Properties

Label 961.2.d.o.628.1
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,9,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.1
Root \(-1.14660i\) of defining polynomial
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.o.531.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831304 + 2.55849i) q^{2} +(0.438546 + 1.34971i) q^{3} +(-4.23677 - 3.07819i) q^{4} +0.608384 q^{5} -3.81777 q^{6} +(1.39707 + 1.01503i) q^{7} +(7.04481 - 5.11835i) q^{8} +(0.797669 - 0.579540i) q^{9} +(-0.505752 + 1.55654i) q^{10} +(1.08197 + 0.786100i) q^{11} +(2.29664 - 7.06832i) q^{12} +(1.13430 + 3.49101i) q^{13} +(-3.75835 + 2.73060i) q^{14} +(0.266804 + 0.821139i) q^{15} +(4.00227 + 12.3177i) q^{16} +(2.23517 - 1.62394i) q^{17} +(0.819643 + 2.52260i) q^{18} +(-0.793456 + 2.44201i) q^{19} +(-2.57758 - 1.87272i) q^{20} +(-0.757316 + 2.33078i) q^{21} +(-2.91068 + 2.11473i) q^{22} +(0.436271 - 0.316969i) q^{23} +(9.99774 + 7.26378i) q^{24} -4.62987 q^{25} -9.87466 q^{26} +(4.57641 + 3.32495i) q^{27} +(-2.79461 - 8.60093i) q^{28} +(-2.51258 + 7.73291i) q^{29} -2.32267 q^{30} -17.4262 q^{32} +(-0.586508 + 1.80509i) q^{33} +(2.29674 + 7.06865i) q^{34} +(0.849957 + 0.617530i) q^{35} -5.16348 q^{36} +7.74498 q^{37} +(-5.58825 - 4.06010i) q^{38} +(-4.21439 + 3.06194i) q^{39} +(4.28595 - 3.11392i) q^{40} +(-0.0321538 + 0.0989592i) q^{41} +(-5.33371 - 3.87517i) q^{42} +(-0.928504 + 2.85764i) q^{43} +(-2.16431 - 6.66105i) q^{44} +(0.485289 - 0.352583i) q^{45} +(0.448289 + 1.37969i) q^{46} +(-2.07813 - 6.39584i) q^{47} +(-14.8701 + 10.8038i) q^{48} +(-1.24160 - 3.82124i) q^{49} +(3.84883 - 11.8455i) q^{50} +(3.17207 + 2.30464i) q^{51} +(5.94025 - 18.2822i) q^{52} +(-2.26423 + 1.64506i) q^{53} +(-12.3112 + 8.94464i) q^{54} +(0.658255 + 0.478250i) q^{55} +15.0374 q^{56} -3.64396 q^{57} +(-17.6959 - 12.8568i) q^{58} +(0.144074 + 0.443414i) q^{59} +(1.39724 - 4.30025i) q^{60} -5.11468 q^{61} +1.70266 q^{63} +(6.48190 - 19.9492i) q^{64} +(0.690088 + 2.12387i) q^{65} +(-4.13073 - 3.00115i) q^{66} +8.29847 q^{67} -14.4687 q^{68} +(0.619140 + 0.449832i) q^{69} +(-2.28652 + 1.66125i) q^{70} +(-3.84988 + 2.79710i) q^{71} +(2.65313 - 8.16550i) q^{72} +(-6.07264 - 4.41203i) q^{73} +(-6.43843 + 19.8154i) q^{74} +(-2.03041 - 6.24896i) q^{75} +(10.8787 - 7.90381i) q^{76} +(0.713679 + 2.19648i) q^{77} +(-4.33049 - 13.3279i) q^{78} +(7.84662 - 5.70090i) q^{79} +(2.43492 + 7.49391i) q^{80} +(-1.56670 + 4.82180i) q^{81} +(-0.226457 - 0.164530i) q^{82} +(-5.15582 + 15.8680i) q^{83} +(10.3832 - 7.54381i) q^{84} +(1.35984 - 0.987981i) q^{85} +(-6.53938 - 4.75114i) q^{86} -11.5390 q^{87} +11.6458 q^{88} +(12.3911 + 9.00268i) q^{89} +(0.498657 + 1.53471i) q^{90} +(-1.95880 + 6.02855i) q^{91} -2.82407 q^{92} +18.0912 q^{94} +(-0.482726 + 1.48568i) q^{95} +(-7.64218 - 23.5202i) q^{96} +(1.03488 + 0.751881i) q^{97} +10.8087 q^{98} +1.31863 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 9 q^{3} - 14 q^{4} + 6 q^{5} - 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} + 14 q^{11} + 5 q^{12} - q^{13} + 27 q^{14} + 14 q^{15} - 2 q^{16} - 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831304 + 2.55849i −0.587821 + 1.80913i −0.000184800 1.00000i \(0.500059\pi\)
−0.587636 + 0.809126i \(0.699941\pi\)
\(3\) 0.438546 + 1.34971i 0.253195 + 0.779253i 0.994180 + 0.107732i \(0.0343587\pi\)
−0.740985 + 0.671521i \(0.765641\pi\)
\(4\) −4.23677 3.07819i −2.11839 1.53910i
\(5\) 0.608384 0.272077 0.136039 0.990704i \(-0.456563\pi\)
0.136039 + 0.990704i \(0.456563\pi\)
\(6\) −3.81777 −1.55860
\(7\) 1.39707 + 1.01503i 0.528045 + 0.383647i 0.819626 0.572899i \(-0.194181\pi\)
−0.291581 + 0.956546i \(0.594181\pi\)
\(8\) 7.04481 5.11835i 2.49072 1.80961i
\(9\) 0.797669 0.579540i 0.265890 0.193180i
\(10\) −0.505752 + 1.55654i −0.159933 + 0.492222i
\(11\) 1.08197 + 0.786100i 0.326227 + 0.237018i 0.738828 0.673894i \(-0.235380\pi\)
−0.412601 + 0.910912i \(0.635380\pi\)
\(12\) 2.29664 7.06832i 0.662982 2.04045i
\(13\) 1.13430 + 3.49101i 0.314598 + 0.968232i 0.975920 + 0.218130i \(0.0699956\pi\)
−0.661322 + 0.750102i \(0.730004\pi\)
\(14\) −3.75835 + 2.73060i −1.00446 + 0.729783i
\(15\) 0.266804 + 0.821139i 0.0688885 + 0.212017i
\(16\) 4.00227 + 12.3177i 1.00057 + 3.07943i
\(17\) 2.23517 1.62394i 0.542108 0.393864i −0.282759 0.959191i \(-0.591250\pi\)
0.824867 + 0.565326i \(0.191250\pi\)
\(18\) 0.819643 + 2.52260i 0.193192 + 0.594583i
\(19\) −0.793456 + 2.44201i −0.182031 + 0.560235i −0.999885 0.0151921i \(-0.995164\pi\)
0.817853 + 0.575427i \(0.195164\pi\)
\(20\) −2.57758 1.87272i −0.576365 0.418754i
\(21\) −0.757316 + 2.33078i −0.165260 + 0.508617i
\(22\) −2.91068 + 2.11473i −0.620558 + 0.450862i
\(23\) 0.436271 0.316969i 0.0909688 0.0660927i −0.541371 0.840784i \(-0.682095\pi\)
0.632340 + 0.774691i \(0.282095\pi\)
\(24\) 9.99774 + 7.26378i 2.04078 + 1.48271i
\(25\) −4.62987 −0.925974
\(26\) −9.87466 −1.93658
\(27\) 4.57641 + 3.32495i 0.880730 + 0.639888i
\(28\) −2.79461 8.60093i −0.528132 1.62542i
\(29\) −2.51258 + 7.73291i −0.466574 + 1.43597i 0.390419 + 0.920637i \(0.372330\pi\)
−0.856993 + 0.515329i \(0.827670\pi\)
\(30\) −2.32267 −0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −0.586508 + 1.80509i −0.102098 + 0.314225i
\(34\) 2.29674 + 7.06865i 0.393888 + 1.21226i
\(35\) 0.849957 + 0.617530i 0.143669 + 0.104382i
\(36\) −5.16348 −0.860580
\(37\) 7.74498 1.27327 0.636633 0.771167i \(-0.280327\pi\)
0.636633 + 0.771167i \(0.280327\pi\)
\(38\) −5.58825 4.06010i −0.906533 0.658635i
\(39\) −4.21439 + 3.06194i −0.674843 + 0.490302i
\(40\) 4.28595 3.11392i 0.677668 0.492354i
\(41\) −0.0321538 + 0.0989592i −0.00502158 + 0.0154548i −0.953536 0.301279i \(-0.902586\pi\)
0.948514 + 0.316734i \(0.102586\pi\)
\(42\) −5.33371 3.87517i −0.823010 0.597952i
\(43\) −0.928504 + 2.85764i −0.141596 + 0.435786i −0.996558 0.0829044i \(-0.973580\pi\)
0.854962 + 0.518691i \(0.173580\pi\)
\(44\) −2.16431 6.66105i −0.326281 1.00419i
\(45\) 0.485289 0.352583i 0.0723426 0.0525600i
\(46\) 0.448289 + 1.37969i 0.0660967 + 0.203425i
\(47\) −2.07813 6.39584i −0.303127 0.932929i −0.980370 0.197169i \(-0.936825\pi\)
0.677243 0.735760i \(-0.263175\pi\)
\(48\) −14.8701 + 10.8038i −2.14632 + 1.55939i
\(49\) −1.24160 3.82124i −0.177371 0.545891i
\(50\) 3.84883 11.8455i 0.544306 1.67520i
\(51\) 3.17207 + 2.30464i 0.444179 + 0.322715i
\(52\) 5.94025 18.2822i 0.823764 2.53528i
\(53\) −2.26423 + 1.64506i −0.311016 + 0.225967i −0.732332 0.680947i \(-0.761568\pi\)
0.421316 + 0.906914i \(0.361568\pi\)
\(54\) −12.3112 + 8.94464i −1.67535 + 1.21721i
\(55\) 0.658255 + 0.478250i 0.0887591 + 0.0644872i
\(56\) 15.0374 2.00946
\(57\) −3.64396 −0.482654
\(58\) −17.6959 12.8568i −2.32358 1.68818i
\(59\) 0.144074 + 0.443414i 0.0187568 + 0.0577275i 0.959997 0.280011i \(-0.0903381\pi\)
−0.941240 + 0.337738i \(0.890338\pi\)
\(60\) 1.39724 4.30025i 0.180382 0.555160i
\(61\) −5.11468 −0.654867 −0.327434 0.944874i \(-0.606184\pi\)
−0.327434 + 0.944874i \(0.606184\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 6.48190 19.9492i 0.810238 2.49365i
\(65\) 0.690088 + 2.12387i 0.0855949 + 0.263434i
\(66\) −4.13073 3.00115i −0.508457 0.369416i
\(67\) 8.29847 1.01382 0.506910 0.861999i \(-0.330788\pi\)
0.506910 + 0.861999i \(0.330788\pi\)
\(68\) −14.4687 −1.75459
\(69\) 0.619140 + 0.449832i 0.0745357 + 0.0541534i
\(70\) −2.28652 + 1.66125i −0.273291 + 0.198558i
\(71\) −3.84988 + 2.79710i −0.456896 + 0.331955i −0.792312 0.610115i \(-0.791123\pi\)
0.335416 + 0.942070i \(0.391123\pi\)
\(72\) 2.65313 8.16550i 0.312675 0.962314i
\(73\) −6.07264 4.41203i −0.710748 0.516389i 0.172667 0.984980i \(-0.444762\pi\)
−0.883415 + 0.468591i \(0.844762\pi\)
\(74\) −6.43843 + 19.8154i −0.748452 + 2.30350i
\(75\) −2.03041 6.24896i −0.234452 0.721568i
\(76\) 10.8787 7.90381i 1.24787 0.906629i
\(77\) 0.713679 + 2.19648i 0.0813313 + 0.250312i
\(78\) −4.33049 13.3279i −0.490332 1.50909i
\(79\) 7.84662 5.70090i 0.882814 0.641402i −0.0511806 0.998689i \(-0.516298\pi\)
0.933994 + 0.357288i \(0.116298\pi\)
\(80\) 2.43492 + 7.49391i 0.272232 + 0.837845i
\(81\) −1.56670 + 4.82180i −0.174077 + 0.535755i
\(82\) −0.226457 0.164530i −0.0250079 0.0181693i
\(83\) −5.15582 + 15.8680i −0.565925 + 1.74174i 0.0992626 + 0.995061i \(0.468352\pi\)
−0.665187 + 0.746676i \(0.731648\pi\)
\(84\) 10.3832 7.54381i 1.13290 0.823097i
\(85\) 1.35984 0.987981i 0.147495 0.107162i
\(86\) −6.53938 4.75114i −0.705160 0.512328i
\(87\) −11.5390 −1.23711
\(88\) 11.6458 1.24145
\(89\) 12.3911 + 9.00268i 1.31346 + 0.954282i 0.999989 + 0.00468333i \(0.00149075\pi\)
0.313468 + 0.949599i \(0.398509\pi\)
\(90\) 0.498657 + 1.53471i 0.0525631 + 0.161773i
\(91\) −1.95880 + 6.02855i −0.205338 + 0.631964i
\(92\) −2.82407 −0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −0.482726 + 1.48568i −0.0495266 + 0.152427i
\(96\) −7.64218 23.5202i −0.779977 2.40052i
\(97\) 1.03488 + 0.751881i 0.105076 + 0.0763420i 0.639082 0.769138i \(-0.279314\pi\)
−0.534007 + 0.845480i \(0.679314\pi\)
\(98\) 10.8087 1.09185
\(99\) 1.31863 0.132528
\(100\) 19.6157 + 14.2516i 1.96157 + 1.42516i
\(101\) −6.56941 + 4.77296i −0.653681 + 0.474927i −0.864523 0.502593i \(-0.832379\pi\)
0.210842 + 0.977520i \(0.432379\pi\)
\(102\) −8.53336 + 6.19985i −0.844929 + 0.613877i
\(103\) 4.68238 14.4109i 0.461369 1.41995i −0.402123 0.915585i \(-0.631728\pi\)
0.863492 0.504362i \(-0.168272\pi\)
\(104\) 25.8591 + 18.7878i 2.53570 + 1.84229i
\(105\) −0.460739 + 1.41801i −0.0449635 + 0.138383i
\(106\) −2.32661 7.16056i −0.225980 0.695495i
\(107\) 10.0121 7.27420i 0.967904 0.703224i 0.0129314 0.999916i \(-0.495884\pi\)
0.954973 + 0.296693i \(0.0958837\pi\)
\(108\) −9.15433 28.1741i −0.880876 2.71106i
\(109\) 2.22788 + 6.85672i 0.213392 + 0.656755i 0.999264 + 0.0383645i \(0.0122148\pi\)
−0.785871 + 0.618390i \(0.787785\pi\)
\(110\) −1.77081 + 1.28657i −0.168840 + 0.122669i
\(111\) 3.39653 + 10.4534i 0.322384 + 0.992196i
\(112\) −6.91144 + 21.2712i −0.653070 + 2.00994i
\(113\) −13.4878 9.79944i −1.26882 0.921854i −0.269668 0.962953i \(-0.586914\pi\)
−0.999155 + 0.0410999i \(0.986914\pi\)
\(114\) 3.02923 9.32302i 0.283714 0.873181i
\(115\) 0.265420 0.192839i 0.0247506 0.0179823i
\(116\) 34.4486 25.0284i 3.19847 2.32383i
\(117\) 2.92798 + 2.12730i 0.270691 + 0.196669i
\(118\) −1.25424 −0.115462
\(119\) 4.77105 0.437362
\(120\) 6.08246 + 4.41917i 0.555250 + 0.403413i
\(121\) −2.84647 8.76054i −0.258770 0.796413i
\(122\) 4.25185 13.0859i 0.384944 1.18474i
\(123\) −0.147667 −0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −1.41542 + 4.35623i −0.126096 + 0.388084i
\(127\) −3.98923 12.2776i −0.353987 1.08946i −0.956594 0.291423i \(-0.905871\pi\)
0.602607 0.798038i \(-0.294129\pi\)
\(128\) 17.4553 + 12.6820i 1.54285 + 1.12095i
\(129\) −4.26417 −0.375439
\(130\) −6.00758 −0.526900
\(131\) 1.97221 + 1.43289i 0.172313 + 0.125192i 0.670599 0.741820i \(-0.266037\pi\)
−0.498286 + 0.867013i \(0.666037\pi\)
\(132\) 8.04130 5.84235i 0.699906 0.508511i
\(133\) −3.58724 + 2.60628i −0.311053 + 0.225993i
\(134\) −6.89855 + 21.2315i −0.595944 + 1.83413i
\(135\) 2.78421 + 2.02285i 0.239627 + 0.174099i
\(136\) 7.43441 22.8808i 0.637495 1.96201i
\(137\) 2.51658 + 7.74524i 0.215006 + 0.661720i 0.999153 + 0.0411454i \(0.0131007\pi\)
−0.784147 + 0.620575i \(0.786899\pi\)
\(138\) −1.66558 + 1.21012i −0.141784 + 0.103012i
\(139\) −0.418212 1.28712i −0.0354723 0.109172i 0.931753 0.363094i \(-0.118280\pi\)
−0.967225 + 0.253921i \(0.918280\pi\)
\(140\) −1.70020 5.23267i −0.143693 0.442241i
\(141\) 7.72114 5.60974i 0.650237 0.472425i
\(142\) −3.95593 12.1751i −0.331974 1.02171i
\(143\) −1.51700 + 4.66885i −0.126858 + 0.390429i
\(144\) 10.3311 + 7.50599i 0.860926 + 0.625499i
\(145\) −1.52861 + 4.70458i −0.126944 + 0.390694i
\(146\) 16.3363 11.8690i 1.35200 0.982289i
\(147\) 4.61305 3.35158i 0.380478 0.276433i
\(148\) −32.8137 23.8405i −2.69727 1.95968i
\(149\) −9.00385 −0.737624 −0.368812 0.929504i \(-0.620235\pi\)
−0.368812 + 0.929504i \(0.620235\pi\)
\(150\) 17.6758 1.44322
\(151\) 2.59566 + 1.88585i 0.211232 + 0.153469i 0.688371 0.725359i \(-0.258326\pi\)
−0.477139 + 0.878828i \(0.658326\pi\)
\(152\) 6.90931 + 21.2647i 0.560419 + 1.72479i
\(153\) 0.841782 2.59074i 0.0680541 0.209449i
\(154\) −6.21295 −0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −1.02803 + 3.16395i −0.0820456 + 0.252510i −0.983662 0.180027i \(-0.942382\pi\)
0.901616 + 0.432537i \(0.142382\pi\)
\(158\) 8.06278 + 24.8147i 0.641440 + 1.97415i
\(159\) −3.21332 2.33461i −0.254833 0.185147i
\(160\) −10.6018 −0.838146
\(161\) 0.931238 0.0733918
\(162\) −11.0341 8.01676i −0.866922 0.629856i
\(163\) −1.40797 + 1.02295i −0.110281 + 0.0801236i −0.641559 0.767074i \(-0.721712\pi\)
0.531278 + 0.847198i \(0.321712\pi\)
\(164\) 0.440844 0.320292i 0.0344241 0.0250106i
\(165\) −0.356822 + 1.09818i −0.0277785 + 0.0854936i
\(166\) −36.3120 26.3822i −2.81836 2.04766i
\(167\) −4.33133 + 13.3305i −0.335168 + 1.03154i 0.631471 + 0.775400i \(0.282452\pi\)
−0.966639 + 0.256142i \(0.917548\pi\)
\(168\) 6.59460 + 20.2961i 0.508785 + 1.56588i
\(169\) −0.383297 + 0.278482i −0.0294844 + 0.0214217i
\(170\) 1.39730 + 4.30045i 0.107168 + 0.329829i
\(171\) 0.782326 + 2.40775i 0.0598260 + 0.184125i
\(172\) 12.7302 9.24906i 0.970672 0.705234i
\(173\) −0.00370230 0.0113945i −0.000281480 0.000866308i 0.950916 0.309450i \(-0.100145\pi\)
−0.951197 + 0.308584i \(0.900145\pi\)
\(174\) 9.59244 29.5225i 0.727201 2.23810i
\(175\) −6.46827 4.69947i −0.488955 0.355247i
\(176\) −5.35261 + 16.4736i −0.403468 + 1.24175i
\(177\) −0.535295 + 0.388914i −0.0402352 + 0.0292326i
\(178\) −33.3341 + 24.2186i −2.49849 + 1.81526i
\(179\) 8.07238 + 5.86492i 0.603358 + 0.438365i 0.847069 0.531483i \(-0.178365\pi\)
−0.243711 + 0.969848i \(0.578365\pi\)
\(180\) −3.14138 −0.234144
\(181\) −18.6032 −1.38276 −0.691381 0.722490i \(-0.742997\pi\)
−0.691381 + 0.722490i \(0.742997\pi\)
\(182\) −13.7956 10.0231i −1.02260 0.742963i
\(183\) −2.24302 6.90331i −0.165809 0.510307i
\(184\) 1.45108 4.46598i 0.106975 0.329236i
\(185\) 4.71192 0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −10.8831 + 33.4946i −0.793728 + 2.44284i
\(189\) 3.01864 + 9.29042i 0.219574 + 0.675778i
\(190\) −3.39980 2.47010i −0.246647 0.179200i
\(191\) 1.19812 0.0866928 0.0433464 0.999060i \(-0.486198\pi\)
0.0433464 + 0.999060i \(0.486198\pi\)
\(192\) 29.7682 2.14834
\(193\) −10.2960 7.48048i −0.741122 0.538457i 0.151940 0.988390i \(-0.451448\pi\)
−0.893062 + 0.449933i \(0.851448\pi\)
\(194\) −2.78398 + 2.02268i −0.199878 + 0.145220i
\(195\) −2.56397 + 1.86283i −0.183610 + 0.133400i
\(196\) −6.50216 + 20.0116i −0.464440 + 1.42940i
\(197\) 2.40164 + 1.74490i 0.171110 + 0.124319i 0.670044 0.742321i \(-0.266275\pi\)
−0.498934 + 0.866640i \(0.666275\pi\)
\(198\) −1.09618 + 3.37371i −0.0779024 + 0.239759i
\(199\) −4.07410 12.5388i −0.288805 0.888851i −0.985232 0.171223i \(-0.945228\pi\)
0.696427 0.717627i \(-0.254772\pi\)
\(200\) −32.6165 + 23.6973i −2.30634 + 1.67565i
\(201\) 3.63926 + 11.2005i 0.256694 + 0.790021i
\(202\) −6.75039 20.7755i −0.474955 1.46176i
\(203\) −11.3594 + 8.25311i −0.797275 + 0.579255i
\(204\) −6.34519 19.5285i −0.444252 1.36727i
\(205\) −0.0195618 + 0.0602052i −0.00136626 + 0.00420491i
\(206\) 32.9776 + 23.9597i 2.29766 + 1.66935i
\(207\) 0.164303 0.505673i 0.0114199 0.0351467i
\(208\) −38.4616 + 27.9440i −2.66683 + 1.93757i
\(209\) −2.77816 + 2.01845i −0.192169 + 0.139619i
\(210\) −3.24494 2.35759i −0.223922 0.162689i
\(211\) 18.3323 1.26205 0.631023 0.775764i \(-0.282635\pi\)
0.631023 + 0.775764i \(0.282635\pi\)
\(212\) 14.6569 1.00664
\(213\) −5.46361 3.96954i −0.374360 0.271989i
\(214\) 10.2879 + 31.6629i 0.703266 + 2.16443i
\(215\) −0.564887 + 1.73854i −0.0385250 + 0.118568i
\(216\) 49.2582 3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 3.29181 10.1311i 0.222440 0.684599i
\(220\) −1.31673 4.05247i −0.0887738 0.273218i
\(221\) 8.20455 + 5.96096i 0.551898 + 0.400977i
\(222\) −29.5686 −1.98451
\(223\) 9.39601 0.629203 0.314602 0.949224i \(-0.398129\pi\)
0.314602 + 0.949224i \(0.398129\pi\)
\(224\) −24.3457 17.6882i −1.62666 1.18184i
\(225\) −3.69310 + 2.68320i −0.246207 + 0.178880i
\(226\) 36.2842 26.3620i 2.41359 1.75358i
\(227\) 2.61411 8.04539i 0.173504 0.533991i −0.826058 0.563585i \(-0.809422\pi\)
0.999562 + 0.0295943i \(0.00942154\pi\)
\(228\) 15.4386 + 11.2168i 1.02245 + 0.742851i
\(229\) 7.05901 21.7254i 0.466473 1.43565i −0.390649 0.920540i \(-0.627749\pi\)
0.857121 0.515115i \(-0.172251\pi\)
\(230\) 0.272732 + 0.839383i 0.0179834 + 0.0553473i
\(231\) −2.65162 + 1.92651i −0.174464 + 0.126755i
\(232\) 21.8792 + 67.3372i 1.43644 + 4.42090i
\(233\) 5.02260 + 15.4580i 0.329042 + 1.01269i 0.969583 + 0.244762i \(0.0787099\pi\)
−0.640542 + 0.767923i \(0.721290\pi\)
\(234\) −7.87671 + 5.72276i −0.514917 + 0.374109i
\(235\) −1.26430 3.89112i −0.0824740 0.253829i
\(236\) 0.754505 2.32213i 0.0491141 0.151158i
\(237\) 11.1356 + 8.09052i 0.723338 + 0.525536i
\(238\) −3.96620 + 12.2067i −0.257090 + 0.791243i
\(239\) −14.7832 + 10.7406i −0.956243 + 0.694751i −0.952275 0.305241i \(-0.901263\pi\)
−0.00396806 + 0.999992i \(0.501263\pi\)
\(240\) −9.04675 + 6.57285i −0.583965 + 0.424275i
\(241\) 14.7011 + 10.6810i 0.946981 + 0.688022i 0.950091 0.311974i \(-0.100990\pi\)
−0.00311025 + 0.999995i \(0.500990\pi\)
\(242\) 24.7800 1.59292
\(243\) 9.77517 0.627078
\(244\) 21.6697 + 15.7440i 1.38726 + 1.00790i
\(245\) −0.755367 2.32478i −0.0482586 0.148525i
\(246\) 0.122756 0.377804i 0.00782663 0.0240879i
\(247\) −9.42508 −0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 4.87032 14.9893i 0.308026 0.948007i
\(251\) −7.08583 21.8079i −0.447253 1.37650i −0.879994 0.474986i \(-0.842453\pi\)
0.432740 0.901519i \(-0.357547\pi\)
\(252\) −7.21376 5.24111i −0.454424 0.330159i
\(253\) 0.721203 0.0453417
\(254\) 34.7284 2.17905
\(255\) 1.92984 + 1.40211i 0.120851 + 0.0878034i
\(256\) −13.0179 + 9.45807i −0.813620 + 0.591129i
\(257\) −0.0859120 + 0.0624187i −0.00535904 + 0.00389357i −0.590462 0.807066i \(-0.701054\pi\)
0.585103 + 0.810959i \(0.301054\pi\)
\(258\) 3.54482 10.9098i 0.220691 0.679216i
\(259\) 10.8203 + 7.86142i 0.672341 + 0.488485i
\(260\) 3.61395 11.1226i 0.224128 0.689794i
\(261\) 2.47733 + 7.62444i 0.153343 + 0.471941i
\(262\) −5.30555 + 3.85471i −0.327778 + 0.238145i
\(263\) −2.25499 6.94015i −0.139049 0.427948i 0.857149 0.515068i \(-0.172234\pi\)
−0.996198 + 0.0871204i \(0.972234\pi\)
\(264\) 5.10723 + 15.7184i 0.314328 + 0.967403i
\(265\) −1.37752 + 1.00083i −0.0846205 + 0.0614804i
\(266\) −3.68606 11.3445i −0.226007 0.695577i
\(267\) −6.71689 + 20.6725i −0.411067 + 1.26513i
\(268\) −35.1587 25.5443i −2.14766 1.56037i
\(269\) 5.01206 15.4255i 0.305591 0.940511i −0.673866 0.738854i \(-0.735367\pi\)
0.979456 0.201657i \(-0.0646327\pi\)
\(270\) −7.48996 + 5.44178i −0.455825 + 0.331176i
\(271\) 4.16291 3.02453i 0.252879 0.183727i −0.454123 0.890939i \(-0.650047\pi\)
0.707002 + 0.707212i \(0.250047\pi\)
\(272\) 28.9491 + 21.0327i 1.75530 + 1.27530i
\(273\) −8.99579 −0.544450
\(274\) −21.9082 −1.32352
\(275\) −5.00939 3.63954i −0.302078 0.219472i
\(276\) −1.23849 3.81167i −0.0745481 0.229435i
\(277\) −5.22944 + 16.0946i −0.314207 + 0.967029i 0.661873 + 0.749616i \(0.269762\pi\)
−0.976080 + 0.217413i \(0.930238\pi\)
\(278\) 3.64076 0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 0.589193 1.81335i 0.0351483 0.108175i −0.931943 0.362605i \(-0.881888\pi\)
0.967091 + 0.254429i \(0.0818876\pi\)
\(282\) 7.93384 + 24.4178i 0.472453 + 1.45406i
\(283\) 12.3859 + 8.99888i 0.736265 + 0.534928i 0.891539 0.452944i \(-0.149626\pi\)
−0.155274 + 0.987871i \(0.549626\pi\)
\(284\) 24.9211 1.47879
\(285\) −2.21692 −0.131319
\(286\) −10.6841 7.76247i −0.631765 0.459004i
\(287\) −0.145368 + 0.105616i −0.00858081 + 0.00623433i
\(288\) −13.9003 + 10.0992i −0.819084 + 0.595100i
\(289\) −2.89451 + 8.90838i −0.170265 + 0.524023i
\(290\) −10.7659 7.82187i −0.632194 0.459316i
\(291\) −0.560978 + 1.72651i −0.0328851 + 0.101210i
\(292\) 12.1473 + 37.3855i 0.710866 + 2.18782i
\(293\) −21.6765 + 15.7489i −1.26636 + 0.920062i −0.999051 0.0435500i \(-0.986133\pi\)
−0.267305 + 0.963612i \(0.586133\pi\)
\(294\) 4.74013 + 14.5886i 0.276450 + 0.850826i
\(295\) 0.0876522 + 0.269766i 0.00510331 + 0.0157064i
\(296\) 54.5619 39.6415i 3.17135 2.30412i
\(297\) 2.33780 + 7.19502i 0.135653 + 0.417498i
\(298\) 7.48493 23.0363i 0.433591 1.33445i
\(299\) 1.60140 + 1.16349i 0.0926116 + 0.0672863i
\(300\) −10.6331 + 32.7254i −0.613904 + 1.88940i
\(301\) −4.19779 + 3.04988i −0.241957 + 0.175792i
\(302\) −6.98272 + 5.07324i −0.401810 + 0.291932i
\(303\) −9.32307 6.77361i −0.535597 0.389134i
\(304\) −33.2556 −1.90734
\(305\) −3.11169 −0.178175
\(306\) 5.92860 + 4.30738i 0.338916 + 0.246237i
\(307\) 2.76609 + 8.51316i 0.157869 + 0.485871i 0.998440 0.0558298i \(-0.0177804\pi\)
−0.840571 + 0.541701i \(0.817780\pi\)
\(308\) 3.73749 11.5028i 0.212963 0.655434i
\(309\) 21.5039 1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −14.0175 + 43.1415i −0.793586 + 2.44241i
\(313\) 0.139466 + 0.429232i 0.00788307 + 0.0242616i 0.954921 0.296861i \(-0.0959398\pi\)
−0.947038 + 0.321123i \(0.895940\pi\)
\(314\) −7.24032 5.26040i −0.408595 0.296862i
\(315\) 1.03587 0.0583646
\(316\) −50.7928 −2.85732
\(317\) 4.51500 + 3.28034i 0.253588 + 0.184242i 0.707315 0.706898i \(-0.249906\pi\)
−0.453728 + 0.891140i \(0.649906\pi\)
\(318\) 8.64432 6.28047i 0.484750 0.352191i
\(319\) −8.79738 + 6.39167i −0.492559 + 0.357865i
\(320\) 3.94348 12.1368i 0.220447 0.678467i
\(321\) 14.2088 + 10.3233i 0.793057 + 0.576190i
\(322\) −0.774142 + 2.38256i −0.0431412 + 0.132775i
\(323\) 2.19218 + 6.74682i 0.121976 + 0.375403i
\(324\) 21.4802 15.6063i 1.19334 0.867014i
\(325\) −5.25165 16.1629i −0.291309 0.896557i
\(326\) −1.44676 4.45266i −0.0801284 0.246610i
\(327\) −8.27752 + 6.01397i −0.457748 + 0.332573i
\(328\) 0.279991 + 0.861723i 0.0154599 + 0.0475807i
\(329\) 3.58868 11.0448i 0.197851 0.608922i
\(330\) −2.51307 1.82585i −0.138340 0.100510i
\(331\) 7.47990 23.0208i 0.411132 1.26534i −0.504533 0.863393i \(-0.668335\pi\)
0.915665 0.401943i \(-0.131665\pi\)
\(332\) 70.6888 51.3584i 3.87955 2.81866i
\(333\) 6.17793 4.48853i 0.338548 0.245970i
\(334\) −30.5052 22.1633i −1.66917 1.21272i
\(335\) 5.04865 0.275837
\(336\) −31.7409 −1.73161
\(337\) −8.92830 6.48679i −0.486355 0.353358i 0.317426 0.948283i \(-0.397182\pi\)
−0.803781 + 0.594925i \(0.797182\pi\)
\(338\) −0.393857 1.21217i −0.0214230 0.0659331i
\(339\) 7.31135 22.5020i 0.397098 1.22214i
\(340\) −8.80253 −0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 5.87953 18.0953i 0.317465 0.977056i
\(344\) 8.08529 + 24.8840i 0.435930 + 1.34165i
\(345\) 0.376675 + 0.273670i 0.0202795 + 0.0147339i
\(346\) 0.0322304 0.00173272
\(347\) −18.5674 −0.996749 −0.498375 0.866962i \(-0.666070\pi\)
−0.498375 + 0.866962i \(0.666070\pi\)
\(348\) 48.8883 + 35.5194i 2.62069 + 1.90404i
\(349\) 26.0298 18.9118i 1.39334 1.01232i 0.397855 0.917448i \(-0.369755\pi\)
0.995489 0.0948756i \(-0.0302453\pi\)
\(350\) 17.4007 12.6423i 0.930104 0.675760i
\(351\) −6.41644 + 19.7478i −0.342484 + 1.05406i
\(352\) −18.8547 13.6987i −1.00496 0.730144i
\(353\) 9.95448 30.6367i 0.529824 1.63063i −0.224752 0.974416i \(-0.572157\pi\)
0.754575 0.656213i \(-0.227843\pi\)
\(354\) −0.550041 1.69285i −0.0292343 0.0899741i
\(355\) −2.34220 + 1.70171i −0.124311 + 0.0903174i
\(356\) −24.7864 76.2846i −1.31367 4.04307i
\(357\) 2.09233 + 6.43952i 0.110738 + 0.340815i
\(358\) −21.7159 + 15.7776i −1.14772 + 0.833870i
\(359\) 6.53950 + 20.1265i 0.345142 + 1.06224i 0.961508 + 0.274777i \(0.0886040\pi\)
−0.616367 + 0.787459i \(0.711396\pi\)
\(360\) 1.61412 4.96776i 0.0850717 0.261824i
\(361\) 10.0375 + 7.29267i 0.528289 + 0.383825i
\(362\) 15.4649 47.5960i 0.812816 2.50159i
\(363\) 10.5758 7.68380i 0.555088 0.403295i
\(364\) 26.8560 19.5120i 1.40764 1.02271i
\(365\) −3.69449 2.68421i −0.193379 0.140498i
\(366\) 19.5267 1.02068
\(367\) 12.9964 0.678408 0.339204 0.940713i \(-0.389842\pi\)
0.339204 + 0.940713i \(0.389842\pi\)
\(368\) 5.65042 + 4.10527i 0.294549 + 0.214002i
\(369\) 0.0317028 + 0.0975711i 0.00165038 + 0.00507935i
\(370\) −3.91704 + 12.0554i −0.203637 + 0.626730i
\(371\) −4.83309 −0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −3.07165 + 9.45355i −0.158831 + 0.488832i
\(375\) −2.56929 7.90746i −0.132678 0.408339i
\(376\) −47.3762 34.4208i −2.44324 1.77512i
\(377\) −29.8457 −1.53713
\(378\) −26.2788 −1.35164
\(379\) 12.0994 + 8.79076i 0.621507 + 0.451551i 0.853448 0.521179i \(-0.174508\pi\)
−0.231941 + 0.972730i \(0.574508\pi\)
\(380\) 6.61840 4.80855i 0.339517 0.246673i
\(381\) 14.8217 10.7686i 0.759338 0.551691i
\(382\) −0.996000 + 3.06537i −0.0509598 + 0.156838i
\(383\) 9.42533 + 6.84790i 0.481612 + 0.349911i 0.801949 0.597392i \(-0.203796\pi\)
−0.320338 + 0.947303i \(0.603796\pi\)
\(384\) −9.46206 + 29.1212i −0.482859 + 1.48609i
\(385\) 0.434191 + 1.33630i 0.0221284 + 0.0681043i
\(386\) 27.6978 20.1237i 1.40978 1.02427i
\(387\) 0.915480 + 2.81756i 0.0465365 + 0.143225i
\(388\) −2.07009 6.37110i −0.105093 0.323443i
\(389\) −11.6514 + 8.46524i −0.590750 + 0.429205i −0.842584 0.538566i \(-0.818966\pi\)
0.251834 + 0.967771i \(0.418966\pi\)
\(390\) −2.63460 8.10847i −0.133408 0.410588i
\(391\) 0.460398 1.41696i 0.0232833 0.0716587i
\(392\) −28.3053 20.5650i −1.42963 1.03869i
\(393\) −1.06908 + 3.29029i −0.0539280 + 0.165973i
\(394\) −6.46080 + 4.69404i −0.325490 + 0.236483i
\(395\) 4.77376 3.46834i 0.240194 0.174511i
\(396\) −5.58674 4.05901i −0.280744 0.203973i
\(397\) 15.7901 0.792484 0.396242 0.918146i \(-0.370314\pi\)
0.396242 + 0.918146i \(0.370314\pi\)
\(398\) 35.4672 1.77781
\(399\) −5.09088 3.69874i −0.254863 0.185169i
\(400\) −18.5300 57.0295i −0.926500 2.85148i
\(401\) 9.58670 29.5048i 0.478737 1.47340i −0.362114 0.932134i \(-0.617945\pi\)
0.840851 0.541267i \(-0.182055\pi\)
\(402\) −31.6817 −1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −0.953153 + 2.93350i −0.0473626 + 0.145767i
\(406\) −11.6724 35.9238i −0.579289 1.78287i
\(407\) 8.37986 + 6.08832i 0.415374 + 0.301787i
\(408\) 34.1426 1.69031
\(409\) 6.58582 0.325648 0.162824 0.986655i \(-0.447940\pi\)
0.162824 + 0.986655i \(0.447940\pi\)
\(410\) −0.137772 0.100098i −0.00680410 0.00494347i
\(411\) −9.35015 + 6.79328i −0.461209 + 0.335088i
\(412\) −64.1977 + 46.6424i −3.16279 + 2.29790i
\(413\) −0.248798 + 0.765722i −0.0122425 + 0.0376787i
\(414\) 1.15717 + 0.840736i 0.0568720 + 0.0413199i
\(415\) −3.13672 + 9.65382i −0.153975 + 0.473888i
\(416\) −19.7665 60.8350i −0.969131 2.98268i
\(417\) 1.55383 1.12893i 0.0760916 0.0552838i
\(418\) −2.85469 8.78583i −0.139627 0.429729i
\(419\) −4.53389 13.9539i −0.221495 0.681692i −0.998628 0.0523559i \(-0.983327\pi\)
0.777133 0.629336i \(-0.216673\pi\)
\(420\) 6.31695 4.58953i 0.308235 0.223946i
\(421\) −8.25566 25.4083i −0.402356 1.23832i −0.923083 0.384601i \(-0.874339\pi\)
0.520727 0.853723i \(-0.325661\pi\)
\(422\) −15.2397 + 46.9030i −0.741857 + 2.28320i
\(423\) −5.36431 3.89740i −0.260822 0.189498i
\(424\) −7.53108 + 23.1783i −0.365742 + 1.12564i
\(425\) −10.3485 + 7.51865i −0.501978 + 0.364708i
\(426\) 14.6980 10.6787i 0.712118 0.517384i
\(427\) −7.14559 5.19157i −0.345799 0.251238i
\(428\) −64.8103 −3.13272
\(429\) −6.96685 −0.336363
\(430\) −3.97845 2.89052i −0.191858 0.139393i
\(431\) 1.23236 + 3.79282i 0.0593608 + 0.182694i 0.976340 0.216241i \(-0.0693798\pi\)
−0.916979 + 0.398935i \(0.869380\pi\)
\(432\) −22.6399 + 69.6783i −1.08926 + 3.35240i
\(433\) 18.0766 0.868704 0.434352 0.900743i \(-0.356977\pi\)
0.434352 + 0.900743i \(0.356977\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 11.6673 35.9082i 0.558762 1.71969i
\(437\) 0.427880 + 1.31688i 0.0204683 + 0.0629948i
\(438\) 23.1839 + 16.8441i 1.10777 + 0.804843i
\(439\) 22.9086 1.09337 0.546684 0.837339i \(-0.315890\pi\)
0.546684 + 0.837339i \(0.315890\pi\)
\(440\) 7.08513 0.337771
\(441\) −3.20494 2.32853i −0.152616 0.110882i
\(442\) −22.0715 + 16.0359i −1.04984 + 0.762750i
\(443\) 17.3868 12.6323i 0.826074 0.600178i −0.0923721 0.995725i \(-0.529445\pi\)
0.918446 + 0.395547i \(0.129445\pi\)
\(444\) 17.7874 54.7440i 0.844153 2.59803i
\(445\) 7.53856 + 5.47708i 0.357362 + 0.259639i
\(446\) −7.81094 + 24.0396i −0.369859 + 1.13831i
\(447\) −3.94860 12.1525i −0.186762 0.574796i
\(448\) 29.3049 21.2912i 1.38452 1.00592i
\(449\) 5.80940 + 17.8795i 0.274163 + 0.843786i 0.989440 + 0.144945i \(0.0463005\pi\)
−0.715277 + 0.698841i \(0.753700\pi\)
\(450\) −3.79484 11.6793i −0.178890 0.550568i
\(451\) −0.112581 + 0.0817951i −0.00530125 + 0.00385158i
\(452\) 26.9800 + 83.0359i 1.26903 + 3.90568i
\(453\) −1.40703 + 4.33041i −0.0661082 + 0.203460i
\(454\) 18.4109 + 13.3763i 0.864068 + 0.627782i
\(455\) −1.19170 + 3.66767i −0.0558677 + 0.171943i
\(456\) −25.6710 + 18.6511i −1.20215 + 0.873416i
\(457\) −3.32182 + 2.41344i −0.155388 + 0.112896i −0.662763 0.748830i \(-0.730616\pi\)
0.507374 + 0.861726i \(0.330616\pi\)
\(458\) 49.7160 + 36.1208i 2.32308 + 1.68781i
\(459\) 15.6286 0.729480
\(460\) −1.71812 −0.0801078
\(461\) 18.5063 + 13.4456i 0.861924 + 0.626225i 0.928408 0.371563i \(-0.121178\pi\)
−0.0664836 + 0.997788i \(0.521178\pi\)
\(462\) −2.72467 8.38566i −0.126763 0.390136i
\(463\) −5.11947 + 15.7561i −0.237922 + 0.732249i 0.758798 + 0.651326i \(0.225787\pi\)
−0.996720 + 0.0809233i \(0.974213\pi\)
\(464\) −105.308 −4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 11.7878 36.2792i 0.545476 1.67880i −0.174379 0.984679i \(-0.555792\pi\)
0.719855 0.694124i \(-0.244208\pi\)
\(468\) −5.85692 18.0258i −0.270736 0.833241i
\(469\) 11.5936 + 8.42323i 0.535342 + 0.388949i
\(470\) 11.0064 0.507688
\(471\) −4.72123 −0.217543
\(472\) 3.28452 + 2.38634i 0.151182 + 0.109840i
\(473\) −3.25101 + 2.36200i −0.149482 + 0.108605i
\(474\) −29.9566 + 21.7648i −1.37595 + 0.999688i
\(475\) 3.67360 11.3062i 0.168556 0.518763i
\(476\) −20.2139 14.6862i −0.926501 0.673142i
\(477\) −0.852728 + 2.62443i −0.0390438 + 0.120164i
\(478\) −15.1904 46.7513i −0.694793 2.13835i
\(479\) 27.2515 19.7994i 1.24515 0.904658i 0.247224 0.968958i \(-0.420482\pi\)
0.997931 + 0.0643004i \(0.0204816\pi\)
\(480\) −4.64938 14.3093i −0.212214 0.653128i
\(481\) 8.78511 + 27.0378i 0.400567 + 1.23282i
\(482\) −39.5482 + 28.7335i −1.80137 + 1.30877i
\(483\) 0.408391 + 1.25690i 0.0185824 + 0.0571908i
\(484\) −14.9068 + 45.8784i −0.677582 + 2.08538i
\(485\) 0.629601 + 0.457432i 0.0285887 + 0.0207709i
\(486\) −8.12614 + 25.0097i −0.368609 + 1.13446i
\(487\) 16.7278 12.1534i 0.758008 0.550725i −0.140291 0.990110i \(-0.544804\pi\)
0.898299 + 0.439385i \(0.144804\pi\)
\(488\) −36.0319 + 26.1787i −1.63109 + 1.18506i
\(489\) −1.99814 1.45173i −0.0903590 0.0656497i
\(490\) 6.57587 0.297067
\(491\) 24.7327 1.11617 0.558087 0.829783i \(-0.311536\pi\)
0.558087 + 0.829783i \(0.311536\pi\)
\(492\) 0.625630 + 0.454547i 0.0282056 + 0.0204925i
\(493\) 6.94179 + 21.3646i 0.312643 + 0.962215i
\(494\) 7.83511 24.1140i 0.352518 1.08494i
\(495\) 0.802235 0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 19.6838 60.5804i 0.882050 2.71467i
\(499\) −7.58951 23.3581i −0.339753 1.04565i −0.964333 0.264692i \(-0.914730\pi\)
0.624580 0.780961i \(-0.285270\pi\)
\(500\) 24.8218 + 18.0341i 1.11006 + 0.806509i
\(501\) −19.8917 −0.888695
\(502\) 61.6858 2.75317
\(503\) −11.9242 8.66344i −0.531674 0.386284i 0.289310 0.957236i \(-0.406574\pi\)
−0.820984 + 0.570952i \(0.806574\pi\)
\(504\) 11.9949 8.71479i 0.534295 0.388188i
\(505\) −3.99672 + 2.90379i −0.177852 + 0.129217i
\(506\) −0.599539 + 1.84519i −0.0266528 + 0.0820287i
\(507\) −0.543962 0.395212i −0.0241582 0.0175520i
\(508\) −20.8914 + 64.2970i −0.926905 + 2.85272i
\(509\) 4.79171 + 14.7474i 0.212389 + 0.653665i 0.999329 + 0.0366357i \(0.0116641\pi\)
−0.786940 + 0.617030i \(0.788336\pi\)
\(510\) −5.19156 + 3.77189i −0.229886 + 0.167022i
\(511\) −4.00557 12.3279i −0.177196 0.545353i
\(512\) −0.0418393 0.128768i −0.00184905 0.00569080i
\(513\) −11.7507 + 8.53741i −0.518808 + 0.376936i
\(514\) −0.0882787 0.271694i −0.00389381 0.0119839i
\(515\) 2.84869 8.76735i 0.125528 0.386336i
\(516\) 18.0663 + 13.1259i 0.795325 + 0.577837i
\(517\) 2.77928 8.55374i 0.122233 0.376193i
\(518\) −29.1083 + 21.1484i −1.27895 + 0.929209i
\(519\) 0.0137556 0.00999402i 0.000603803 0.000438689i
\(520\) 15.7323 + 11.4302i 0.689906 + 0.501246i
\(521\) 29.4146 1.28867 0.644337 0.764741i \(-0.277133\pi\)
0.644337 + 0.764741i \(0.277133\pi\)
\(522\) −21.5665 −0.943939
\(523\) −36.4268 26.4656i −1.59283 1.15726i −0.899754 0.436397i \(-0.856254\pi\)
−0.693078 0.720863i \(-0.743746\pi\)
\(524\) −3.94507 12.1417i −0.172341 0.530412i
\(525\) 3.50627 10.7912i 0.153026 0.470966i
\(526\) 19.6309 0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −7.01753 + 21.5977i −0.305110 + 0.939032i
\(530\) −1.41547 4.35637i −0.0614841 0.189229i
\(531\) 0.371899 + 0.270201i 0.0161391 + 0.0117257i
\(532\) 23.2209 1.00676
\(533\) −0.381940 −0.0165436
\(534\) −47.3065 34.3702i −2.04715 1.48734i
\(535\) 6.09119 4.42551i 0.263345 0.191331i
\(536\) 58.4611 42.4745i 2.52514 1.83462i
\(537\) −4.37581 + 13.4674i −0.188830 + 0.581160i
\(538\) 35.2995 + 25.6466i 1.52187 + 1.10570i
\(539\) 1.66050 5.11050i 0.0715228 0.220125i
\(540\) −5.56935 17.1407i −0.239667 0.737618i
\(541\) −30.5636 + 22.2058i −1.31403 + 0.954701i −0.314047 + 0.949408i \(0.601685\pi\)
−0.999986 + 0.00529319i \(0.998315\pi\)
\(542\) 4.27759 + 13.1651i 0.183738 + 0.565488i
\(543\) −8.15834 25.1088i −0.350108 1.07752i
\(544\) −38.9504 + 28.2992i −1.66999 + 1.21332i
\(545\) 1.35541 + 4.17152i 0.0580593 + 0.178688i
\(546\) 7.47823 23.0156i 0.320039 0.984978i
\(547\) 14.7312 + 10.7028i 0.629860 + 0.457620i 0.856352 0.516393i \(-0.172726\pi\)
−0.226491 + 0.974013i \(0.572726\pi\)
\(548\) 13.1792 40.5613i 0.562986 1.73269i
\(549\) −4.07982 + 2.96416i −0.174122 + 0.126507i
\(550\) 13.4761 9.79092i 0.574621 0.417486i
\(551\) −16.8902 12.2715i −0.719547 0.522782i
\(552\) 6.66412 0.283644
\(553\) 16.7489 0.712237
\(554\) −36.8305 26.7590i −1.56478 1.13688i
\(555\) 2.06639 + 6.35970i 0.0877135 + 0.269954i
\(556\) −2.19015 + 6.74059i −0.0928831 + 0.285865i
\(557\) −9.19760 −0.389715 −0.194857 0.980832i \(-0.562424\pi\)
−0.194857 + 0.980832i \(0.562424\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −4.20481 + 12.9411i −0.177686 + 0.546860i
\(561\) 1.62042 + 4.98713i 0.0684140 + 0.210557i
\(562\) 4.14964 + 3.01489i 0.175042 + 0.127175i
\(563\) −36.1618 −1.52404 −0.762019 0.647555i \(-0.775792\pi\)
−0.762019 + 0.647555i \(0.775792\pi\)
\(564\) −49.9805 −2.10456
\(565\) −8.20574 5.96182i −0.345218 0.250816i
\(566\) −33.3200 + 24.2084i −1.40054 + 1.01755i
\(567\) −7.08308 + 5.14616i −0.297461 + 0.216118i
\(568\) −12.8051 + 39.4101i −0.537290 + 1.65361i
\(569\) −33.5740 24.3930i −1.40750 1.02261i −0.993681 0.112245i \(-0.964196\pi\)
−0.413816 0.910361i \(-0.635804\pi\)
\(570\) 1.84294 5.67198i 0.0771921 0.237573i
\(571\) −10.0100 30.8077i −0.418907 1.28926i −0.908710 0.417429i \(-0.862931\pi\)
0.489803 0.871833i \(-0.337069\pi\)
\(572\) 20.7988 15.1112i 0.869642 0.631832i
\(573\) 0.525430 + 1.61711i 0.0219501 + 0.0675556i
\(574\) −0.149373 0.459722i −0.00623470 0.0191884i
\(575\) −2.01988 + 1.46753i −0.0842347 + 0.0612001i
\(576\) −6.39098 19.6694i −0.266291 0.819559i
\(577\) 12.6643 38.9767i 0.527222 1.62262i −0.232659 0.972558i \(-0.574743\pi\)
0.759880 0.650063i \(-0.225257\pi\)
\(578\) −20.3858 14.8111i −0.847937 0.616062i
\(579\) 5.58118 17.1771i 0.231946 0.713856i
\(580\) 20.9580 15.2269i 0.870233 0.632261i
\(581\) −23.3096 + 16.9354i −0.967046 + 0.702600i
\(582\) −3.95092 2.87051i −0.163771 0.118987i
\(583\) −3.74302 −0.155020
\(584\) −65.3629 −2.70474
\(585\) 1.78133 + 1.29421i 0.0736490 + 0.0535092i
\(586\) −22.2737 68.5513i −0.920117 2.83183i
\(587\) 7.88963 24.2818i 0.325640 1.00222i −0.645511 0.763751i \(-0.723356\pi\)
0.971151 0.238466i \(-0.0766445\pi\)
\(588\) −29.8612 −1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −1.30187 + 4.00673i −0.0535516 + 0.164815i
\(592\) 30.9975 + 95.4006i 1.27399 + 3.92094i
\(593\) −36.0269 26.1751i −1.47945 1.07488i −0.977734 0.209850i \(-0.932702\pi\)
−0.501716 0.865033i \(-0.667298\pi\)
\(594\) −20.3518 −0.835045
\(595\) 2.90263 0.118996
\(596\) 38.1472 + 27.7156i 1.56257 + 1.13527i
\(597\) 15.1370 10.9977i 0.619515 0.450104i
\(598\) −4.30803 + 3.12997i −0.176168 + 0.127994i
\(599\) 5.86513 18.0510i 0.239643 0.737544i −0.756829 0.653613i \(-0.773252\pi\)
0.996472 0.0839312i \(-0.0267476\pi\)
\(600\) −46.2882 33.6304i −1.88971 1.37295i
\(601\) −3.96772 + 12.2114i −0.161847 + 0.498113i −0.998790 0.0491767i \(-0.984340\pi\)
0.836943 + 0.547289i \(0.184340\pi\)
\(602\) −4.31343 13.2754i −0.175802 0.541064i
\(603\) 6.61943 4.80930i 0.269564 0.195850i
\(604\) −5.19217 15.9799i −0.211267 0.650212i
\(605\) −1.73175 5.32977i −0.0704056 0.216686i
\(606\) 25.0805 18.2221i 1.01883 0.740221i
\(607\) −11.7857 36.2726i −0.478366 1.47226i −0.841363 0.540470i \(-0.818246\pi\)
0.362997 0.931790i \(-0.381754\pi\)
\(608\) 13.8269 42.5548i 0.560755 1.72583i
\(609\) −16.1209 11.7125i −0.653252 0.474615i
\(610\) 2.58676 7.96122i 0.104735 0.322340i
\(611\) 19.9707 14.5096i 0.807928 0.586994i
\(612\) −11.5412 + 8.38520i −0.466527 + 0.338952i
\(613\) 15.0011 + 10.8989i 0.605889 + 0.440204i 0.847964 0.530054i \(-0.177828\pi\)
−0.242076 + 0.970257i \(0.577828\pi\)
\(614\) −24.0803 −0.971801
\(615\) −0.0898380 −0.00362262
\(616\) 16.2701 + 11.8209i 0.655541 + 0.476278i
\(617\) 2.51402 + 7.73736i 0.101211 + 0.311495i 0.988822 0.149098i \(-0.0476370\pi\)
−0.887612 + 0.460592i \(0.847637\pi\)
\(618\) −17.8763 + 55.0175i −0.719089 + 2.21313i
\(619\) −5.36063 −0.215462 −0.107731 0.994180i \(-0.534359\pi\)
−0.107731 + 0.994180i \(0.534359\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −17.1711 + 52.8472i −0.688499 + 2.11898i
\(623\) 8.17330 + 25.1548i 0.327456 + 1.00781i
\(624\) −54.5833 39.6571i −2.18508 1.58755i
\(625\) 19.5850 0.783401
\(626\) −1.21412 −0.0485261
\(627\) −3.94266 2.86451i −0.157455 0.114398i
\(628\) 14.0948 10.2404i 0.562442 0.408638i
\(629\) 17.3113 12.5774i 0.690248 0.501494i
\(630\) −0.861121 + 2.65026i −0.0343079 + 0.105589i
\(631\) −23.4995 17.0734i −0.935501 0.679682i 0.0118321 0.999930i \(-0.496234\pi\)
−0.947334 + 0.320248i \(0.896234\pi\)
\(632\) 26.0987 80.3236i 1.03815 3.19510i
\(633\) 8.03955 + 24.7432i 0.319543 + 0.983453i
\(634\) −12.1460 + 8.82462i −0.482381 + 0.350470i
\(635\) −2.42699 7.46949i −0.0963120 0.296418i
\(636\) 6.42770 + 19.7824i 0.254875 + 0.784424i
\(637\) 11.9316 8.66885i 0.472749 0.343472i
\(638\) −9.03973 27.8214i −0.357886 1.10146i
\(639\) −1.44989 + 4.46232i −0.0573569 + 0.176527i
\(640\) 10.6195 + 7.71555i 0.419774 + 0.304984i
\(641\) −8.53058 + 26.2544i −0.336938 + 1.03699i 0.628822 + 0.777549i \(0.283537\pi\)
−0.965760 + 0.259438i \(0.916463\pi\)
\(642\) −38.2238 + 27.7713i −1.50857 + 1.09604i
\(643\) 3.42136 2.48577i 0.134925 0.0980291i −0.518275 0.855214i \(-0.673426\pi\)
0.653201 + 0.757185i \(0.273426\pi\)
\(644\) −3.94544 2.86653i −0.155472 0.112957i
\(645\) −2.59425 −0.102148
\(646\) −19.0840 −0.750852
\(647\) 21.2617 + 15.4475i 0.835883 + 0.607304i 0.921217 0.389048i \(-0.127196\pi\)
−0.0853349 + 0.996352i \(0.527196\pi\)
\(648\) 13.6426 + 41.9876i 0.535931 + 1.64943i
\(649\) −0.192683 + 0.593018i −0.00756348 + 0.0232780i
\(650\) 45.7184 1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −4.12592 + 12.6983i −0.161460 + 0.496922i −0.998758 0.0498246i \(-0.984134\pi\)
0.837298 + 0.546746i \(0.184134\pi\)
\(654\) −8.50555 26.1774i −0.332593 1.02362i
\(655\) 1.19986 + 0.871749i 0.0468824 + 0.0340621i
\(656\) −1.34764 −0.0526166
\(657\) −7.40090 −0.288737
\(658\) 25.2748 + 18.3632i 0.985315 + 0.715873i
\(659\) 12.4717 9.06119i 0.485827 0.352974i −0.317750 0.948174i \(-0.602927\pi\)
0.803577 + 0.595200i \(0.202927\pi\)
\(660\) 4.89220 3.55439i 0.190429 0.138354i
\(661\) −1.45951 + 4.49190i −0.0567682 + 0.174715i −0.975420 0.220353i \(-0.929279\pi\)
0.918652 + 0.395068i \(0.129279\pi\)
\(662\) 52.6803 + 38.2745i 2.04748 + 1.48758i
\(663\) −4.44746 + 13.6879i −0.172725 + 0.531593i
\(664\) 44.8962 + 138.176i 1.74231 + 5.36228i
\(665\) −2.18242 + 1.58562i −0.0846305 + 0.0614876i
\(666\) 6.34812 + 19.5375i 0.245984 + 0.757062i
\(667\) 1.35493 + 4.17006i 0.0524632 + 0.161465i
\(668\) 59.3846 43.1454i 2.29766 1.66935i
\(669\) 4.12058 + 12.6818i 0.159311 + 0.490309i
\(670\) −4.19696 + 12.9169i −0.162143 + 0.499024i
\(671\) −5.53394 4.02065i −0.213636 0.155215i
\(672\) 13.1971 40.6166i 0.509090 1.56682i
\(673\) 25.1386 18.2643i 0.969022 0.704035i 0.0137932 0.999905i \(-0.495609\pi\)
0.955228 + 0.295869i \(0.0956093\pi\)
\(674\) 24.0185 17.4505i 0.925158 0.672167i
\(675\) −21.1882 15.3941i −0.815533 0.592519i
\(676\) 2.48116 0.0954294
\(677\) −9.03995 −0.347434 −0.173717 0.984796i \(-0.555578\pi\)
−0.173717 + 0.984796i \(0.555578\pi\)
\(678\) 51.4932 + 37.4120i 1.97759 + 1.43680i
\(679\) 0.682613 + 2.10087i 0.0261963 + 0.0806239i
\(680\) 4.52297 13.9203i 0.173448 0.533818i
\(681\) 12.0053 0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 4.09699 12.6092i 0.156652 0.482127i
\(685\) 1.53105 + 4.71208i 0.0584983 + 0.180039i
\(686\) 41.4091 + 30.0854i 1.58101 + 1.14867i
\(687\) 32.4186 1.23685
\(688\) −38.9158 −1.48365
\(689\) −8.31124 6.03847i −0.316633 0.230047i
\(690\) −1.01331 + 0.736216i −0.0385762 + 0.0280273i
\(691\) −29.5092 + 21.4397i −1.12258 + 0.815605i −0.984599 0.174829i \(-0.944063\pi\)
−0.137985 + 0.990434i \(0.544063\pi\)
\(692\) −0.0193887 + 0.0596723i −0.000737047 + 0.00226840i
\(693\) 1.84223 + 1.33846i 0.0699805 + 0.0508438i
\(694\) 15.4351 47.5045i 0.585910 1.80324i
\(695\) −0.254433 0.783066i −0.00965121 0.0297034i
\(696\) −81.2903 + 59.0609i −3.08130 + 2.23870i
\(697\) 0.0888351 + 0.273406i 0.00336487 + 0.0103560i
\(698\) 26.7469 + 82.3185i 1.01238 + 3.11580i
\(699\) −18.6611 + 13.5581i −0.705827 + 0.512813i
\(700\) 12.9387 + 39.8212i 0.489037 + 1.50510i
\(701\) −0.498890 + 1.53542i −0.0188428 + 0.0579922i −0.960036 0.279877i \(-0.909706\pi\)
0.941193 + 0.337869i \(0.109706\pi\)
\(702\) −45.1905 32.8328i −1.70560 1.23919i
\(703\) −6.14530 + 18.9133i −0.231774 + 0.713328i
\(704\) 22.6953 16.4891i 0.855362 0.621457i
\(705\) 4.69742 3.41287i 0.176915 0.128536i
\(706\) 70.1086 + 50.9369i 2.63857 + 1.91704i
\(707\) −14.0227 −0.527377
\(708\) 3.46507 0.130225
\(709\) −9.29395 6.75245i −0.349042 0.253594i 0.399425 0.916766i \(-0.369210\pi\)
−0.748467 + 0.663172i \(0.769210\pi\)
\(710\) −2.40672 7.40714i −0.0903228 0.277985i
\(711\) 2.95510 9.09487i 0.110825 0.341084i
\(712\) 133.372 4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −0.922919 + 2.84045i −0.0345152 + 0.106227i
\(716\) −16.1474 49.6967i −0.603458 1.85725i
\(717\) −20.9797 15.2427i −0.783503 0.569248i
\(718\) −56.9298 −2.12460
\(719\) −14.1710 −0.528489 −0.264244 0.964456i \(-0.585123\pi\)
−0.264244 + 0.964456i \(0.585123\pi\)
\(720\) 6.28528 + 4.56652i 0.234239 + 0.170184i
\(721\) 21.1692 15.3803i 0.788382 0.572793i
\(722\) −27.0024 + 19.6184i −1.00493 + 0.730122i
\(723\) −7.96906 + 24.5262i −0.296372 + 0.912141i
\(724\) 78.8174 + 57.2642i 2.92922 + 2.12821i
\(725\) 11.6329 35.8024i 0.432035 1.32967i
\(726\) 10.8672 + 33.4458i 0.403319 + 1.24129i
\(727\) 21.8012 15.8395i 0.808561 0.587454i −0.104852 0.994488i \(-0.533437\pi\)
0.913413 + 0.407034i \(0.133437\pi\)
\(728\) 17.0569 + 52.4958i 0.632172 + 1.94562i
\(729\) 8.98695 + 27.6590i 0.332850 + 1.02441i
\(730\) 9.93876 7.22093i 0.367850 0.267259i
\(731\) 2.56529 + 7.89515i 0.0948807 + 0.292013i
\(732\) −11.7466 + 36.1522i −0.434165 + 1.33622i
\(733\) 22.9951 + 16.7069i 0.849344 + 0.617085i 0.924965 0.380052i \(-0.124094\pi\)
−0.0756209 + 0.997137i \(0.524094\pi\)
\(734\) −10.8040 + 33.2512i −0.398782 + 1.22733i
\(735\) 2.80651 2.03905i 0.103519 0.0752113i
\(736\) −7.60254 + 5.52357i −0.280233 + 0.203601i
\(737\) 8.97872 + 6.52342i 0.330735 + 0.240293i
\(738\) −0.275989 −0.0101593
\(739\) −0.697306 −0.0256508 −0.0128254 0.999918i \(-0.504083\pi\)
−0.0128254 + 0.999918i \(0.504083\pi\)
\(740\) −19.9633 14.5042i −0.733866 0.533185i
\(741\) −4.13333 12.7211i −0.151842 0.467321i
\(742\) 4.01777 12.3654i 0.147497 0.453949i
\(743\) −18.1815 −0.667015 −0.333508 0.942747i \(-0.608232\pi\)
−0.333508 + 0.942747i \(0.608232\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 3.67929 11.3237i 0.134708 0.414589i
\(747\) 5.08350 + 15.6454i 0.185996 + 0.572435i
\(748\) −15.6548 11.3738i −0.572395 0.415869i
\(749\) 21.3712 0.780886
\(750\) 22.3670 0.816728
\(751\) 29.9870 + 21.7868i 1.09424 + 0.795013i 0.980111 0.198452i \(-0.0635915\pi\)
0.114131 + 0.993466i \(0.463592\pi\)
\(752\) 70.4650 51.1958i 2.56959 1.86692i
\(753\) 26.3268 19.1276i 0.959403 0.697047i
\(754\) 24.8108 76.3599i 0.903557 2.78086i
\(755\) 1.57916 + 1.14732i 0.0574713 + 0.0417554i
\(756\) 15.8084 48.6533i 0.574947 1.76950i
\(757\) 1.97833 + 6.08867i 0.0719036 + 0.221296i 0.980550 0.196270i \(-0.0628830\pi\)
−0.908646 + 0.417567i \(0.862883\pi\)
\(758\) −32.5494 + 23.6485i −1.18225 + 0.858953i
\(759\) 0.316281 + 0.973412i 0.0114803 + 0.0353326i
\(760\) 4.20351 + 12.9371i 0.152477 + 0.469277i
\(761\) 17.2635 12.5426i 0.625801 0.454671i −0.229142 0.973393i \(-0.573592\pi\)
0.854943 + 0.518722i \(0.173592\pi\)
\(762\) 15.2300 + 46.8731i 0.551724 + 1.69803i
\(763\) −3.84728 + 11.8407i −0.139281 + 0.428663i
\(764\) −5.07615 3.68804i −0.183649 0.133429i
\(765\) 0.512127 1.57616i 0.0185160 0.0569863i
\(766\) −25.3556 + 18.4219i −0.916135 + 0.665611i
\(767\) −1.38454 + 1.00593i −0.0499928 + 0.0363219i
\(768\) −18.4746 13.4226i −0.666643 0.484345i
\(769\) −12.2566 −0.441983 −0.220991 0.975276i \(-0.570929\pi\)
−0.220991 + 0.975276i \(0.570929\pi\)
\(770\) −3.77986 −0.136217
\(771\) −0.121923 0.0885824i −0.00439096 0.00319022i
\(772\) 20.5954 + 63.3862i 0.741245 + 2.28132i
\(773\) −10.7240 + 33.0050i −0.385714 + 1.18711i 0.550247 + 0.835002i \(0.314534\pi\)
−0.935961 + 0.352104i \(0.885466\pi\)
\(774\) −7.96974 −0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −5.86539 + 18.0518i −0.210420 + 0.647605i
\(778\) −11.9724 36.8472i −0.429231 1.32104i
\(779\) −0.216146 0.157040i −0.00774425 0.00562652i
\(780\) 16.5971 0.594272
\(781\) −6.36426 −0.227731
\(782\) 3.24255 + 2.35585i 0.115953 + 0.0842450i
\(783\) −37.2102 + 27.0348i −1.32978 + 0.966144i
\(784\) 42.0998 30.5873i 1.50356 1.09240i
\(785\) −0.625436 + 1.92489i −0.0223228 + 0.0687024i
\(786\) −7.52944 5.47046i −0.268566 0.195125i
\(787\) −6.21686 + 19.1335i −0.221607 + 0.682037i 0.777011 + 0.629487i \(0.216735\pi\)
−0.998618 + 0.0525500i \(0.983265\pi\)
\(788\) −4.80409 14.7855i −0.171138 0.526710i
\(789\) 8.37824 6.08715i 0.298273 0.216708i
\(790\) 4.90526 + 15.0968i 0.174521 + 0.537122i
\(791\) −8.89666 27.3811i −0.316329 0.973559i
\(792\) 9.28952 6.74923i 0.330089 0.239823i
\(793\) −5.80157 17.8554i −0.206020 0.634063i
\(794\) −13.1264 + 40.3989i −0.465838 + 1.43370i
\(795\) −1.95493 1.42034i −0.0693342 0.0503743i
\(796\) −21.3358 + 65.6648i −0.756227 + 2.32743i
\(797\) −21.1978 + 15.4011i −0.750865 + 0.545536i −0.896095 0.443862i \(-0.853608\pi\)
0.145230 + 0.989398i \(0.453608\pi\)
\(798\) 13.6953 9.95018i 0.484807 0.352233i
\(799\) −15.0315 10.9210i −0.531775 0.386357i
\(800\) 80.6809 2.85250
\(801\) 15.1014 0.533583
\(802\) 67.5183 + 49.0549i 2.38416 + 1.73219i
\(803\) −3.10214 9.54739i −0.109472 0.336920i
\(804\) 19.0586 58.6562i 0.672144 2.06865i
\(805\) 0.566550 0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −21.8506 + 67.2491i −0.768700 + 2.36582i
\(809\) 11.2637 + 34.6662i 0.396011 + 1.21880i 0.928171 + 0.372153i \(0.121380\pi\)
−0.532160 + 0.846644i \(0.678620\pi\)
\(810\) −6.71298 4.87727i −0.235870 0.171370i
\(811\) −19.1064 −0.670918 −0.335459 0.942055i \(-0.608891\pi\)
−0.335459 + 0.942055i \(0.608891\pi\)
\(812\) 73.5320 2.58047
\(813\) 5.90785 + 4.29231i 0.207197 + 0.150538i
\(814\) −22.5431 + 16.3785i −0.790136 + 0.574067i
\(815\) −0.856586 + 0.622346i −0.0300049 + 0.0217998i
\(816\) −15.6925 + 48.2965i −0.549347 + 1.69072i
\(817\) −6.24165 4.53483i −0.218368 0.158654i
\(818\) −5.47482 + 16.8498i −0.191422 + 0.589138i
\(819\) 1.93132 + 5.94399i 0.0674857 + 0.207700i
\(820\) 0.268202 0.194860i 0.00936603 0.00680482i
\(821\) 12.1937 + 37.5285i 0.425565 + 1.30975i 0.902453 + 0.430789i \(0.141765\pi\)
−0.476888 + 0.878964i \(0.658235\pi\)
\(822\) −9.60773 29.5696i −0.335108 1.03136i
\(823\) 25.5552 18.5669i 0.890799 0.647203i −0.0452874 0.998974i \(-0.514420\pi\)
0.936086 + 0.351771i \(0.114420\pi\)
\(824\) −40.7736 125.488i −1.42041 4.37158i
\(825\) 2.71546 8.35731i 0.0945400 0.290964i
\(826\) −1.75226 1.27309i −0.0609691 0.0442966i
\(827\) 6.12776 18.8593i 0.213083 0.655802i −0.786201 0.617971i \(-0.787955\pi\)
0.999284 0.0378314i \(-0.0120450\pi\)
\(828\) −2.25268 + 1.63666i −0.0782859 + 0.0568780i
\(829\) −7.28104 + 5.28999i −0.252881 + 0.183729i −0.707003 0.707211i \(-0.749953\pi\)
0.454122 + 0.890940i \(0.349953\pi\)
\(830\) −22.0916 16.0505i −0.766812 0.557122i
\(831\) −24.0163 −0.833115
\(832\) 76.9954 2.66933
\(833\) −8.98066 6.52483i −0.311161 0.226072i
\(834\) 1.59664 + 4.91395i 0.0552871 + 0.170156i
\(835\) −2.63511 + 8.11003i −0.0911917 + 0.280659i
\(836\) 17.9836 0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −9.84070 + 30.2866i −0.339739 + 1.04561i 0.624602 + 0.780944i \(0.285261\pi\)
−0.964340 + 0.264665i \(0.914739\pi\)
\(840\) 4.01205 + 12.3478i 0.138429 + 0.426040i
\(841\) −30.0234 21.8133i −1.03529 0.752183i
\(842\) 71.8698 2.47680
\(843\) 2.70587 0.0931953
\(844\) −77.6697 56.4303i −2.67350 1.94241i
\(845\) −0.233192 + 0.169424i −0.00802205 + 0.00582836i
\(846\) 14.4308 10.4846i 0.496142 0.360468i
\(847\) 4.91552 15.1284i 0.168899 0.519818i
\(848\) −29.3255 21.3062i −1.00704 0.731659i
\(849\) −6.71405 + 20.6637i −0.230426 + 0.709177i
\(850\) −10.6336 32.7269i −0.364730 1.12252i
\(851\) 3.37891 2.45492i 0.115828 0.0841536i
\(852\) 10.9290 + 33.6361i 0.374422 + 1.15235i
\(853\) −15.1702 46.6890i −0.519417 1.59860i −0.775099 0.631839i \(-0.782300\pi\)
0.255683 0.966761i \(-0.417700\pi\)
\(854\) 19.2227 13.9661i 0.657788 0.477911i
\(855\) 0.475954 + 1.46484i 0.0162773 + 0.0500964i
\(856\) 33.3013 102.491i 1.13821 3.50306i
\(857\) −15.5659 11.3093i −0.531720 0.386317i 0.289281 0.957244i \(-0.406584\pi\)
−0.821001 + 0.570927i \(0.806584\pi\)
\(858\) 5.79157 17.8246i 0.197721 0.608522i
\(859\) −3.75558 + 2.72859i −0.128139 + 0.0930981i −0.650008 0.759927i \(-0.725235\pi\)
0.521870 + 0.853025i \(0.325235\pi\)
\(860\) 7.74487 5.62698i 0.264098 0.191878i
\(861\) −0.206301 0.149887i −0.00703073 0.00510812i
\(862\) −10.7284 −0.365410
\(863\) −38.5304 −1.31159 −0.655795 0.754939i \(-0.727667\pi\)
−0.655795 + 0.754939i \(0.727667\pi\)
\(864\) −79.7493 57.9413i −2.71313 1.97120i
\(865\) −0.00225242 0.00693223i −7.65845e−5 0.000235703i
\(866\) −15.0271 + 46.2487i −0.510642 + 1.57159i
\(867\) −13.2931 −0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 5.83589 17.9610i 0.197855 0.608935i
\(871\) 9.41293 + 28.9700i 0.318945 + 0.981612i
\(872\) 50.7901 + 36.9012i 1.71997 + 1.24963i
\(873\) 1.26123 0.0426863
\(874\) −3.72492 −0.125997
\(875\) −8.18498 5.94673i −0.276703 0.201036i
\(876\) −45.1323 + 32.7905i −1.52488 + 1.10789i
\(877\) 7.49016 5.44192i 0.252925 0.183761i −0.454097 0.890952i \(-0.650038\pi\)
0.707022 + 0.707192i \(0.250038\pi\)
\(878\) −19.0440 + 58.6114i −0.642704 + 1.97804i
\(879\) −30.7626 22.3503i −1.03760 0.753857i
\(880\) −3.25644 + 10.0223i −0.109775 + 0.337852i
\(881\) −5.52494 17.0040i −0.186140 0.572880i 0.813826 0.581108i \(-0.197381\pi\)
−0.999966 + 0.00822862i \(0.997381\pi\)
\(882\) 8.62180 6.26410i 0.290311 0.210923i
\(883\) −14.9303 45.9509i −0.502446 1.54637i −0.805022 0.593244i \(-0.797847\pi\)
0.302577 0.953125i \(-0.402153\pi\)
\(884\) −16.4118 50.5104i −0.551990 1.69885i
\(885\) −0.325665 + 0.236609i −0.0109471 + 0.00795353i
\(886\) 17.8658 + 54.9853i 0.600214 + 1.84727i
\(887\) 7.26568 22.3614i 0.243957 0.750824i −0.751849 0.659336i \(-0.770838\pi\)
0.995806 0.0914882i \(-0.0291624\pi\)
\(888\) 77.4323 + 56.2578i 2.59846 + 1.88789i
\(889\) 6.88893 21.2019i 0.231047 0.711090i
\(890\) −20.2799 + 14.7342i −0.679784 + 0.493892i
\(891\) −5.48554 + 3.98548i −0.183772 + 0.133518i
\(892\) −39.8087 28.9227i −1.33290 0.968405i
\(893\) 17.2676 0.577838
\(894\) 34.3746 1.14966
\(895\) 4.91110 + 3.56812i 0.164160 + 0.119269i
\(896\) 11.5137 + 35.4355i 0.384646 + 1.18382i
\(897\) −0.868078 + 2.67167i −0.0289843 + 0.0892044i
\(898\) −50.5739 −1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −2.38945 + 7.35398i −0.0796042 + 0.244996i
\(902\) −0.115683 0.356035i −0.00385181 0.0118547i
\(903\) −5.95736 4.32827i −0.198249 0.144036i
\(904\) −145.176 −4.82847
\(905\) −11.3179 −0.376219
\(906\) −9.90963 7.19976i −0.329225 0.239196i
\(907\) 10.1792 7.39560i 0.337994 0.245567i −0.405821 0.913952i \(-0.633014\pi\)
0.743815 + 0.668386i \(0.233014\pi\)
\(908\) −35.8406 + 26.0397i −1.18941 + 0.864159i
\(909\) −2.47409 + 7.61448i −0.0820605 + 0.252556i
\(910\) −8.39304 6.09790i −0.278227 0.202143i
\(911\) −14.6117 + 44.9702i −0.484108 + 1.48993i 0.349162 + 0.937062i \(0.386466\pi\)
−0.833269 + 0.552867i \(0.813534\pi\)
\(912\) −14.5841 44.8853i −0.482928 1.48630i
\(913\) −18.0523 + 13.1157i −0.597443 + 0.434068i
\(914\) −3.41333 10.5051i −0.112903 0.347479i
\(915\) −1.36462 4.19986i −0.0451129 0.138843i
\(916\) −96.7824 + 70.3165i −3.19778 + 2.32332i
\(917\) 1.30089 + 4.00372i 0.0429591 + 0.132214i
\(918\) −12.9921 + 39.9856i −0.428803 + 1.31972i
\(919\) 18.7141 + 13.5966i 0.617320 + 0.448510i 0.851985 0.523567i \(-0.175399\pi\)
−0.234664 + 0.972077i \(0.575399\pi\)
\(920\) 0.882816 2.71703i 0.0291056 0.0895778i
\(921\) −10.2772 + 7.46682i −0.338645 + 0.246040i
\(922\) −49.7848 + 36.1708i −1.63958 + 1.19122i
\(923\) −14.1316 10.2672i −0.465147 0.337949i
\(924\) 17.1645 0.564670
\(925\) −35.8582 −1.17901
\(926\) −36.0560 26.1962i −1.18488 0.860862i
\(927\) −4.61670 14.2087i −0.151632 0.466677i
\(928\) 43.7846 134.755i 1.43730 4.42355i
\(929\) 1.68694 0.0553468 0.0276734 0.999617i \(-0.491190\pi\)
0.0276734 + 0.999617i \(0.491190\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 26.3030 80.9524i 0.861585 2.65169i
\(933\) 9.05844 + 27.8790i 0.296560 + 0.912718i
\(934\) 83.0208 + 60.3181i 2.71652 + 1.97367i
\(935\) 2.24796 0.0735162
\(936\) 31.5153 1.03011
\(937\) −15.9592 11.5950i −0.521364 0.378793i 0.295753 0.955264i \(-0.404429\pi\)
−0.817118 + 0.576471i \(0.804429\pi\)
\(938\) −31.1885 + 22.6598i −1.01834 + 0.739868i
\(939\) −0.518174 + 0.376475i −0.0169100 + 0.0122858i
\(940\) −6.62107 + 20.3776i −0.215956 + 0.664643i
\(941\) 7.13817 + 5.18618i 0.232698 + 0.169065i 0.698024 0.716075i \(-0.254063\pi\)
−0.465326 + 0.885139i \(0.654063\pi\)
\(942\) 3.92478 12.0792i 0.127876 0.393563i
\(943\) 0.0173393 + 0.0533648i 0.000564644 + 0.00173780i
\(944\) −4.88523 + 3.54933i −0.159001 + 0.115521i
\(945\) 1.83649 + 5.65214i 0.0597411 + 0.183864i
\(946\) −3.34057 10.2812i −0.108611 0.334271i
\(947\) −12.5893 + 9.14663i −0.409096 + 0.297226i −0.773236 0.634119i \(-0.781363\pi\)
0.364140 + 0.931344i \(0.381363\pi\)
\(948\) −22.2750 68.5553i −0.723458 2.22657i
\(949\) 8.51426 26.2042i 0.276384 0.850624i
\(950\) 25.8728 + 18.7977i 0.839426 + 0.609879i
\(951\) −2.44746 + 7.53250i −0.0793642 + 0.244258i
\(952\) 33.6112 24.4199i 1.08934 0.791455i
\(953\) −7.80840 + 5.67314i −0.252939 + 0.183771i −0.707028 0.707185i \(-0.749965\pi\)
0.454089 + 0.890956i \(0.349965\pi\)
\(954\) −6.00570 4.36339i −0.194442 0.141270i
\(955\) 0.728916 0.0235872
\(956\) 95.6945 3.09498
\(957\) −12.4849 9.07083i −0.403580 0.293218i
\(958\) 28.0023 + 86.1821i 0.904712 + 2.78442i
\(959\) −4.34583 + 13.3751i −0.140334 + 0.431904i
\(960\) 18.1105 0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 3.77063 11.6048i 0.121507 0.373960i
\(964\) −29.4071 90.5056i −0.947138 2.91499i
\(965\) −6.26392 4.55100i −0.201643 0.146502i
\(966\) −3.55525 −0.114388
\(967\) 28.3976 0.913204 0.456602 0.889671i \(-0.349066\pi\)
0.456602 + 0.889671i \(0.349066\pi\)
\(968\) −64.8924 47.1471i −2.08572 1.51537i
\(969\) −8.14485 + 5.91758i −0.261650 + 0.190100i
\(970\) −1.69373 + 1.23056i −0.0543823 + 0.0395110i
\(971\) −6.83764 + 21.0441i −0.219430 + 0.675337i 0.779379 + 0.626553i \(0.215535\pi\)
−0.998809 + 0.0487844i \(0.984465\pi\)
\(972\) −41.4152 30.0899i −1.32839 0.965134i
\(973\) 0.722202 2.22271i 0.0231527 0.0712568i
\(974\) 17.1886 + 52.9011i 0.550758 + 1.69506i
\(975\) 19.5121 14.1764i 0.624887 0.454007i
\(976\) −20.4703 63.0012i −0.655240 2.01662i
\(977\) −6.15324 18.9377i −0.196859 0.605871i −0.999950 0.0100140i \(-0.996812\pi\)
0.803090 0.595857i \(-0.203188\pi\)
\(978\) 5.37531 3.90539i 0.171883 0.124881i
\(979\) 6.32986 + 19.4813i 0.202303 + 0.622626i
\(980\) −3.95581 + 12.1747i −0.126364 + 0.388907i
\(981\) 5.75086 + 4.17824i 0.183611 + 0.133401i
\(982\) −20.5604 + 63.2785i −0.656110 + 2.01930i
\(983\) 20.1691 14.6537i 0.643294 0.467381i −0.217686 0.976019i \(-0.569851\pi\)
0.860980 + 0.508638i \(0.169851\pi\)
\(984\) −1.04028 + 0.755810i −0.0331630 + 0.0240944i
\(985\) 1.46112 + 1.06157i 0.0465552 + 0.0338243i
\(986\) −60.4320 −1.92455
\(987\) 16.4811 0.524598
\(988\) 39.9319 + 29.0122i 1.27040 + 0.923002i
\(989\) 0.500706 + 1.54101i 0.0159215 + 0.0490014i
\(990\) −0.666901 + 2.05251i −0.0211955 + 0.0652330i
\(991\) −42.0512 −1.33580 −0.667900 0.744251i \(-0.732807\pi\)
−0.667900 + 0.744251i \(0.732807\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 6.83142 21.0249i 0.216679 0.666871i
\(995\) −2.47861 7.62839i −0.0785774 0.241836i
\(996\) 100.319 + 72.8860i 3.17873 + 2.30948i
\(997\) 14.4647 0.458100 0.229050 0.973415i \(-0.426438\pi\)
0.229050 + 0.973415i \(0.426438\pi\)
\(998\) 66.0707 2.09143
\(999\) 35.4442 + 25.7517i 1.12140 + 0.814748i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.o.628.1 16
31.2 even 5 961.2.a.i.1.1 8
31.3 odd 30 961.2.g.n.816.2 16
31.4 even 5 inner 961.2.d.o.531.1 16
31.5 even 3 31.2.g.a.14.1 16
31.6 odd 6 961.2.g.j.846.1 16
31.7 even 15 31.2.g.a.20.1 yes 16
31.8 even 5 961.2.d.p.388.4 16
31.9 even 15 961.2.g.t.338.2 16
31.10 even 15 961.2.c.j.521.1 16
31.11 odd 30 961.2.g.j.844.1 16
31.12 odd 30 961.2.c.i.439.1 16
31.13 odd 30 961.2.g.m.732.2 16
31.14 even 15 961.2.g.s.235.2 16
31.15 odd 10 961.2.d.q.374.4 16
31.16 even 5 961.2.d.p.374.4 16
31.17 odd 30 961.2.g.m.235.2 16
31.18 even 15 961.2.g.s.732.2 16
31.19 even 15 961.2.c.j.439.1 16
31.20 even 15 961.2.g.k.844.1 16
31.21 odd 30 961.2.c.i.521.1 16
31.22 odd 30 961.2.g.n.338.2 16
31.23 odd 10 961.2.d.q.388.4 16
31.24 odd 30 961.2.g.l.547.1 16
31.25 even 3 961.2.g.k.846.1 16
31.26 odd 6 961.2.g.l.448.1 16
31.27 odd 10 961.2.d.n.531.1 16
31.28 even 15 961.2.g.t.816.2 16
31.29 odd 10 961.2.a.j.1.1 8
31.30 odd 2 961.2.d.n.628.1 16
93.2 odd 10 8649.2.a.bf.1.8 8
93.5 odd 6 279.2.y.c.262.2 16
93.29 even 10 8649.2.a.be.1.8 8
93.38 odd 30 279.2.y.c.82.2 16
124.7 odd 30 496.2.bg.c.113.1 16
124.67 odd 6 496.2.bg.c.417.1 16
155.7 odd 60 775.2.ck.a.299.4 32
155.38 odd 60 775.2.ck.a.299.1 32
155.67 odd 12 775.2.ck.a.324.1 32
155.69 even 30 775.2.bl.a.51.2 16
155.98 odd 12 775.2.ck.a.324.4 32
155.129 even 6 775.2.bl.a.76.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.5 even 3
31.2.g.a.20.1 yes 16 31.7 even 15
279.2.y.c.82.2 16 93.38 odd 30
279.2.y.c.262.2 16 93.5 odd 6
496.2.bg.c.113.1 16 124.7 odd 30
496.2.bg.c.417.1 16 124.67 odd 6
775.2.bl.a.51.2 16 155.69 even 30
775.2.bl.a.76.2 16 155.129 even 6
775.2.ck.a.299.1 32 155.38 odd 60
775.2.ck.a.299.4 32 155.7 odd 60
775.2.ck.a.324.1 32 155.67 odd 12
775.2.ck.a.324.4 32 155.98 odd 12
961.2.a.i.1.1 8 31.2 even 5
961.2.a.j.1.1 8 31.29 odd 10
961.2.c.i.439.1 16 31.12 odd 30
961.2.c.i.521.1 16 31.21 odd 30
961.2.c.j.439.1 16 31.19 even 15
961.2.c.j.521.1 16 31.10 even 15
961.2.d.n.531.1 16 31.27 odd 10
961.2.d.n.628.1 16 31.30 odd 2
961.2.d.o.531.1 16 31.4 even 5 inner
961.2.d.o.628.1 16 1.1 even 1 trivial
961.2.d.p.374.4 16 31.16 even 5
961.2.d.p.388.4 16 31.8 even 5
961.2.d.q.374.4 16 31.15 odd 10
961.2.d.q.388.4 16 31.23 odd 10
961.2.g.j.844.1 16 31.11 odd 30
961.2.g.j.846.1 16 31.6 odd 6
961.2.g.k.844.1 16 31.20 even 15
961.2.g.k.846.1 16 31.25 even 3
961.2.g.l.448.1 16 31.26 odd 6
961.2.g.l.547.1 16 31.24 odd 30
961.2.g.m.235.2 16 31.17 odd 30
961.2.g.m.732.2 16 31.13 odd 30
961.2.g.n.338.2 16 31.22 odd 30
961.2.g.n.816.2 16 31.3 odd 30
961.2.g.s.235.2 16 31.14 even 15
961.2.g.s.732.2 16 31.18 even 15
961.2.g.t.338.2 16 31.9 even 15
961.2.g.t.816.2 16 31.28 even 15
8649.2.a.be.1.8 8 93.29 even 10
8649.2.a.bf.1.8 8 93.2 odd 10