \(-0.330238\pi\)
0.508397 + 0.861123i \(0.330238\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 1.90667 0.113742 0.0568711 0.998382i \(-0.481888\pi\)
0.0568711 + 0.998382i \(0.481888\pi\)
\(282\) 12.8372 + 22.2347i 0.764445 + 1.32406i
\(283\) −15.3098 −0.910074 −0.455037 0.890473i \(-0.650374\pi\)
−0.455037 + 0.890473i \(0.650374\pi\)
\(284\) −12.4605 + 21.5823i −0.739396 + 1.28067i
\(285\) −1.10846 1.91991i −0.0656596 0.113726i
\(286\) −6.60315 11.4370i −0.390452 0.676283i
\(287\) 0.179685 0.0106065
\(288\) −8.59087 + 14.8798i −0.506222 + 0.876802i
\(289\) 4.68341 8.11191i 0.275495 0.477171i
\(290\) 6.65368 11.5245i 0.390718 0.676743i
\(291\) −0.907681 1.57215i −0.0532092 0.0921610i
\(292\) 19.6547 34.0430i 1.15021 1.99221i
\(293\) −13.3968 23.2040i −0.782651 1.35559i −0.930392 0.366566i \(-0.880533\pi\)
0.147741 0.989026i \(-0.452800\pi\)
\(294\) −15.3394 −0.894611
\(295\) 0.283648 0.0165146
\(296\) −33.7211 58.4067i −1.96000 3.39482i
\(297\) −3.78265 + 6.55174i −0.219491 + 0.380170i
\(298\) −12.1109 20.9767i −0.701564 1.21514i
\(299\) 0.989723 1.71425i 0.0572371 0.0991376i
\(300\) −17.2048 + 29.7995i −0.993317 + 1.72048i
\(301\) 2.59438 4.49360i 0.149538 0.259007i
\(302\) −8.63112 −0.496665
\(303\) 5.76198 + 9.98004i 0.331017 + 0.573338i
\(304\) 16.6278 + 28.8002i 0.953670 + 1.65181i
\(305\) −1.55584 + 2.69480i −0.0890873 + 0.154304i
\(306\) 7.32816 0.418923
\(307\) −4.47563 7.75202i −0.255438 0.442431i 0.709577 0.704628i \(-0.248886\pi\)
−0.965014 + 0.262197i \(0.915553\pi\)
\(308\) −12.0948 −0.689164
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −45.3617 −2.56810
\(313\) 0.225660 + 0.390855i 0.0127551 + 0.0220924i 0.872332 0.488913i \(-0.162606\pi\)
−0.859577 + 0.511006i \(0.829273\pi\)
\(314\) 8.94953 0.505051
\(315\) −0.517934 + 0.897088i −0.0291823 + 0.0505452i
\(316\) −25.3964 43.9879i −1.42866 2.47451i
\(317\) 2.79042 + 4.83315i 0.156726 + 0.271457i 0.933686 0.358093i \(-0.116573\pi\)
−0.776960 + 0.629550i \(0.783239\pi\)
\(318\) −10.6850 −0.599184
\(319\) −5.43708 + 9.41730i −0.304418 + 0.527268i
\(320\) −6.38069 + 11.0517i −0.356691 + 0.617808i
\(321\) −8.78151 + 15.2100i −0.490136 + 0.848941i
\(322\) −1.25259 2.16955i −0.0698040 0.120904i
\(323\) 3.54701 6.14361i 0.197361 0.341840i
\(324\) 13.2755 + 22.9938i 0.737526 + 1.27743i
\(325\) 16.9947 0.942696
\(326\) −4.68180 −0.259301
\(327\) 5.11579 + 8.86081i 0.282904 + 0.490004i
\(328\) −0.453035 + 0.784679i −0.0250147 + 0.0433267i
\(329\) −5.80661 10.0574i −0.320129 0.554480i
\(330\) −1.55316 + 2.69015i −0.0854987 + 0.148088i
\(331\) 12.1027 20.9625i 0.665226 1.15221i −0.313998 0.949424i \(-0.601668\pi\)
0.979224 0.202782i \(-0.0649982\pi\)
\(332\) −43.6881 + 75.6699i −2.39769 + 4.15293i
\(333\) 7.63634 0.418469
\(334\) 18.8532 + 32.6548i 1.03160 + 1.78679i
\(335\) −2.52433 4.37226i −0.137919 0.238882i
\(336\) −15.8704 + 27.4884i −0.865804 + 1.49962i
\(337\) −11.0360 −0.601168 −0.300584 0.953755i \(-0.597182\pi\)
−0.300584 + 0.953755i \(0.597182\pi\)
\(338\) 0.637273 + 1.10379i 0.0346631 + 0.0600382i
\(339\) −23.6600 −1.28504
\(340\) 8.80253 0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 19.0266 1.02734
\(344\) 13.0823 + 22.6592i 0.705349 + 1.22170i
\(345\) −0.465596 −0.0250668
\(346\) −0.0161152 + 0.0279124i −0.000866360 + 0.00150058i
\(347\) −9.28369 16.0798i −0.498375 0.863210i 0.501624 0.865086i \(-0.332736\pi\)
−0.999998 + 0.00187589i \(0.999403\pi\)
\(348\) 30.2146 + 52.3332i 1.61967 + 2.80536i
\(349\) −32.1746 −1.72227 −0.861134 0.508378i \(-0.830245\pi\)
−0.861134 + 0.508378i \(0.830245\pi\)
\(350\) 10.7542 18.6268i 0.574836 0.995645i
\(351\) 10.3820 17.9822i 0.554151 0.959818i
\(352\) 11.6528 20.1833i 0.621097 1.07577i
\(353\) 16.1067 + 27.8976i 0.857273 + 1.48484i 0.874520 + 0.484989i \(0.161176\pi\)
−0.0172478 + 0.999851i \(0.505490\pi\)
\(354\) −0.889985 + 1.54150i −0.0473022 + 0.0819298i
\(355\) −1.44756 2.50725i −0.0768285 0.133071i
\(356\) 80.2104 4.25114
\(357\) 6.77091 0.358355
\(358\) 13.4212 + 23.2462i 0.709332 + 1.22860i
\(359\) −10.5811 + 18.3271i −0.558451 + 0.967265i 0.439175 + 0.898401i \(0.355271\pi\)
−0.997626 + 0.0688636i \(0.978063\pi\)
\(360\) −2.61171 4.52361i −0.137649 0.238415i
\(361\) 6.20352 10.7448i 0.326501 0.565516i
\(362\) 25.0227 43.3406i 1.31516 2.27793i
\(363\) −6.53623 + 11.3211i −0.343063 + 0.594203i
\(364\) 33.1959 1.73994
\(365\) 2.28332 + 3.95483i 0.119515 + 0.207005i
\(366\) −9.76334 16.9106i −0.510338 0.883931i
\(367\) 6.49822 11.2552i 0.339204 0.587519i −0.645079 0.764116i \(-0.723176\pi\)
0.984283 + 0.176597i \(0.0565089\pi\)
\(368\) 6.98431 0.364082
\(369\) −0.0512962 0.0888475i −0.00267037 0.00462522i
\(370\) 12.6758 0.658983
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −9.94005 −0.513988
\(375\) −4.15720 7.20048i −0.214677 0.371831i
\(376\) 58.5602 3.02001
\(377\) 14.9228 25.8471i 0.768566 1.33119i
\(378\) −13.1394 22.7581i −0.675819 1.17055i
\(379\) 7.47787 + 12.9520i 0.384112 + 0.665302i 0.991646 0.128992i \(-0.0411742\pi\)
−0.607533 + 0.794294i \(0.707841\pi\)
\(380\) −8.18079 −0.419666
\(381\) 9.16030 15.8661i 0.469297 0.812846i
\(382\) 1.61156 2.79131i 0.0824547 0.142816i
\(383\) −5.82517 + 10.0895i −0.297652 + 0.515549i −0.975598 0.219563i \(-0.929537\pi\)
0.677946 + 0.735112i \(0.262870\pi\)
\(384\) −15.3099 26.5176i −0.781282 1.35322i
\(385\) 0.702536 1.21683i 0.0358045 0.0620153i
\(386\) 17.1182 + 29.6496i 0.871294 + 1.50913i
\(387\) −2.96256 −0.150595
\(388\) −6.69897 −0.340089
\(389\) 7.20097 + 12.4724i 0.365103 + 0.632378i 0.988793 0.149295i \(-0.0477003\pi\)
−0.623689 + 0.781672i \(0.714367\pi\)
\(390\) 4.26287 7.38351i 0.215859 0.373879i
\(391\) −0.744940 1.29027i −0.0376732 0.0652520i
\(392\) −17.4936 + 30.2998i −0.883561 + 1.53037i
\(393\) −1.72981 + 2.99612i −0.0872573 + 0.151134i
\(394\) 3.99299 6.91607i 0.201164 0.348426i
\(395\) 5.90069 0.296896
\(396\) 3.45280 + 5.98042i 0.173510 + 0.300527i
\(397\) −7.89506 13.6746i −0.396242 0.686311i 0.597017 0.802229i \(-0.296352\pi\)
−0.993259 + 0.115918i \(0.963019\pi\)
\(398\) 17.7336 30.7155i 0.888904 1.53963i
\(399\) −6.29267 −0.315028
\(400\) 29.9822 + 51.9307i 1.49911 + 2.59653i
\(401\) −31.0232 −1.54923 −0.774613 0.632436i \(-0.782055\pi\)
−0.774613 + 0.632436i \(0.782055\pi\)
\(402\) 31.6817 1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −3.08447 −0.153268
\(406\) −18.8863 32.7120i −0.937310 1.62347i
\(407\) −10.3581 −0.513431
\(408\) −17.0713 + 29.5684i −0.845156 + 1.46385i
\(409\) 3.29291 + 5.70349i 0.162824 + 0.282019i 0.935880 0.352318i \(-0.114606\pi\)
−0.773056 + 0.634337i \(0.781273\pi\)
\(410\) −0.0851481 0.147481i −0.00420516 0.00728356i
\(411\) 11.5574 0.570086
\(412\) −39.6764 + 68.7215i −1.95471 + 3.38566i
\(413\) 0.402564 0.697261i 0.0198089 0.0343100i
\(414\) −0.715173 + 1.23872i −0.0351488 + 0.0608796i
\(415\) −5.07532 8.79070i −0.249137 0.431519i
\(416\) −31.9828 + 55.3959i −1.56809 + 2.71601i
\(417\) 0.960322 + 1.66333i 0.0470272 + 0.0814535i
\(418\) 9.23797 0.451844
\(419\) −14.6720 −0.716773 −0.358387 0.933573i \(-0.616673\pi\)
−0.358387 + 0.933573i \(0.616673\pi\)
\(420\) −3.90409 6.76208i −0.190500 0.329956i
\(421\) 13.3579 23.1366i 0.651026 1.12761i −0.331848 0.943333i \(-0.607672\pi\)
0.982874 0.184277i \(-0.0589944\pi\)
\(422\) 24.6583 + 42.7095i 1.20035 + 2.07907i
\(423\) −3.31532 + 5.74231i −0.161197 + 0.279201i
\(424\) −12.1855 + 21.1060i −0.591782 + 1.02500i
\(425\) 6.39575 11.0778i 0.310239 0.537350i
\(426\) 18.1677 0.880226
\(427\) 4.41621 + 7.64911i 0.213716 + 0.370166i
\(428\) 32.4052 + 56.1274i 1.56636 + 2.71302i
\(429\) −3.48342 + 6.03347i −0.168181 + 0.291299i
\(430\) −4.91764 −0.237150
\(431\) −1.99400 3.45372i −0.0960478 0.166360i 0.813998 0.580868i \(-0.197287\pi\)
−0.910045 + 0.414509i \(0.863954\pi\)
\(432\) 73.2642 3.52492
\(433\) −18.0766 −0.868704 −0.434352 0.900743i \(-0.643023\pi\)
−0.434352 + 0.900743i \(0.643023\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 37.7561 1.80819
\(437\) 0.692324 + 1.19914i 0.0331183 + 0.0573626i
\(438\) −28.6569 −1.36928
\(439\) −11.4543 + 19.8394i −0.546684 + 0.946884i 0.451815 + 0.892112i \(0.350777\pi\)
−0.998499 + 0.0547723i \(0.982557\pi\)
\(440\) 3.54257 + 6.13591i 0.168885 + 0.292518i
\(441\) −1.98076 3.43079i −0.0943221 0.163371i
\(442\) 27.2819 1.29767
\(443\) 10.7457 18.6120i 0.510542 0.884284i −0.489384 0.872069i \(-0.662778\pi\)
0.999925 0.0122154i \(-0.00388839\pi\)
\(444\) −28.7806 + 49.8495i −1.36587 + 2.36575i
\(445\) −4.65909 + 8.06977i −0.220862 + 0.382544i
\(446\) −12.6384 21.8903i −0.598444 1.03654i
\(447\) −6.38897 + 11.0660i −0.302188 + 0.523405i
\(448\) 18.1114 + 31.3699i 0.855683 + 1.48209i
\(449\) −18.7996 −0.887209 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(450\) −12.2804 −0.578902
\(451\) 0.0695791 + 0.120515i 0.00327635 + 0.00567481i
\(452\) −43.6546 + 75.6120i −2.05334 + 3.55649i
\(453\) 2.27663 + 3.94324i 0.106965 + 0.185269i
\(454\) 11.3786 19.7083i 0.534023 0.924955i
\(455\) −1.92821 + 3.33976i −0.0903959 + 0.156570i
\(456\) 15.8655 27.4799i 0.742972 1.28686i
\(457\) −4.10599 −0.192070 −0.0960351 0.995378i \(-0.530616\pi\)
−0.0960351 + 0.995378i \(0.530616\pi\)
\(458\) −30.7262 53.2193i −1.43574 2.48678i
\(459\) −7.81429 13.5347i −0.364740 0.631748i
\(460\) −0.859060 + 1.48794i −0.0400539 + 0.0693754i
\(461\) 22.8750 1.06540 0.532698 0.846305i \(-0.321178\pi\)
0.532698 + 0.846305i \(0.321178\pi\)
\(462\) 4.40860 + 7.63592i 0.205107 + 0.355255i
\(463\) 16.5670 0.769932 0.384966 0.922931i \(-0.374213\pi\)
0.384966 + 0.922931i \(0.374213\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 38.1462 1.76520 0.882599 0.470127i \(-0.155792\pi\)
0.882599 + 0.470127i \(0.155792\pi\)
\(468\) −9.47670 16.4141i −0.438061 0.758743i
\(469\) −14.3305 −0.661719
\(470\) −5.50321 + 9.53184i −0.253844 + 0.439671i
\(471\) −2.36062 4.08871i −0.108771 0.188398i
\(472\) 2.02994 + 3.51597i 0.0934358 + 0.161836i
\(473\) 4.01847 0.184769
\(474\) −18.5142 + 32.0675i −0.850386 + 1.47291i
\(475\) −5.94401 + 10.2953i −0.272730 + 0.472382i
\(476\) 12.4929 21.6383i 0.572609 0.991788i
\(477\) −1.37974 2.38979i −0.0631741 0.109421i
\(478\) −24.5786 + 42.5714i −1.12420 + 1.94717i
\(479\) 16.8424 + 29.1719i 0.769548 + 1.33290i 0.937808 + 0.347154i \(0.112852\pi\)
−0.168260 + 0.985743i \(0.553815\pi\)
\(480\) 15.0457 0.686739
\(481\) 28.4292 1.29626
\(482\) 24.4421 + 42.3350i 1.11331 + 1.92831i
\(483\) −0.660790 + 1.14452i −0.0300670 + 0.0520775i
\(484\) 24.1197 + 41.7766i 1.09635 + 1.89893i
\(485\) 0.389115 0.673967i 0.0176688 0.0306033i
\(486\) −13.1484 + 22.7736i −0.596422 + 1.03303i
\(487\) −10.3383 + 17.9065i −0.468475 + 0.811422i −0.999351 0.0360274i \(-0.988530\pi\)
0.530876 + 0.847449i \(0.321863\pi\)
\(488\) −44.5379 −2.01614
\(489\) 1.23492 + 2.13894i 0.0558449 + 0.0967263i
\(490\) −3.28793 5.69487i −0.148534 0.257268i
\(491\) 12.3664 21.4192i 0.558087 0.966634i −0.439570 0.898209i \(-0.644869\pi\)
0.997656 0.0684258i \(-0.0217976\pi\)
\(492\) 0.773321 0.0348640
\(493\) −11.2321 19.4545i −0.505867 0.876186i
\(494\) −25.3549 −1.14077
\(495\) −0.802235 −0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 63.6980 2.85437
\(499\) −12.2801 21.2697i −0.549732 0.952164i −0.998293 0.0584115i \(-0.981396\pi\)
0.448560 0.893753i \(-0.351937\pi\)
\(500\) −30.6814 −1.37211
\(501\) 9.94584 17.2267i 0.444347 0.769632i
\(502\) 30.8429 + 53.4215i 1.37659 + 2.38432i
\(503\) −7.36956 12.7645i −0.328593 0.569139i 0.653640 0.756805i \(-0.273241\pi\)
−0.982233 + 0.187666i \(0.939908\pi\)
\(504\) −14.8265 −0.660425
\(505\) −2.47011 + 4.27836i −0.109918 + 0.190384i
\(506\) 0.970074 1.68022i 0.0431251 0.0746948i
\(507\) 0.336187 0.582293i 0.0149306 0.0258605i
\(508\) −33.8029 58.5484i −1.49976 2.59767i
\(509\) 7.75315 13.4288i 0.343652 0.595223i −0.641456 0.767160i \(-0.721669\pi\)
0.985108 + 0.171937i \(0.0550025\pi\)
\(510\) −3.20856 5.55739i −0.142077 0.246085i
\(511\) 12.9623 0.573418
\(512\) −0.135395 −0.00598366
\(513\) 7.26235 + 12.5788i 0.320641 + 0.555366i
\(514\) 0.142838 0.247402i 0.00630031 0.0109125i
\(515\) −4.60927 7.98349i −0.203109 0.351795i
\(516\) 11.1656 19.3394i 0.491538 0.851368i
\(517\) 4.49697 7.78898i 0.197776 0.342559i
\(518\) 17.9899 31.1595i 0.790432 1.36907i
\(519\) 0.0170028 0.000746342
\(520\) −9.72308 16.8409i −0.426385 0.738521i
\(521\) −14.7073 25.4738i −0.644337 1.11603i −0.984454 0.175642i \(-0.943800\pi\)
0.340117 0.940383i \(-0.389533\pi\)
\(522\) −10.7832 + 18.6771i −0.471970 + 0.817475i
\(523\) −45.0260 −1.96885 −0.984424 0.175810i \(-0.943746\pi\)
−0.984424 + 0.175810i \(0.943746\pi\)
\(524\) 6.38326 + 11.0561i 0.278854 + 0.482989i
\(525\) −11.3465 −0.495203
\(526\) −19.6309 −0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −22.7092 −0.987356
\(530\) −2.29028 3.96688i −0.0994834 0.172310i
\(531\) −0.459693 −0.0199490
\(532\) −11.6105 + 20.1099i −0.503378 + 0.871876i
\(533\) −0.190970 0.330769i −0.00827182 0.0143272i
\(534\) −29.2370 50.6400i −1.26521 2.19141i
\(535\) −7.52912 −0.325512
\(536\) 36.1310 62.5807i 1.56062 2.70307i
\(537\) 7.08021 12.2633i 0.305534 0.529200i
\(538\) −21.8163 + 37.7869i −0.940568 + 1.62911i
\(539\) 2.68675 + 4.65358i 0.115726 + 0.200444i
\(540\) −9.01139 + 15.6082i −0.387789 + 0.671670i
\(541\) −18.8894 32.7173i −0.812117 1.40663i −0.911380 0.411567i \(-0.864982\pi\)
0.0992628 0.995061i \(-0.468352\pi\)
\(542\) −13.8426 −0.594589
\(543\) −26.4009 −1.13297
\(544\) 24.0727 + 41.6951i 1.03211 + 1.78766i
\(545\) −2.19310 + 3.79855i −0.0939419 + 0.162712i
\(546\) −12.1000 20.9579i −0.517834 0.896914i
\(547\) 9.10438 15.7692i 0.389275 0.674244i −0.603077 0.797683i \(-0.706059\pi\)
0.992352 + 0.123439i \(0.0393922\pi\)
\(548\) 21.3243 36.9349i 0.910931 1.57778i
\(549\) 2.52147 4.36731i 0.107614 0.186392i
\(550\) 16.6573 0.710270
\(551\) 10.4387 + 18.0804i 0.444705 + 0.770251i
\(552\) −3.33206 5.77130i −0.141822 0.245643i
\(553\) 8.37446 14.5050i 0.356118 0.616815i
\(554\) −45.5250 −1.93417
\(555\) −3.34349 5.79110i −0.141923 0.245818i
\(556\) 7.08748 0.300576
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −13.6071 −0.575003
\(561\) 2.62189 + 4.54124i 0.110696 + 0.191731i
\(562\) −5.12923 −0.216364
\(563\) 18.0809 31.3170i 0.762019 1.31986i −0.179790 0.983705i \(-0.557542\pi\)
0.941808 0.336150i \(-0.109125\pi\)
\(564\) −24.9903 43.2844i −1.05228 1.82260i
\(565\) −5.07143 8.78397i −0.213356 0.369544i
\(566\) 41.1858 1.73117
\(567\) −4.37759 + 7.58220i −0.183841 + 0.318422i
\(568\) 20.7191 35.8865i 0.869354 1.50576i
\(569\) 20.7499 35.9399i 0.869880 1.50668i 0.00776221 0.999970i \(-0.497529\pi\)
0.862118 0.506707i \(-0.169137\pi\)
\(570\) 2.98193 + 5.16486i 0.124899 + 0.216332i
\(571\) −16.1966 + 28.0533i −0.677805 + 1.17399i 0.297835 + 0.954617i \(0.403735\pi\)
−0.975641 + 0.219375i \(0.929598\pi\)
\(572\) 12.8544 + 22.2644i 0.537468 + 0.930923i
\(573\) −1.70033 −0.0710322
\(574\) −0.483381 −0.0201759
\(575\) 1.24835 + 2.16221i 0.0520599 + 0.0901704i
\(576\) 10.3408 17.9108i 0.430867 0.746284i
\(577\) −20.4913 35.4919i −0.853063 1.47755i −0.878431 0.477869i \(-0.841409\pi\)
0.0253683 0.999678i \(-0.491924\pi\)
\(578\) −12.5991 + 21.8223i −0.524054 + 0.907688i
\(579\) 9.03054 15.6413i 0.375296 0.650032i
\(580\) −12.9527 + 22.4348i −0.537833 + 0.931555i
\(581\) −28.8123 −1.19533
\(582\) 2.44180 + 4.22933i 0.101216 + 0.175311i
\(583\) 1.87151 + 3.24155i 0.0775100 + 0.134251i
\(584\) −32.6814 + 56.6059i −1.35237 + 2.34237i
\(585\) 2.20185 0.0910352
\(586\) 36.0396 + 62.4224i 1.48878 + 2.57864i
\(587\) −25.5314 −1.05379 −0.526897 0.849929i \(-0.676644\pi\)
−0.526897 + 0.849929i \(0.676644\pi\)
\(588\) 29.8612 1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −4.21292 −0.173297
\(592\) 50.1550 + 86.8711i 2.06136 + 3.57038i
\(593\) 44.5318 1.82870 0.914350 0.404925i \(-0.132702\pi\)
0.914350 + 0.404925i \(0.132702\pi\)
\(594\) 10.1759 17.6252i 0.417523 0.723170i
\(595\) 1.45132 + 2.51375i 0.0594982 + 0.103054i
\(596\) 23.5763 + 40.8353i 0.965723 + 1.67268i
\(597\) −18.7103 −0.765763
\(598\) −2.66251 + 4.61160i −0.108878 + 0.188582i
\(599\) −9.48998 + 16.4371i −0.387750 + 0.671603i −0.992147 0.125081i \(-0.960081\pi\)
0.604397 + 0.796684i \(0.293414\pi\)
\(600\) 28.6077 49.5500i 1.16790 2.02287i
\(601\) −6.41990 11.1196i −0.261873 0.453578i 0.704866 0.709340i \(-0.251007\pi\)
−0.966740 + 0.255762i \(0.917674\pi\)
\(602\) −6.97928 + 12.0885i −0.284454 + 0.492689i
\(603\) 4.09103 + 7.08588i 0.166600 + 0.288559i
\(604\) 16.8022 0.683673
\(605\) −5.60405 −0.227837
\(606\) −15.5006 26.8478i −0.629669 1.09062i
\(607\) 19.0696 33.0296i 0.774013 1.34063i −0.161335 0.986900i \(-0.551580\pi\)
0.935348 0.353730i \(-0.115087\pi\)
\(608\) −22.3724 38.7501i −0.907321 1.57153i
\(609\) −9.96326 + 17.2569i −0.403732 + 0.699284i
\(610\) 4.18546 7.24943i 0.169464 0.293521i
\(611\) −12.3426 + 21.3780i −0.499327 + 0.864860i
\(612\) −14.2658 −0.576659
\(613\) −9.27119 16.0582i −0.374460 0.648583i 0.615786 0.787913i \(-0.288838\pi\)
−0.990246 + 0.139330i \(0.955505\pi\)
\(614\) 12.0401 + 20.8541i 0.485901 + 0.841605i
\(615\) −0.0449190 + 0.0778020i −0.00181131 + 0.00313728i
\(616\) 20.1109 0.810293
\(617\) −4.06777 7.04559i −0.163762 0.283645i 0.772453 0.635072i \(-0.219030\pi\)
−0.936215 + 0.351428i \(0.885696\pi\)
\(618\) 57.8488 2.32702
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −55.5669 −2.22803
\(623\) 13.2247 + 22.9058i 0.529835 + 0.917702i
\(624\) 67.4686 2.70091
\(625\) −9.79252 + 16.9611i −0.391701 + 0.678446i
\(626\) −0.607062 1.05146i −0.0242631 0.0420249i
\(627\) −2.43670 4.22049i −0.0973124 0.168550i
\(628\) −17.4221 −0.695217
\(629\) 10.6990 18.5312i 0.426597 0.738887i
\(630\) 1.39332 2.41331i 0.0555113 0.0961484i
\(631\) 14.5235 25.1555i 0.578172 1.00142i −0.417517 0.908669i \(-0.637100\pi\)
0.995689 0.0927538i \(-0.0295670\pi\)
\(632\) 42.2286 + 73.1421i 1.67976 + 2.90944i
\(633\) 13.0083 22.5310i 0.517032 0.895525i
\(634\) −7.50667 13.0019i −0.298128 0.516373i
\(635\) 7.85389 0.311672
\(636\) 20.8005 0.824793
\(637\) −7.37416 12.7724i −0.292175 0.506062i
\(638\) 14.6266 25.3340i 0.579072 1.00298i
\(639\) 2.34598 + 4.06335i 0.0928055 + 0.160744i
\(640\) 6.56324 11.3679i 0.259435 0.449354i
\(641\) −13.8028 + 23.9071i −0.545177 + 0.944274i 0.453419 + 0.891297i \(0.350204\pi\)
−0.998596 + 0.0529762i \(0.983129\pi\)
\(642\) 23.6236 40.9173i 0.932351 1.61488i
\(643\) 4.22904 0.166777 0.0833885 0.996517i \(-0.473426\pi\)
0.0833885 + 0.996517i \(0.473426\pi\)
\(644\) 2.43842 + 4.22346i 0.0960871 + 0.166428i
\(645\) 1.29713 + 2.24669i 0.0510742 + 0.0884632i
\(646\) −9.54202 + 16.5273i −0.375426 + 0.650257i
\(647\) 26.2809 1.03321 0.516604 0.856225i \(-0.327196\pi\)
0.516604 + 0.856225i \(0.327196\pi\)
\(648\) −22.0742 38.2336i −0.867155 1.50196i
\(649\) 0.623536 0.0244759
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −13.3517 −0.522494 −0.261247 0.965272i \(-0.584134\pi\)
−0.261247 + 0.965272i \(0.584134\pi\)
\(654\) −13.7623 23.8370i −0.538147 0.932099i
\(655\) −1.48311 −0.0579498
\(656\) 0.673821 1.16709i 0.0263083 0.0455673i
\(657\) −3.70045 6.40937i −0.144368 0.250053i
\(658\) 15.6207 + 27.0558i 0.608958 + 1.05475i
\(659\) −15.4158 −0.600515 −0.300258 0.953858i \(-0.597073\pi\)
−0.300258 + 0.953858i \(0.597073\pi\)
\(660\) 3.02355 5.23693i 0.117691 0.203847i
\(661\) 2.36153 4.09029i 0.0918530 0.159094i −0.816438 0.577433i \(-0.804054\pi\)
0.908291 + 0.418339i \(0.137388\pi\)
\(662\) −32.5582 + 56.3925i −1.26541 + 2.19176i
\(663\) −7.19615 12.4641i −0.279475 0.484065i
\(664\) 72.6436 125.822i 2.81912 4.88285i
\(665\) −1.34881 2.33620i −0.0523045 0.0905941i
\(666\) −20.5429 −0.796023
\(667\) 4.38466 0.169775
\(668\) −36.7017 63.5692i −1.42003 2.45957i
\(669\) −6.66724 + 11.5480i −0.257770 + 0.446472i
\(670\) 6.79083 + 11.7621i 0.262353 + 0.454408i
\(671\) −3.42017 + 5.92390i −0.132034 + 0.228690i
\(672\) 21.3534 36.9852i 0.823725 1.42673i
\(673\) −15.5365 + 26.9100i −0.598888 + 1.03730i 0.394097 + 0.919069i \(0.371057\pi\)
−0.992986 + 0.118236i \(0.962276\pi\)
\(674\) 29.6885 1.14356
\(675\) 13.0950 + 22.6812i 0.504027 + 0.873000i
\(676\) −1.24058 2.14875i −0.0477147 0.0826443i
\(677\) −4.51998 + 7.82883i −0.173717 + 0.300886i −0.939716 0.341955i \(-0.888911\pi\)
0.766000 + 0.642841i \(0.222244\pi\)
\(678\) 63.6491 2.44443
\(679\) −1.10449 1.91304i −0.0423865 0.0734156i
\(680\) −14.6367 −0.561290
\(681\) −12.0053 −0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 13.2581 0.506938
\(685\) 2.47729 + 4.29078i 0.0946522 + 0.163942i
\(686\) −51.1844 −1.95423
\(687\) −16.2093 + 28.0753i −0.618423 + 1.07114i
\(688\) −19.4579 33.7021i −0.741826 1.28488i
\(689\) −5.13663 8.89690i −0.195690 0.338945i
\(690\) 1.25252 0.0476828
\(691\) −18.2377 + 31.5886i −0.693795 + 1.20169i 0.276790 + 0.960930i \(0.410729\pi\)
−0.970585 + 0.240758i \(0.922604\pi\)
\(692\) 0.0313716 0.0543371i 0.00119257 0.00206559i
\(693\) −1.13856 + 1.97204i −0.0432503 + 0.0749117i
\(694\) 24.9746 + 43.2572i 0.948022 + 1.64202i
\(695\) −0.411682 + 0.713054i −0.0156160 + 0.0270477i
\(696\) −50.2402 87.0185i −1.90435 3.29843i
\(697\) −0.287476 −0.0108889
\(698\) 86.5547 3.27615
\(699\) 11.5332 + 19.9760i 0.436225 + 0.755564i
\(700\) −20.9352 + 36.2609i −0.791278 + 1.37053i
\(701\) 0.807220 + 1.39815i 0.0304883 + 0.0528073i 0.880867 0.473364i \(-0.156960\pi\)
−0.850379 + 0.526171i \(0.823627\pi\)
\(702\) −27.9292 + 48.3749i −1.05412 + 1.82579i
\(703\) −9.94330 + 17.2223i −0.375019 + 0.649551i
\(704\) −14.0265 + 24.2946i −0.528643 + 0.915637i
\(705\) 5.80632 0.218679
\(706\) −43.3295 75.0489i −1.63073 2.82450i
\(707\) 7.01134 + 12.1440i 0.263688 + 0.456722i
\(708\) 1.73254 3.00084i 0.0651127 0.112779i
\(709\) −11.4880 −0.431439 −0.215720 0.976455i \(-0.569210\pi\)
−0.215720 + 0.976455i \(0.569210\pi\)
\(710\) 3.89416 + 6.74489i 0.146145 + 0.253131i
\(711\) −9.56291 −0.358637
\(712\) −133.372 −4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −2.98663 −0.111694
\(716\) −26.1271 45.2534i −0.976415 1.69120i
\(717\) 25.9324 0.968462
\(718\) 28.4649 49.3026i 1.06230 1.83996i
\(719\) −7.08549 12.2724i −0.264244 0.457685i 0.703121 0.711070i \(-0.251789\pi\)
−0.967365 + 0.253386i \(0.918456\pi\)
\(720\) 3.88452 + 6.72818i 0.144767 + 0.250745i
\(721\) −26.1666 −0.974493
\(722\) −16.6884 + 28.9052i −0.621079 + 1.07574i
\(723\) 12.8942 22.3334i 0.479541 0.830589i
\(724\) −48.7118 + 84.3713i −1.81036 + 3.13564i
\(725\) 18.8224 + 32.6014i 0.699047 + 1.21079i
\(726\) 17.5835 30.4555i 0.652584 1.13031i
\(727\) 13.4739 + 23.3374i 0.499718 + 0.865537i 1.00000 0.000325630i \(-0.000103651\pi\)
−0.500282 + 0.865863i \(0.666770\pi\)
\(728\) −55.1974 −2.04575
\(729\) 29.0824 1.07713
\(730\) −6.14249 10.6391i −0.227344 0.393771i
\(731\) −4.15073 + 7.18927i −0.153520 + 0.265905i
\(732\) 19.0063 + 32.9199i 0.702494 + 1.21676i
\(733\) 14.2118 24.6155i 0.524924 0.909194i −0.474655 0.880172i \(-0.657427\pi\)
0.999579 0.0290225i \(-0.00923944\pi\)
\(734\) −17.4812 + 30.2784i −0.645243 + 1.11759i
\(735\) −1.73452 + 3.00427i −0.0639786 + 0.110814i
\(736\) −9.39725 −0.346387
\(737\) −5.54915 9.61142i −0.204406 0.354041i
\(738\) 0.137995 + 0.239014i 0.00507965 + 0.00879822i
\(739\) −0.348653 + 0.603885i −0.0128254 + 0.0222143i −0.872367 0.488852i \(-0.837416\pi\)
0.859541 + 0.511066i \(0.170749\pi\)
\(740\) −24.6760 −0.907108
\(741\) 6.68787 + 11.5837i 0.245685 + 0.425539i
\(742\) −13.0018 −0.477310
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 11.9064 0.435925
\(747\) 8.22528 + 14.2466i 0.300947 + 0.521256i
\(748\) 19.3503 0.707519
\(749\) −10.6856 + 18.5080i −0.390443 + 0.676267i
\(750\) 11.1835 + 19.3704i 0.408364 + 0.707307i
\(751\) 18.5330 + 32.1001i 0.676279 + 1.17135i 0.976093 + 0.217352i \(0.0697418\pi\)
−0.299815 + 0.953997i \(0.596925\pi\)
\(752\) −87.0995 −3.17619
\(753\) 16.2709 28.1820i 0.592943 1.02701i
\(754\) −40.1448 + 69.5328i −1.46199 + 2.53223i
\(755\) −0.975972 + 1.69043i −0.0355192 + 0.0615211i
\(756\) 25.5786 + 44.3034i 0.930284 + 1.61130i
\(757\) 3.20100 5.54430i 0.116342 0.201511i −0.801973 0.597360i \(-0.796216\pi\)
0.918316 + 0.395849i \(0.129550\pi\)
\(758\) −20.1166 34.8430i −0.730669 1.26556i
\(759\) −1.02351 −0.0371509
\(760\) 13.6028 0.493427
\(761\) −10.6694 18.4800i −0.386766 0.669898i 0.605246 0.796038i \(-0.293075\pi\)
−0.992012 + 0.126140i \(0.959741\pi\)
\(762\) −24.6426 + 42.6823i −0.892709 + 1.54622i
\(763\) 6.22504 + 10.7821i 0.225361 + 0.390338i
\(764\) −3.13724 + 5.43385i −0.113501 + 0.196590i
\(765\) 0.828638 1.43524i 0.0299595 0.0518914i
\(766\) 15.6706 27.1423i 0.566203 0.980692i
\(767\) −1.71138 −0.0617945
\(768\) 11.4179 + 19.7764i 0.412008 + 0.713619i
\(769\) 6.12828 + 10.6145i 0.220991 + 0.382768i 0.955109 0.296254i \(-0.0957374\pi\)
−0.734118 + 0.679022i \(0.762404\pi\)
\(770\) −1.88993 + 3.27346i −0.0681084 + 0.117967i
\(771\) −0.150705 −0.00542752
\(772\) −33.3241 57.7190i −1.19936 2.07735i
\(773\) 34.7035 1.24820 0.624098 0.781346i \(-0.285466\pi\)
0.624098 + 0.781346i \(0.285466\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −18.9808 −0.680933
\(778\) −19.3717 33.5528i −0.694510 1.20293i
\(779\) 0.267172 0.00957242
\(780\) −8.29855 + 14.3735i −0.297136 + 0.514654i
\(781\) −3.18213 5.51161i −0.113866 0.197221i
\(782\) 2.00400 + 3.47104i 0.0716630 + 0.124124i
\(783\) 45.9943 1.64370
\(784\) 26.0191 45.0664i 0.929254 1.60952i
\(785\) 1.01198 1.75279i 0.0361190 0.0625599i
\(786\) 4.65345 8.06002i 0.165983 0.287491i
\(787\) −10.0591 17.4229i −0.358568 0.621058i 0.629154 0.777281i \(-0.283402\pi\)
−0.987722 + 0.156223i \(0.950068\pi\)
\(788\) −7.77317 + 13.4635i −0.276908 + 0.479618i
\(789\) 5.17804 + 8.96863i 0.184343 + 0.319292i
\(790\) −15.8738 −0.564763
\(791\) −28.7902 −1.02366
\(792\) −5.74124 9.94411i −0.204006 0.353349i
\(793\) 9.38713 16.2590i 0.333347 0.577374i
\(794\) 21.2389 + 36.7869i 0.753742 + 1.30552i
\(795\) −1.20821 + 2.09269i −0.0428509 + 0.0742200i
\(796\) −34.5220 + 59.7939i −1.22360 + 2.11934i
\(797\) 13.1010 22.6916i 0.464060 0.803776i −0.535098 0.844790i \(-0.679725\pi\)
0.999159 + 0.0410138i \(0.0130588\pi\)
\(798\) 16.9283 0.599254
\(799\) 9.28995 + 16.0907i 0.328655 + 0.569247i
\(800\) −40.3405 69.8717i −1.42625 2.47034i
\(801\) 7.55072 13.0782i 0.266791 0.462096i
\(802\) 83.4573 2.94698
\(803\) 5.01936 + 8.69379i 0.177129 + 0.306797i
\(804\) −61.6748 −2.17510
\(805\) −0.566550 −0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −70.7099 −2.48757
\(809\) 18.2251 + 31.5668i 0.640759 + 1.10983i 0.985264 + 0.171043i \(0.0547138\pi\)
−0.344504 + 0.938785i \(0.611953\pi\)
\(810\) 8.29770 0.291551
\(811\) 9.55322 16.5467i 0.335459 0.581032i −0.648114 0.761543i \(-0.724442\pi\)
0.983573 + 0.180511i \(0.0577753\pi\)
\(812\) 36.7660 + 63.6805i 1.29023 + 2.23475i
\(813\) 3.65125 + 6.32416i 0.128055 + 0.221798i
\(814\) 27.8648 0.976662
\(815\) −0.529399 + 0.916946i −0.0185440 + 0.0321192i
\(816\) 25.3910 43.9785i 0.888863 1.53956i
\(817\) 3.85755 6.68148i 0.134959 0.233755i
\(818\) −8.85844 15.3433i −0.309728 0.536465i
\(819\) 3.12494 5.41255i 0.109194 0.189130i
\(820\) 0.165758 + 0.287101i 0.00578852 + 0.0100260i
\(821\) −39.4598 −1.37716 −0.688578 0.725162i \(-0.741765\pi\)
−0.688578 + 0.725162i \(0.741765\pi\)
\(822\) −31.0913 −1.08443
\(823\) −15.7940 27.3560i −0.550544 0.953570i −0.998235 0.0593819i \(-0.981087\pi\)
0.447691 0.894188i \(-0.352246\pi\)
\(824\) 65.9730 114.269i 2.29828 3.98073i
\(825\) −4.39370 7.61011i −0.152969 0.264950i
\(826\) −1.08296 + 1.87574i −0.0376810 + 0.0652653i
\(827\) 9.91492 17.1731i 0.344776 0.597169i −0.640537 0.767927i \(-0.721288\pi\)
0.985313 + 0.170758i \(0.0546217\pi\)
\(828\) 1.39223 2.41141i 0.0483833 0.0838024i
\(829\) −8.99987 −0.312578 −0.156289 0.987711i \(-0.549953\pi\)
−0.156289 + 0.987711i \(0.549953\pi\)
\(830\) 13.6534 + 23.6484i 0.473916 + 0.820847i
\(831\) 12.0081 + 20.7987i 0.416558 + 0.721499i
\(832\) 38.4977 66.6800i 1.33467 2.31171i
\(833\) −11.1007 −0.384617
\(834\) −2.58342 4.47461i −0.0894564 0.154943i
\(835\) 8.52740 0.295103
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −31.8452 −1.09942 −0.549709 0.835356i \(-0.685261\pi\)
−0.549709 + 0.835356i \(0.685261\pi\)
\(840\) 6.49163 + 11.2438i 0.223983 + 0.387949i
\(841\) 37.1110 1.27969
\(842\) −35.9349 + 62.2411i −1.23840 + 2.14497i
\(843\) 1.35294 + 2.34336i 0.0465976 + 0.0807095i
\(844\) −48.0025 83.1428i −1.65231 2.86189i
\(845\) 0.288241 0.00991579
\(846\) 8.91874 15.4477i 0.306633 0.531103i
\(847\) −7.95347 + 13.7758i −0.273284 + 0.473343i
\(848\) 18.1242 31.3920i 0.622386 1.07800i
\(849\) −10.8636 18.8163i −0.372837 0.645772i
\(850\) −17.2056 + 29.8009i −0.590146 + 1.02216i
\(851\) 2.08828 + 3.61701i 0.0715853 + 0.123989i
\(852\) −35.3671 −1.21166
\(853\) −49.0917 −1.68087 −0.840434 0.541914i \(-0.817700\pi\)
−0.840434 + 0.541914i \(0.817700\pi\)
\(854\) −11.8803 20.5773i −0.406536 0.704140i
\(855\) −0.770110 + 1.33387i −0.0263372 + 0.0456174i
\(856\) −53.8826 93.3274i −1.84167 3.18986i
\(857\) −9.62023 + 16.6627i −0.328621 + 0.569188i −0.982238 0.187637i \(-0.939917\pi\)
0.653618 + 0.756825i \(0.273251\pi\)
\(858\) 9.37095 16.2310i 0.319919 0.554116i
\(859\) 2.32107 4.02022i 0.0791940 0.137168i −0.823708 0.567014i \(-0.808099\pi\)
0.902902 + 0.429846i \(0.141432\pi\)
\(860\) 9.57319 0.326443
\(861\) 0.127501 + 0.220839i 0.00434523 + 0.00752616i
\(862\) 5.36418 + 9.29104i 0.182705 + 0.316454i
\(863\) −19.2652 + 33.3683i −0.655795 + 1.13587i 0.325899 + 0.945405i \(0.394333\pi\)
−0.981694 + 0.190466i \(0.939000\pi\)
\(864\) −98.5755 −3.35361
\(865\) 0.00364449 + 0.00631244i 0.000123916 + 0.000214629i
\(866\) 48.6287 1.65247
\(867\) 13.2931 0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 18.8853 0.640273
\(871\) 15.2304 + 26.3799i 0.516064 + 0.893849i
\(872\) −62.7800 −2.12600
\(873\) −0.630617 + 1.09226i −0.0213431 + 0.0369674i
\(874\) −1.86246 3.22587i −0.0629986 0.109117i
\(875\) −5.05859 8.76174i −0.171012 0.296201i
\(876\) 55.7866 1.88485
\(877\) 4.62917 8.01796i 0.156316 0.270747i −0.777221 0.629227i \(-0.783372\pi\)
0.933537 + 0.358480i \(0.116705\pi\)
\(878\) 30.8138 53.3711i 1.03992 1.80119i
\(879\) 19.0123 32.9303i 0.641269 1.11071i
\(880\) −5.26903 9.12623i −0.177619 0.307645i
\(881\) −8.93954 + 15.4837i −0.301181 + 0.521660i −0.976404 0.215953i \(-0.930714\pi\)
0.675223 + 0.737614i \(0.264047\pi\)
\(882\) 5.32857 + 9.22935i 0.179422 + 0.310768i
\(883\) 48.3156 1.62595 0.812975 0.582299i \(-0.197847\pi\)
0.812975 + 0.582299i \(0.197847\pi\)
\(884\) −53.1098 −1.78628
\(885\) 0.201272 + 0.348613i 0.00676568 + 0.0117185i
\(886\) −28.9075 + 50.0692i −0.971166 + 1.68211i
\(887\) −11.7561 20.3622i −0.394732 0.683695i 0.598335 0.801246i \(-0.295829\pi\)
−0.993067 + 0.117551i \(0.962496\pi\)
\(888\) 47.8558 82.8886i 1.60593 2.78156i
\(889\) 11.1465 19.3063i 0.373842 0.647514i
\(890\) 12.5337 21.7089i 0.420129 0.727686i
\(891\) −6.78050 −0.227155
\(892\) 24.6032 + 42.6139i 0.823775 + 1.42682i
\(893\) −8.63379 14.9542i −0.288919 0.500422i
\(894\) 17.1873 29.7693i 0.574830 0.995635i
\(895\) 6.07046 0.202913
\(896\) −18.6296 32.2673i −0.622370 1.07798i
\(897\) 2.80916 0.0937951
\(898\) 50.5739 1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −7.73243 −0.257605
\(902\) −0.187179 0.324203i −0.00623236 0.0107948i
\(903\) 7.36370 0.245049
\(904\) 72.5879 125.726i 2.41424 4.18158i
\(905\) −5.65893 9.80156i −0.188109 0.325815i
\(906\) −6.12449 10.6079i −0.203472 0.352425i
\(907\) −12.5821 −0.417783 −0.208892 0.977939i \(-0.566986\pi\)
−0.208892 + 0.977939i \(0.566986\pi\)
\(908\) −22.1507 + 38.3662i −0.735098 + 1.27323i
\(909\) 4.00317 6.93369i 0.132777 0.229976i
\(910\) 5.18718 8.98447i 0.171953 0.297832i
\(911\) −23.6422 40.9496i −0.783302 1.35672i −0.930008 0.367539i \(-0.880200\pi\)
0.146706 0.989180i \(-0.453133\pi\)
\(912\) −23.5976 + 40.8722i −0.781394 + 1.35341i
\(913\) −11.1569 19.3244i −0.369240 0.639543i
\(914\) 11.0458 0.365361
\(915\) −4.41599 −0.145988
\(916\) 59.8148 + 103.602i 1.97634 + 3.42312i
\(917\) −2.10488 + 3.64576i −0.0695092 + 0.120394i
\(918\) 21.0217 + 36.4106i 0.693818 + 1.20173i
\(919\) 11.5659 20.0328i 0.381525 0.660821i −0.609755 0.792590i \(-0.708732\pi\)
0.991280 + 0.131769i \(0.0420657\pi\)
\(920\) 1.42843 2.47411i 0.0470938 0.0815689i
\(921\) 6.35165 11.0014i 0.209294 0.362508i
\(922\) −61.5374 −2.02663
\(923\) 8.73381 + 15.1274i 0.287477 + 0.497925i
\(924\) −8.58224 14.8649i −0.282335 0.489019i
\(925\) −17.9291 + 31.0541i −0.589506 + 1.02105i
\(926\) −44.5677 −1.46459
\(927\) 7.46998 + 12.9384i 0.245346 + 0.424952i
\(928\) −141.690 −4.65120
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 85.1184 2.78815
\(933\) 14.6569 + 25.3864i 0.479844 + 0.831115i
\(934\) −102.619 −3.35781
\(935\) −1.12398 + 1.94679i −0.0367581 + 0.0636669i
\(936\) 15.7576 + 27.2930i 0.515055 + 0.892101i
\(937\) −9.86333 17.0838i −0.322221 0.558103i 0.658725 0.752384i \(-0.271096\pi\)
−0.980946 + 0.194281i \(0.937763\pi\)
\(938\) 38.5511 1.25874
\(939\) −0.320249 + 0.554688i −0.0104509 + 0.0181016i
\(940\) 10.7131 18.5557i 0.349423 0.605219i
\(941\) −4.41163 + 7.64117i −0.143815 + 0.249095i −0.928930 0.370255i \(-0.879270\pi\)
0.785115 + 0.619350i \(0.212604\pi\)
\(942\) 6.35043 + 10.9993i 0.206908 + 0.358375i
\(943\) 0.0280555 0.0485936i 0.000913614 0.00158243i
\(944\) −3.01924 5.22947i −0.0982678 0.170205i
\(945\) −5.94301 −0.193326
\(946\) −10.8103 −0.351473
\(947\) 7.78059 + 13.4764i 0.252835 + 0.437923i 0.964305 0.264793i \(-0.0853036\pi\)
−0.711470 + 0.702716i \(0.751970\pi\)
\(948\) 36.0417 62.4260i 1.17058 2.02750i
\(949\) −13.7764 23.8613i −0.447199 0.774572i
\(950\) 15.9903 27.6960i 0.518794 0.898577i
\(951\) −3.96007 + 6.85904i −0.128414 + 0.222420i
\(952\) −20.7728 + 35.9796i −0.673252 + 1.16611i
\(953\) −9.65172 −0.312650 −0.156325 0.987706i \(-0.549965\pi\)
−0.156325 + 0.987706i \(0.549965\pi\)
\(954\) 3.71172 + 6.42890i 0.120172 + 0.208143i
\(955\) −0.364458 0.631260i −0.0117936 0.0204271i
\(956\) 47.8473 82.8739i 1.54749 2.68033i
\(957\) −15.4322 −0.498853
\(958\) −45.3086 78.4768i −1.46386 2.53547i
\(959\) 14.0634 0.454131
\(960\) −18.1105 −0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 12.2020 0.393205
\(964\) −47.5816 82.4138i −1.53250 2.65437i
\(965\) 7.74263 0.249244
\(966\) 1.77763 3.07894i 0.0571942 0.0990633i
\(967\) 14.1988 + 24.5930i 0.456602 + 0.790858i 0.998779 0.0494066i \(-0.0157330\pi\)
−0.542177 + 0.840264i \(0.682400\pi\)
\(968\) −40.1057 69.4652i −1.28905 2.23269i
\(969\) 10.0676 0.323418
\(970\) −1.04678 + 1.81308i −0.0336101 + 0.0582144i
\(971\) 11.0635 19.1626i 0.355046 0.614957i −0.632080 0.774903i \(-0.717799\pi\)
0.987126 + 0.159946i \(0.0511319\pi\)
\(972\) 25.5960 44.3335i 0.820992 1.42200i
\(973\) 1.16855 + 2.02398i 0.0374619 + 0.0648859i
\(974\) 27.8117 48.1713i 0.891145 1.54351i
\(975\) 12.0591 + 20.8870i 0.386201 + 0.668920i
\(976\) 66.2434 2.12040
\(977\) −19.9123 −0.637051 −0.318525 0.947914i \(-0.603188\pi\)
−0.318525 + 0.947914i \(0.603188\pi\)
\(978\) −3.32212 5.75408i −0.106230 0.183995i
\(979\) −10.2419 + 17.7396i −0.327334 + 0.566959i
\(980\) 6.40063 + 11.0862i 0.204461 + 0.354136i
\(981\) 3.55423 6.15610i 0.113478 0.196549i
\(982\) −33.2675 + 57.6209i −1.06161 + 1.83876i
\(983\) −12.4652 + 21.5903i −0.397578 + 0.688625i −0.993427 0.114472i \(-0.963482\pi\)
0.595849 + 0.803097i \(0.296816\pi\)
\(984\) −1.28586 −0.0409918
\(985\) −0.903023 1.56408i −0.0287727 0.0498358i
\(986\) 30.2160 + 52.3356i 0.962273 + 1.66671i
\(987\) 8.24054 14.2730i 0.262299 0.454316i
\(988\) 49.3586 1.57031
\(989\) −0.810159 1.40324i −0.0257616 0.0446203i
\(990\) 2.15814 0.0685901
\(991\) 42.0512 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 22.1069 0.701189
\(995\) −4.01048 6.94636i −0.127141 0.220214i
\(996\) −124.001 −3.92912
\(997\) −7.23233 + 12.5268i −0.229050 + 0.396727i −0.957527 0.288344i \(-0.906895\pi\)
0.728477 + 0.685071i \(0.240229\pi\)
\(998\) 33.0353 + 57.2189i 1.04572 + 1.81123i
\(999\) 21.9057 + 37.9418i 0.693066 + 1.20042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.521.1 16
31.2 even 5 961.2.g.j.844.1 16
31.3 odd 30 961.2.d.o.628.1 16
31.4 even 5 961.2.g.n.338.2 16
31.5 even 3 inner 961.2.c.i.439.1 16
31.6 odd 6 961.2.a.i.1.1 8
31.7 even 15 961.2.d.q.388.4 16
31.8 even 5 961.2.g.m.732.2 16
31.9 even 15 961.2.g.n.816.2 16
31.10 even 15 961.2.g.l.547.1 16
31.11 odd 30 961.2.g.s.235.2 16
31.12 odd 30 961.2.d.o.531.1 16
31.13 odd 30 961.2.g.k.846.1 16
31.14 even 15 961.2.d.q.374.4 16
31.15 odd 10 31.2.g.a.14.1 16
31.16 even 5 961.2.g.l.448.1 16
31.17 odd 30 961.2.d.p.374.4 16
31.18 even 15 961.2.g.j.846.1 16
31.19 even 15 961.2.d.n.531.1 16
31.20 even 15 961.2.g.m.235.2 16
31.21 odd 30 31.2.g.a.20.1 yes 16
31.22 odd 30 961.2.g.t.816.2 16
31.23 odd 10 961.2.g.s.732.2 16
31.24 odd 30 961.2.d.p.388.4 16
31.25 even 3 961.2.a.j.1.1 8
31.26 odd 6 961.2.c.j.439.1 16
31.27 odd 10 961.2.g.t.338.2 16
31.28 even 15 961.2.d.n.628.1 16
31.29 odd 10 961.2.g.k.844.1 16
31.30 odd 2 961.2.c.j.521.1 16
93.56 odd 6 8649.2.a.be.1.8 8
93.68 even 6 8649.2.a.bf.1.8 8
93.77 even 10 279.2.y.c.262.2 16
93.83 even 30 279.2.y.c.82.2 16
124.15 even 10 496.2.bg.c.417.1 16
124.83 even 30 496.2.bg.c.113.1 16
155.52 even 60 775.2.ck.a.299.4 32
155.77 even 20 775.2.ck.a.324.1 32
155.83 even 60 775.2.ck.a.299.1 32
155.108 even 20 775.2.ck.a.324.4 32
155.114 odd 30 775.2.bl.a.51.2 16
155.139 odd 10 775.2.bl.a.76.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.15 odd 10
31.2.g.a.20.1 yes 16 31.21 odd 30
279.2.y.c.82.2 16 93.83 even 30
279.2.y.c.262.2 16 93.77 even 10
496.2.bg.c.113.1 16 124.83 even 30
496.2.bg.c.417.1 16 124.15 even 10
775.2.bl.a.51.2 16 155.114 odd 30
775.2.bl.a.76.2 16 155.139 odd 10
775.2.ck.a.299.1 32 155.83 even 60
775.2.ck.a.299.4 32 155.52 even 60
775.2.ck.a.324.1 32 155.77 even 20
775.2.ck.a.324.4 32 155.108 even 20
961.2.a.i.1.1 8 31.6 odd 6
961.2.a.j.1.1 8 31.25 even 3
961.2.c.i.439.1 16 31.5 even 3 inner
961.2.c.i.521.1 16 1.1 even 1 trivial
961.2.c.j.439.1 16 31.26 odd 6
961.2.c.j.521.1 16 31.30 odd 2
961.2.d.n.531.1 16 31.19 even 15
961.2.d.n.628.1 16 31.28 even 15
961.2.d.o.531.1 16 31.12 odd 30
961.2.d.o.628.1 16 31.3 odd 30
961.2.d.p.374.4 16 31.17 odd 30
961.2.d.p.388.4 16 31.24 odd 30
961.2.d.q.374.4 16 31.14 even 15
961.2.d.q.388.4 16 31.7 even 15
961.2.g.j.844.1 16 31.2 even 5
961.2.g.j.846.1 16 31.18 even 15
961.2.g.k.844.1 16 31.29 odd 10
961.2.g.k.846.1 16 31.13 odd 30
961.2.g.l.448.1 16 31.16 even 5
961.2.g.l.547.1 16 31.10 even 15
961.2.g.m.235.2 16 31.20 even 15
961.2.g.m.732.2 16 31.8 even 5
961.2.g.n.338.2 16 31.4 even 5
961.2.g.n.816.2 16 31.9 even 15
961.2.g.s.235.2 16 31.11 odd 30
961.2.g.s.732.2 16 31.23 odd 10
961.2.g.t.338.2 16 31.27 odd 10
961.2.g.t.816.2 16 31.22 odd 30
8649.2.a.be.1.8 8 93.56 odd 6
8649.2.a.bf.1.8 8 93.68 even 6