Properties

Label 961.2.g.j.846.1
Level $961$
Weight $2$
Character 961.846
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-3,-14,-3,-11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 846.1
Root \(-1.14660i\) of defining polynomial
Character \(\chi\) \(=\) 961.846
Dual form 961.2.g.j.844.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831304 + 2.55849i) q^{2} +(1.38815 + 0.295061i) q^{3} +(-4.23677 - 3.07819i) q^{4} +(-0.304192 - 0.526876i) q^{5} +(-1.90889 + 3.30629i) q^{6} +(-1.57758 + 0.702385i) q^{7} +(7.04481 - 5.11835i) q^{8} +(-0.900731 - 0.401031i) q^{9} +(1.60088 - 0.340278i) q^{10} +(-0.139796 + 1.33007i) q^{11} +(-4.97303 - 5.52311i) q^{12} +(-2.45615 + 2.72784i) q^{13} +(-0.485595 - 4.62012i) q^{14} +(-0.266804 - 0.821139i) q^{15} +(4.00227 + 12.3177i) q^{16} +(-0.288793 - 2.74768i) q^{17} +(1.77482 - 1.97113i) q^{18} +(-1.71811 - 1.90816i) q^{19} +(-0.333035 + 3.16861i) q^{20} +(-2.39717 + 0.509534i) q^{21} +(-3.28675 - 1.46335i) q^{22} +(-0.436271 + 0.316969i) q^{23} +(11.2895 - 5.02641i) q^{24} +(2.31493 - 4.00958i) q^{25} +(-4.93733 - 8.55171i) q^{26} +(-4.57641 - 3.32495i) q^{27} +(8.84593 + 1.88026i) q^{28} +(2.51258 - 7.73291i) q^{29} +2.32267 q^{30} -17.4262 q^{32} +(-0.586508 + 1.80509i) q^{33} +(7.27000 + 1.54529i) q^{34} +(0.849957 + 0.617530i) q^{35} +(2.58174 + 4.47170i) q^{36} +(3.87249 - 6.70735i) q^{37} +(6.31027 - 2.80951i) q^{38} +(-4.21439 + 3.06194i) q^{39} +(-4.83971 - 2.15478i) q^{40} +(0.101778 - 0.0216336i) q^{41} +(0.689139 - 6.55671i) q^{42} +(2.01054 + 2.23293i) q^{43} +(4.68648 - 5.20487i) q^{44} +(0.0627014 + 0.596564i) q^{45} +(-0.448289 - 1.37969i) q^{46} +(-2.07813 - 6.39584i) q^{47} +(1.92128 + 18.2798i) q^{48} +(-2.68849 + 2.98587i) q^{49} +(8.33407 + 9.25592i) q^{50} +(0.409845 - 3.89942i) q^{51} +(18.8030 - 3.99669i) q^{52} +(-2.55678 - 1.13835i) q^{53} +(12.3112 - 8.94464i) q^{54} +(0.743304 - 0.330940i) q^{55} +(-7.51871 + 13.0228i) q^{56} +(-1.82198 - 3.15576i) q^{57} +(17.6959 + 12.8568i) q^{58} +(-0.456044 - 0.0969352i) q^{59} +(-1.39724 + 4.30025i) q^{60} +5.11468 q^{61} +1.70266 q^{63} +(6.48190 - 19.9492i) q^{64} +(2.18437 + 0.464303i) q^{65} +(-4.13073 - 3.00115i) q^{66} +(-4.14923 - 7.18668i) q^{67} +(-7.23436 + 12.5303i) q^{68} +(-0.699136 + 0.311275i) q^{69} +(-2.28652 + 1.66125i) q^{70} +(4.34730 + 1.93554i) q^{71} +(-8.39810 + 1.78507i) q^{72} +(0.784611 - 7.46507i) q^{73} +(13.9415 + 15.4836i) q^{74} +(4.39655 - 4.88287i) q^{75} +(1.40557 + 13.3731i) q^{76} +(-0.713679 - 2.19648i) q^{77} +(-4.33049 - 13.3279i) q^{78} +(-1.01382 - 9.64582i) q^{79} +(5.27246 - 5.85566i) q^{80} +(-3.39245 - 3.76770i) q^{81} +(-0.0292592 + 0.278382i) q^{82} +(-16.3200 + 3.46892i) q^{83} +(11.7247 + 5.22018i) q^{84} +(-1.35984 + 0.987981i) q^{85} +(-7.38430 + 3.28770i) q^{86} +(5.76952 - 9.99310i) q^{87} +(5.82292 + 10.0856i) q^{88} +(-12.3911 - 9.00268i) q^{89} +(-1.57843 - 0.335505i) q^{90} +(1.95880 - 6.02855i) q^{91} +2.82407 q^{92} +18.0912 q^{94} +(-0.482726 + 1.48568i) q^{95} +(-24.1902 - 5.14178i) q^{96} +(1.03488 + 0.751881i) q^{97} +(-5.40437 - 9.36065i) q^{98} +(0.659316 - 1.14197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 3 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} + 7 q^{11} + 10 q^{12} - 8 q^{13} - 21 q^{14} - 14 q^{15} - 2 q^{16} - 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831304 + 2.55849i −0.587821 + 1.80913i −0.000184800 1.00000i \(0.500059\pi\)
−0.587636 + 0.809126i \(0.699941\pi\)
\(3\) 1.38815 + 0.295061i 0.801450 + 0.170353i 0.590388 0.807119i \(-0.298975\pi\)
0.211062 + 0.977473i \(0.432308\pi\)
\(4\) −4.23677 3.07819i −2.11839 1.53910i
\(5\) −0.304192 0.526876i −0.136039 0.235626i 0.789955 0.613165i \(-0.210104\pi\)
−0.925994 + 0.377539i \(0.876770\pi\)
\(6\) −1.90889 + 3.30629i −0.779300 + 1.34979i
\(7\) −1.57758 + 0.702385i −0.596270 + 0.265477i −0.682603 0.730790i \(-0.739152\pi\)
0.0863324 + 0.996266i \(0.472485\pi\)
\(8\) 7.04481 5.11835i 2.49072 1.80961i
\(9\) −0.900731 0.401031i −0.300244 0.133677i
\(10\) 1.60088 0.340278i 0.506243 0.107605i
\(11\) −0.139796 + 1.33007i −0.0421500 + 0.401030i 0.953023 + 0.302897i \(0.0979538\pi\)
−0.995173 + 0.0981331i \(0.968713\pi\)
\(12\) −4.97303 5.52311i −1.43559 1.59438i
\(13\) −2.45615 + 2.72784i −0.681215 + 0.756566i −0.980268 0.197671i \(-0.936662\pi\)
0.299054 + 0.954236i \(0.403329\pi\)
\(14\) −0.485595 4.62012i −0.129781 1.23478i
\(15\) −0.266804 0.821139i −0.0688885 0.212017i
\(16\) 4.00227 + 12.3177i 1.00057 + 3.07943i
\(17\) −0.288793 2.74768i −0.0700427 0.666411i −0.972063 0.234719i \(-0.924583\pi\)
0.902021 0.431693i \(-0.142084\pi\)
\(18\) 1.77482 1.97113i 0.418328 0.464600i
\(19\) −1.71811 1.90816i −0.394162 0.437761i 0.513099 0.858329i \(-0.328497\pi\)
−0.907261 + 0.420568i \(0.861831\pi\)
\(20\) −0.333035 + 3.16861i −0.0744688 + 0.708524i
\(21\) −2.39717 + 0.509534i −0.523106 + 0.111190i
\(22\) −3.28675 1.46335i −0.700737 0.311988i
\(23\) −0.436271 + 0.316969i −0.0909688 + 0.0660927i −0.632340 0.774691i \(-0.717905\pi\)
0.541371 + 0.840784i \(0.317905\pi\)
\(24\) 11.2895 5.02641i 2.30446 1.02601i
\(25\) 2.31493 4.00958i 0.462987 0.801917i
\(26\) −4.93733 8.55171i −0.968290 1.67713i
\(27\) −4.57641 3.32495i −0.880730 0.639888i
\(28\) 8.84593 + 1.88026i 1.67172 + 0.355336i
\(29\) 2.51258 7.73291i 0.466574 1.43597i −0.390419 0.920637i \(-0.627670\pi\)
0.856993 0.515329i \(-0.172330\pi\)
\(30\) 2.32267 0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −0.586508 + 1.80509i −0.102098 + 0.314225i
\(34\) 7.27000 + 1.54529i 1.24679 + 0.265014i
\(35\) 0.849957 + 0.617530i 0.143669 + 0.104382i
\(36\) 2.58174 + 4.47170i 0.430290 + 0.745284i
\(37\) 3.87249 6.70735i 0.636633 1.10268i −0.349533 0.936924i \(-0.613660\pi\)
0.986167 0.165757i \(-0.0530068\pi\)
\(38\) 6.31027 2.80951i 1.02366 0.455763i
\(39\) −4.21439 + 3.06194i −0.674843 + 0.490302i
\(40\) −4.83971 2.15478i −0.765225 0.340700i
\(41\) 0.101778 0.0216336i 0.0158951 0.00337860i −0.199957 0.979805i \(-0.564080\pi\)
0.215852 + 0.976426i \(0.430747\pi\)
\(42\) 0.689139 6.55671i 0.106336 1.01172i
\(43\) 2.01054 + 2.23293i 0.306604 + 0.340519i 0.876680 0.481073i \(-0.159753\pi\)
−0.570076 + 0.821592i \(0.693086\pi\)
\(44\) 4.68648 5.20487i 0.706514 0.784663i
\(45\) 0.0627014 + 0.596564i 0.00934697 + 0.0889305i
\(46\) −0.448289 1.37969i −0.0660967 0.203425i
\(47\) −2.07813 6.39584i −0.303127 0.932929i −0.980370 0.197169i \(-0.936825\pi\)
0.677243 0.735760i \(-0.263175\pi\)
\(48\) 1.92128 + 18.2798i 0.277314 + 2.63846i
\(49\) −2.68849 + 2.98587i −0.384070 + 0.426553i
\(50\) 8.33407 + 9.25592i 1.17862 + 1.30898i
\(51\) 0.409845 3.89942i 0.0573898 0.546027i
\(52\) 18.8030 3.99669i 2.60750 0.554242i
\(53\) −2.55678 1.13835i −0.351201 0.156365i 0.223551 0.974692i \(-0.428235\pi\)
−0.574752 + 0.818327i \(0.694902\pi\)
\(54\) 12.3112 8.94464i 1.67535 1.21721i
\(55\) 0.743304 0.330940i 0.100227 0.0446240i
\(56\) −7.51871 + 13.0228i −1.00473 + 1.74024i
\(57\) −1.82198 3.15576i −0.241327 0.417990i
\(58\) 17.6959 + 12.8568i 2.32358 + 1.68818i
\(59\) −0.456044 0.0969352i −0.0593719 0.0126199i 0.178130 0.984007i \(-0.442995\pi\)
−0.237502 + 0.971387i \(0.576329\pi\)
\(60\) −1.39724 + 4.30025i −0.180382 + 0.555160i
\(61\) 5.11468 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 6.48190 19.9492i 0.810238 2.49365i
\(65\) 2.18437 + 0.464303i 0.270938 + 0.0575897i
\(66\) −4.13073 3.00115i −0.508457 0.369416i
\(67\) −4.14923 7.18668i −0.506910 0.877993i −0.999968 0.00799701i \(-0.997454\pi\)
0.493058 0.869996i \(-0.335879\pi\)
\(68\) −7.23436 + 12.5303i −0.877294 + 1.51952i
\(69\) −0.699136 + 0.311275i −0.0841661 + 0.0374731i
\(70\) −2.28652 + 1.66125i −0.273291 + 0.198558i
\(71\) 4.34730 + 1.93554i 0.515929 + 0.229706i 0.648148 0.761514i \(-0.275544\pi\)
−0.132219 + 0.991220i \(0.542210\pi\)
\(72\) −8.39810 + 1.78507i −0.989725 + 0.210373i
\(73\) 0.784611 7.46507i 0.0918317 0.873720i −0.847520 0.530764i \(-0.821905\pi\)
0.939351 0.342956i \(-0.111428\pi\)
\(74\) 13.9415 + 15.4836i 1.62066 + 1.79993i
\(75\) 4.39655 4.88287i 0.507670 0.563825i
\(76\) 1.40557 + 13.3731i 0.161230 + 1.53400i
\(77\) −0.713679 2.19648i −0.0813313 0.250312i
\(78\) −4.33049 13.3279i −0.490332 1.50909i
\(79\) −1.01382 9.64582i −0.114063 1.08524i −0.890481 0.455021i \(-0.849632\pi\)
0.776417 0.630219i \(-0.217035\pi\)
\(80\) 5.27246 5.85566i 0.589479 0.654682i
\(81\) −3.39245 3.76770i −0.376939 0.418633i
\(82\) −0.0292592 + 0.278382i −0.00323113 + 0.0307422i
\(83\) −16.3200 + 3.46892i −1.79135 + 0.380764i −0.979234 0.202731i \(-0.935018\pi\)
−0.812117 + 0.583495i \(0.801685\pi\)
\(84\) 11.7247 + 5.22018i 1.27927 + 0.569568i
\(85\) −1.35984 + 0.987981i −0.147495 + 0.107162i
\(86\) −7.38430 + 3.28770i −0.796269 + 0.354522i
\(87\) 5.76952 9.99310i 0.618557 1.07137i
\(88\) 5.82292 + 10.0856i 0.620725 + 1.07513i
\(89\) −12.3911 9.00268i −1.31346 0.954282i −0.999989 0.00468333i \(-0.998509\pi\)
−0.313468 0.949599i \(-0.601491\pi\)
\(90\) −1.57843 0.335505i −0.166381 0.0353653i
\(91\) 1.95880 6.02855i 0.205338 0.631964i
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −0.482726 + 1.48568i −0.0495266 + 0.152427i
\(96\) −24.1902 5.14178i −2.46890 0.524781i
\(97\) 1.03488 + 0.751881i 0.105076 + 0.0763420i 0.639082 0.769138i \(-0.279314\pi\)
−0.534007 + 0.845480i \(0.679314\pi\)
\(98\) −5.40437 9.36065i −0.545924 0.945568i
\(99\) 0.659316 1.14197i 0.0662638 0.114772i
\(100\) −22.1501 + 9.86187i −2.21501 + 0.986187i
\(101\) −6.56941 + 4.77296i −0.653681 + 0.474927i −0.864523 0.502593i \(-0.832379\pi\)
0.210842 + 0.977520i \(0.432379\pi\)
\(102\) 9.63591 + 4.29018i 0.954097 + 0.424791i
\(103\) −14.8214 + 3.15038i −1.46040 + 0.310417i −0.868536 0.495625i \(-0.834939\pi\)
−0.591859 + 0.806042i \(0.701606\pi\)
\(104\) −3.34111 + 31.7885i −0.327623 + 3.11712i
\(105\) 0.997661 + 1.10801i 0.0973618 + 0.108131i
\(106\) 5.03792 5.59518i 0.489327 0.543452i
\(107\) 1.29360 + 12.3078i 0.125057 + 1.18984i 0.859487 + 0.511157i \(0.170783\pi\)
−0.734430 + 0.678685i \(0.762550\pi\)
\(108\) 9.15433 + 28.1741i 0.880876 + 2.71106i
\(109\) 2.22788 + 6.85672i 0.213392 + 0.656755i 0.999264 + 0.0383645i \(0.0122148\pi\)
−0.785871 + 0.618390i \(0.787785\pi\)
\(110\) 0.228796 + 2.17685i 0.0218148 + 0.207554i
\(111\) 7.35468 8.16820i 0.698075 0.775291i
\(112\) −14.9657 16.6211i −1.41413 1.57055i
\(113\) −1.74268 + 16.5805i −0.163937 + 1.55976i 0.535171 + 0.844744i \(0.320247\pi\)
−0.699108 + 0.715016i \(0.746420\pi\)
\(114\) 9.58859 2.03812i 0.898054 0.190887i
\(115\) 0.299714 + 0.133441i 0.0279484 + 0.0124434i
\(116\) −34.4486 + 25.0284i −3.19847 + 2.32383i
\(117\) 3.30628 1.47205i 0.305666 0.136091i
\(118\) 0.627119 1.08620i 0.0577310 0.0999930i
\(119\) 2.38553 + 4.13185i 0.218681 + 0.378767i
\(120\) −6.08246 4.41917i −0.555250 0.403413i
\(121\) 9.01009 + 1.91515i 0.819099 + 0.174105i
\(122\) −4.25185 + 13.0859i −0.384944 + 1.18474i
\(123\) 0.147667 0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −1.41542 + 4.35623i −0.126096 + 0.388084i
\(127\) −12.6273 2.68402i −1.12049 0.238168i −0.389818 0.920892i \(-0.627462\pi\)
−0.730677 + 0.682724i \(0.760795\pi\)
\(128\) 17.4553 + 12.6820i 1.54285 + 1.12095i
\(129\) 2.13208 + 3.69288i 0.187720 + 0.325140i
\(130\) −3.00379 + 5.20272i −0.263450 + 0.456309i
\(131\) −2.22703 + 0.991536i −0.194576 + 0.0866309i −0.501712 0.865035i \(-0.667296\pi\)
0.307136 + 0.951666i \(0.400630\pi\)
\(132\) 8.04130 5.84235i 0.699906 0.508511i
\(133\) 4.05072 + 1.80350i 0.351242 + 0.156383i
\(134\) 21.8363 4.64146i 1.88637 0.400961i
\(135\) −0.359732 + 3.42262i −0.0309608 + 0.294572i
\(136\) −16.0981 17.8788i −1.38040 1.53309i
\(137\) −5.44928 + 6.05204i −0.465564 + 0.517061i −0.929507 0.368804i \(-0.879767\pi\)
0.463944 + 0.885865i \(0.346434\pi\)
\(138\) −0.215201 2.04750i −0.0183191 0.174294i
\(139\) 0.418212 + 1.28712i 0.0354723 + 0.109172i 0.967225 0.253921i \(-0.0817204\pi\)
−0.931753 + 0.363094i \(0.881720\pi\)
\(140\) −1.70020 5.23267i −0.143693 0.442241i
\(141\) −0.997604 9.49157i −0.0840134 0.799334i
\(142\) −8.56599 + 9.51349i −0.718842 + 0.798354i
\(143\) −3.28484 3.64819i −0.274692 0.305077i
\(144\) 1.33482 12.7000i 0.111235 1.05833i
\(145\) −4.83859 + 1.02847i −0.401823 + 0.0854101i
\(146\) 18.4471 + 8.21316i 1.52669 + 0.679726i
\(147\) −4.61305 + 3.35158i −0.380478 + 0.276433i
\(148\) −37.0534 + 16.4972i −3.04577 + 1.35606i
\(149\) 4.50192 7.79756i 0.368812 0.638801i −0.620568 0.784153i \(-0.713098\pi\)
0.989380 + 0.145351i \(0.0464313\pi\)
\(150\) 8.83789 + 15.3077i 0.721611 + 1.24987i
\(151\) −2.59566 1.88585i −0.211232 0.153469i 0.477139 0.878828i \(-0.341674\pi\)
−0.688371 + 0.725359i \(0.741674\pi\)
\(152\) −21.8704 4.64869i −1.77392 0.377059i
\(153\) −0.841782 + 2.59074i −0.0680541 + 0.209449i
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −1.02803 + 3.16395i −0.0820456 + 0.252510i −0.983662 0.180027i \(-0.942382\pi\)
0.901616 + 0.432537i \(0.142382\pi\)
\(158\) 25.5215 + 5.42477i 2.03038 + 0.431571i
\(159\) −3.21332 2.33461i −0.254833 0.185147i
\(160\) 5.30090 + 9.18143i 0.419073 + 0.725856i
\(161\) 0.465619 0.806476i 0.0366959 0.0635592i
\(162\) 12.4598 5.54745i 0.978933 0.435849i
\(163\) −1.40797 + 1.02295i −0.110281 + 0.0801236i −0.641559 0.767074i \(-0.721712\pi\)
0.531278 + 0.847198i \(0.321712\pi\)
\(164\) −0.497803 0.221636i −0.0388719 0.0173069i
\(165\) 1.12947 0.240076i 0.0879289 0.0186899i
\(166\) 4.69167 44.6383i 0.364144 3.46460i
\(167\) 9.37885 + 10.4163i 0.725757 + 0.806035i 0.987251 0.159170i \(-0.0508818\pi\)
−0.261494 + 0.965205i \(0.584215\pi\)
\(168\) −14.2796 + 15.8591i −1.10170 + 1.22356i
\(169\) −0.0495237 0.471186i −0.00380951 0.0362451i
\(170\) −1.39730 4.30045i −0.107168 0.329829i
\(171\) 0.782326 + 2.40775i 0.0598260 + 0.184125i
\(172\) −1.64480 15.6492i −0.125415 1.19324i
\(173\) −0.00801678 + 0.00890353i −0.000609504 + 0.000676923i −0.743450 0.668792i \(-0.766812\pi\)
0.742840 + 0.669469i \(0.233478\pi\)
\(174\) 20.7710 + 23.0686i 1.57465 + 1.74882i
\(175\) −0.835728 + 7.95143i −0.0631751 + 0.601071i
\(176\) −16.9429 + 3.60132i −1.27712 + 0.271460i
\(177\) −0.604457 0.269122i −0.0454338 0.0202284i
\(178\) 33.3341 24.2186i 2.49849 1.81526i
\(179\) 9.11536 4.05842i 0.681314 0.303341i −0.0367430 0.999325i \(-0.511698\pi\)
0.718057 + 0.695984i \(0.245032\pi\)
\(180\) 1.57069 2.72051i 0.117072 0.202775i
\(181\) −9.30158 16.1108i −0.691381 1.19751i −0.971385 0.237509i \(-0.923669\pi\)
0.280004 0.959999i \(-0.409664\pi\)
\(182\) 13.7956 + 10.0231i 1.02260 + 0.742963i
\(183\) 7.09995 + 1.50914i 0.524843 + 0.111559i
\(184\) −1.45108 + 4.46598i −0.106975 + 0.329236i
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −10.8831 + 33.4946i −0.793728 + 2.44284i
\(189\) 9.55506 + 2.03099i 0.695028 + 0.147733i
\(190\) −3.39980 2.47010i −0.246647 0.179200i
\(191\) −0.599059 1.03760i −0.0433464 0.0750782i 0.843538 0.537069i \(-0.180469\pi\)
−0.886885 + 0.461991i \(0.847135\pi\)
\(192\) 14.8841 25.7800i 1.07417 1.86051i
\(193\) 11.6263 5.17636i 0.836879 0.372602i 0.0568780 0.998381i \(-0.481885\pi\)
0.780001 + 0.625779i \(0.215219\pi\)
\(194\) −2.78398 + 2.02268i −0.199878 + 0.145220i
\(195\) 2.89524 + 1.28905i 0.207333 + 0.0923105i
\(196\) 20.5816 4.37476i 1.47012 0.312483i
\(197\) −0.310303 + 2.95233i −0.0221082 + 0.210345i 0.977891 + 0.209115i \(0.0670583\pi\)
−0.999999 + 0.00123020i \(0.999608\pi\)
\(198\) 2.37363 + 2.63618i 0.168686 + 0.187345i
\(199\) 8.82185 9.79766i 0.625365 0.694538i −0.344333 0.938848i \(-0.611895\pi\)
0.969697 + 0.244310i \(0.0785614\pi\)
\(200\) −4.21420 40.0954i −0.297989 2.83517i
\(201\) −3.63926 11.2005i −0.256694 0.790021i
\(202\) −6.75039 20.7755i −0.474955 1.46176i
\(203\) 1.46769 + 13.9641i 0.103011 + 0.980088i
\(204\) −13.7396 + 15.2593i −0.961963 + 1.06837i
\(205\) −0.0423583 0.0470436i −0.00295843 0.00328567i
\(206\) 4.26085 40.5393i 0.296868 2.82451i
\(207\) 0.520078 0.110546i 0.0361479 0.00768347i
\(208\) −43.4310 19.3367i −3.01140 1.34076i
\(209\) 2.77816 2.01845i 0.192169 0.139619i
\(210\) −3.66420 + 1.63141i −0.252854 + 0.112578i
\(211\) −9.16614 + 15.8762i −0.631023 + 1.09296i 0.356320 + 0.934364i \(0.384031\pi\)
−0.987343 + 0.158600i \(0.949302\pi\)
\(212\) 7.32843 + 12.6932i 0.503318 + 0.871773i
\(213\) 5.46361 + 3.96954i 0.374360 + 0.271989i
\(214\) −32.5648 6.92186i −2.22608 0.473169i
\(215\) 0.564887 1.73854i 0.0385250 0.118568i
\(216\) −49.2582 −3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 3.29181 10.1311i 0.222440 0.684599i
\(220\) −4.16791 0.885916i −0.281000 0.0597285i
\(221\) 8.20455 + 5.96096i 0.551898 + 0.400977i
\(222\) 14.7843 + 25.6071i 0.992256 + 1.71864i
\(223\) 4.69801 8.13718i 0.314602 0.544906i −0.664751 0.747065i \(-0.731462\pi\)
0.979353 + 0.202159i \(0.0647957\pi\)
\(224\) 27.4912 12.2399i 1.83684 0.817812i
\(225\) −3.69310 + 2.68320i −0.246207 + 0.178880i
\(226\) −40.9723 18.2420i −2.72543 1.21344i
\(227\) −8.27456 + 1.75881i −0.549202 + 0.116737i −0.474152 0.880443i \(-0.657245\pi\)
−0.0750505 + 0.997180i \(0.523912\pi\)
\(228\) −1.99473 + 18.9786i −0.132104 + 1.25689i
\(229\) −15.2852 16.9760i −1.01008 1.12180i −0.992535 0.121958i \(-0.961083\pi\)
−0.0175421 0.999846i \(-0.505584\pi\)
\(230\) −0.590561 + 0.655884i −0.0389404 + 0.0432477i
\(231\) −0.342601 3.25963i −0.0225415 0.214468i
\(232\) −21.8792 67.3372i −1.43644 4.42090i
\(233\) 5.02260 + 15.4580i 0.329042 + 1.01269i 0.969583 + 0.244762i \(0.0787099\pi\)
−0.640542 + 0.767923i \(0.721290\pi\)
\(234\) 1.01770 + 9.68281i 0.0665294 + 0.632985i
\(235\) −2.73766 + 3.04048i −0.178585 + 0.198339i
\(236\) 1.63377 + 1.81449i 0.106349 + 0.118113i
\(237\) 1.43877 13.6890i 0.0934583 0.889197i
\(238\) −12.5544 + 2.66852i −0.813781 + 0.172975i
\(239\) −16.6932 7.43230i −1.07979 0.480755i −0.211791 0.977315i \(-0.567930\pi\)
−0.868003 + 0.496560i \(0.834596\pi\)
\(240\) 9.04675 6.57285i 0.583965 0.424275i
\(241\) 16.6005 7.39103i 1.06933 0.476098i 0.204868 0.978790i \(-0.434323\pi\)
0.864466 + 0.502691i \(0.167657\pi\)
\(242\) −12.3900 + 21.4602i −0.796461 + 1.37951i
\(243\) 4.88759 + 8.46555i 0.313539 + 0.543065i
\(244\) −21.6697 15.7440i −1.38726 1.00790i
\(245\) 2.39100 + 0.508223i 0.152756 + 0.0324692i
\(246\) −0.122756 + 0.377804i −0.00782663 + 0.0240879i
\(247\) 9.42508 0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 4.87032 14.9893i 0.308026 0.948007i
\(251\) −22.4291 4.76746i −1.41571 0.300919i −0.564368 0.825523i \(-0.690880\pi\)
−0.851346 + 0.524604i \(0.824213\pi\)
\(252\) −7.21376 5.24111i −0.454424 0.330159i
\(253\) −0.360602 0.624580i −0.0226708 0.0392670i
\(254\) 17.3642 30.0757i 1.08953 1.88712i
\(255\) −2.17918 + 0.970233i −0.136465 + 0.0607583i
\(256\) −13.0179 + 9.45807i −0.813620 + 0.591129i
\(257\) 0.0970122 + 0.0431926i 0.00605145 + 0.00269428i 0.409760 0.912193i \(-0.365612\pi\)
−0.403709 + 0.914888i \(0.632279\pi\)
\(258\) −11.2206 + 2.38501i −0.698564 + 0.148484i
\(259\) −1.39803 + 13.3014i −0.0868694 + 0.826507i
\(260\) −7.82547 8.69107i −0.485315 0.538997i
\(261\) −5.36430 + 5.95765i −0.332042 + 0.368770i
\(262\) −0.685500 6.52209i −0.0423503 0.402936i
\(263\) 2.25499 + 6.94015i 0.139049 + 0.427948i 0.996198 0.0871204i \(-0.0277665\pi\)
−0.857149 + 0.515068i \(0.827766\pi\)
\(264\) 5.10723 + 15.7184i 0.314328 + 0.967403i
\(265\) 0.177982 + 1.69338i 0.0109333 + 0.104024i
\(266\) −7.98161 + 8.86448i −0.489384 + 0.543516i
\(267\) −14.5444 16.1532i −0.890105 0.988561i
\(268\) −4.54266 + 43.2205i −0.277487 + 2.64011i
\(269\) 15.8649 3.37219i 0.967302 0.205606i 0.302934 0.953012i \(-0.402034\pi\)
0.664368 + 0.747405i \(0.268701\pi\)
\(270\) −8.45770 3.76561i −0.514719 0.229168i
\(271\) −4.16291 + 3.02453i −0.252879 + 0.183727i −0.707002 0.707212i \(-0.749953\pi\)
0.454123 + 0.890939i \(0.349953\pi\)
\(272\) 32.6894 14.5543i 1.98209 0.882482i
\(273\) 4.49790 7.79058i 0.272225 0.471508i
\(274\) −10.9541 18.9730i −0.661760 1.14620i
\(275\) 5.00939 + 3.63954i 0.302078 + 0.219472i
\(276\) 3.92024 + 0.833274i 0.235971 + 0.0501572i
\(277\) 5.22944 16.0946i 0.314207 0.967029i −0.661873 0.749616i \(-0.730238\pi\)
0.976080 0.217413i \(-0.0697618\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 0.589193 1.81335i 0.0351483 0.108175i −0.931943 0.362605i \(-0.881888\pi\)
0.967091 + 0.254429i \(0.0818876\pi\)
\(282\) 25.1134 + 5.33802i 1.49548 + 0.317874i
\(283\) 12.3859 + 8.99888i 0.736265 + 0.534928i 0.891539 0.452944i \(-0.149626\pi\)
−0.155274 + 0.987871i \(0.549626\pi\)
\(284\) −12.4605 21.5823i −0.739396 1.28067i
\(285\) −1.10846 + 1.91991i −0.0656596 + 0.113726i
\(286\) 12.0646 5.37148i 0.713392 0.317623i
\(287\) −0.145368 + 0.105616i −0.00858081 + 0.00623433i
\(288\) 15.6963 + 6.98844i 0.924913 + 0.411798i
\(289\) 9.16214 1.94747i 0.538949 0.114557i
\(290\) 1.39100 13.2345i 0.0816822 0.777154i
\(291\) 1.21471 + 1.34908i 0.0712078 + 0.0790843i
\(292\) −26.3032 + 29.2126i −1.53928 + 1.70954i
\(293\) −2.80070 26.6469i −0.163619 1.55673i −0.700860 0.713299i \(-0.747200\pi\)
0.537241 0.843429i \(-0.319467\pi\)
\(294\) −4.74013 14.5886i −0.276450 0.850826i
\(295\) 0.0876522 + 0.269766i 0.00510331 + 0.0157064i
\(296\) −7.04963 67.0727i −0.409751 3.89852i
\(297\) 5.06217 5.62211i 0.293737 0.326228i
\(298\) 16.2075 + 18.0003i 0.938876 + 1.04273i
\(299\) 0.206908 1.96860i 0.0119658 0.113847i
\(300\) −33.6576 + 7.15414i −1.94322 + 0.413045i
\(301\) −4.74017 2.11046i −0.273219 0.121645i
\(302\) 6.98272 5.07324i 0.401810 0.291932i
\(303\) −10.5277 + 4.68721i −0.604798 + 0.269273i
\(304\) 16.6278 28.8002i 0.953670 1.65181i
\(305\) −1.55584 2.69480i −0.0890873 0.154304i
\(306\) −5.92860 4.30738i −0.338916 0.246237i
\(307\) −8.75565 1.86107i −0.499712 0.106217i −0.0488415 0.998807i \(-0.515553\pi\)
−0.450870 + 0.892590i \(0.648886\pi\)
\(308\) −3.73749 + 11.5028i −0.212963 + 0.655434i
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −14.0175 + 43.1415i −0.793586 + 2.44241i
\(313\) 0.441458 + 0.0938349i 0.0249527 + 0.00530386i 0.220371 0.975416i \(-0.429273\pi\)
−0.195418 + 0.980720i \(0.562606\pi\)
\(314\) −7.24032 5.26040i −0.408595 0.296862i
\(315\) −0.517934 0.897088i −0.0291823 0.0505452i
\(316\) −25.3964 + 43.9879i −1.42866 + 2.47451i
\(317\) −5.09835 + 2.26993i −0.286352 + 0.127492i −0.544886 0.838510i \(-0.683427\pi\)
0.258534 + 0.966002i \(0.416761\pi\)
\(318\) 8.64432 6.28047i 0.484750 0.352191i
\(319\) 9.93404 + 4.42292i 0.556199 + 0.247636i
\(320\) −12.4825 + 2.65324i −0.697794 + 0.148321i
\(321\) −1.83584 + 17.4668i −0.102466 + 0.974903i
\(322\) 1.67629 + 1.86171i 0.0934159 + 0.103749i
\(323\) −4.74683 + 5.27189i −0.264121 + 0.293336i
\(324\) 2.77533 + 26.4055i 0.154185 + 1.46697i
\(325\) 5.25165 + 16.1629i 0.291309 + 0.896557i
\(326\) −1.44676 4.45266i −0.0801284 0.246610i
\(327\) 1.06949 + 10.1755i 0.0591430 + 0.562708i
\(328\) 0.606279 0.673341i 0.0334761 0.0371790i
\(329\) 7.77077 + 8.63031i 0.428416 + 0.475804i
\(330\) −0.324699 + 3.08931i −0.0178741 + 0.170061i
\(331\) 23.6765 5.03260i 1.30138 0.276617i 0.495454 0.868634i \(-0.335002\pi\)
0.805925 + 0.592018i \(0.201668\pi\)
\(332\) 79.8221 + 35.5391i 4.38080 + 1.95046i
\(333\) −6.17793 + 4.48853i −0.338548 + 0.245970i
\(334\) −34.4466 + 15.3366i −1.88483 + 0.839182i
\(335\) −2.52433 + 4.37226i −0.137919 + 0.238882i
\(336\) −15.8704 27.4884i −0.865804 1.49962i
\(337\) 8.92830 + 6.48679i 0.486355 + 0.353358i 0.803781 0.594925i \(-0.202818\pi\)
−0.317426 + 0.948283i \(0.602818\pi\)
\(338\) 1.24669 + 0.264993i 0.0678112 + 0.0144137i
\(339\) −7.31135 + 22.5020i −0.397098 + 1.22214i
\(340\) 8.80253 0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 5.87953 18.0953i 0.317465 0.977056i
\(344\) 25.5928 + 5.43991i 1.37987 + 0.293301i
\(345\) 0.376675 + 0.273670i 0.0202795 + 0.0147339i
\(346\) −0.0161152 0.0279124i −0.000866360 0.00150058i
\(347\) −9.28369 + 16.0798i −0.498375 + 0.863210i −0.999998 0.00187589i \(-0.999403\pi\)
0.501624 + 0.865086i \(0.332736\pi\)
\(348\) −55.2048 + 24.5788i −2.95929 + 1.31756i
\(349\) 26.0298 18.9118i 1.39334 1.01232i 0.397855 0.917448i \(-0.369755\pi\)
0.995489 0.0948756i \(-0.0302453\pi\)
\(350\) −19.6489 8.74825i −1.05028 0.467614i
\(351\) 20.3103 4.31709i 1.08408 0.230429i
\(352\) 2.43610 23.1780i 0.129845 1.23539i
\(353\) −21.5550 23.9392i −1.14725 1.27416i −0.956245 0.292567i \(-0.905490\pi\)
−0.191010 0.981588i \(-0.561176\pi\)
\(354\) 1.19103 1.32278i 0.0633027 0.0703047i
\(355\) −0.302623 2.87926i −0.0160615 0.152815i
\(356\) 24.7864 + 76.2846i 1.31367 + 4.04307i
\(357\) 2.09233 + 6.43952i 0.110738 + 0.340815i
\(358\) 2.80579 + 26.6953i 0.148291 + 1.41089i
\(359\) 14.1603 15.7266i 0.747353 0.830019i −0.242790 0.970079i \(-0.578063\pi\)
0.990143 + 0.140059i \(0.0447293\pi\)
\(360\) 3.49514 + 3.88175i 0.184210 + 0.204586i
\(361\) 1.29689 12.3391i 0.0682573 0.649425i
\(362\) 48.9518 10.4050i 2.57285 0.546876i
\(363\) 11.9423 + 5.31705i 0.626808 + 0.279073i
\(364\) −26.8560 + 19.5120i −1.40764 + 1.02271i
\(365\) −4.17184 + 1.85742i −0.218364 + 0.0972219i
\(366\) −9.76334 + 16.9106i −0.510338 + 0.883931i
\(367\) 6.49822 + 11.2552i 0.339204 + 0.587519i 0.984283 0.176597i \(-0.0565089\pi\)
−0.645079 + 0.764116i \(0.723176\pi\)
\(368\) −5.65042 4.10527i −0.294549 0.214002i
\(369\) −0.100350 0.0213301i −0.00522403 0.00111040i
\(370\) 3.91704 12.0554i 0.203637 0.626730i
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −3.07165 + 9.45355i −0.158831 + 0.488832i
\(375\) −8.13271 1.72866i −0.419971 0.0892676i
\(376\) −47.3762 34.4208i −2.44324 1.77512i
\(377\) 14.9228 + 25.8471i 0.768566 + 1.33119i
\(378\) −13.1394 + 22.7581i −0.675819 + 1.17055i
\(379\) −13.6627 + 6.08305i −0.701808 + 0.312465i −0.726438 0.687231i \(-0.758826\pi\)
0.0246303 + 0.999697i \(0.492159\pi\)
\(380\) 6.61840 4.80855i 0.339517 0.246673i
\(381\) −16.7367 7.45166i −0.857448 0.381760i
\(382\) 3.15269 0.670125i 0.161306 0.0342866i
\(383\) −1.21779 + 11.5865i −0.0622263 + 0.592044i 0.918331 + 0.395812i \(0.129537\pi\)
−0.980558 + 0.196231i \(0.937130\pi\)
\(384\) 20.4887 + 22.7550i 1.04556 + 1.16121i
\(385\) −0.940176 + 1.04417i −0.0479158 + 0.0532159i
\(386\) 3.57868 + 34.0489i 0.182150 + 1.73304i
\(387\) −0.915480 2.81756i −0.0465365 0.143225i
\(388\) −2.07009 6.37110i −0.105093 0.323443i
\(389\) 1.50541 + 14.3230i 0.0763274 + 0.726207i 0.964031 + 0.265791i \(0.0856330\pi\)
−0.887703 + 0.460416i \(0.847700\pi\)
\(390\) −5.70484 + 6.33586i −0.288876 + 0.320829i
\(391\) 0.996924 + 1.10720i 0.0504166 + 0.0559933i
\(392\) −3.65716 + 34.7956i −0.184715 + 1.75744i
\(393\) −3.38402 + 0.719295i −0.170701 + 0.0362836i
\(394\) −7.29556 3.24819i −0.367545 0.163642i
\(395\) −4.77376 + 3.46834i −0.240194 + 0.174511i
\(396\) −6.30858 + 2.80876i −0.317018 + 0.141145i
\(397\) −7.89506 + 13.6746i −0.396242 + 0.686311i −0.993259 0.115918i \(-0.963019\pi\)
0.597017 + 0.802229i \(0.296352\pi\)
\(398\) 17.7336 + 30.7155i 0.888904 + 1.53963i
\(399\) 5.09088 + 3.69874i 0.254863 + 0.185169i
\(400\) 58.6540 + 12.4673i 2.93270 + 0.623365i
\(401\) −9.58670 + 29.5048i −0.478737 + 1.47340i 0.362114 + 0.932134i \(0.382055\pi\)
−0.840851 + 0.541267i \(0.817945\pi\)
\(402\) 31.6817 1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −0.953153 + 2.93350i −0.0473626 + 0.145767i
\(406\) −36.9471 7.85335i −1.83365 0.389755i
\(407\) 8.37986 + 6.08832i 0.415374 + 0.301787i
\(408\) −17.0713 29.5684i −0.845156 1.46385i
\(409\) 3.29291 5.70349i 0.162824 0.282019i −0.773056 0.634337i \(-0.781273\pi\)
0.935880 + 0.352318i \(0.114606\pi\)
\(410\) 0.155573 0.0692657i 0.00768322 0.00342079i
\(411\) −9.35015 + 6.79328i −0.461209 + 0.335088i
\(412\) 72.4923 + 32.2757i 3.57144 + 1.59011i
\(413\) 0.787533 0.167395i 0.0387520 0.00823699i
\(414\) −0.149512 + 1.42251i −0.00734811 + 0.0699126i
\(415\) 6.79210 + 7.54339i 0.333411 + 0.370290i
\(416\) 42.8014 47.5358i 2.09851 2.33063i
\(417\) 0.200762 + 1.91012i 0.00983136 + 0.0935391i
\(418\) 2.85469 + 8.78583i 0.139627 + 0.429729i
\(419\) −4.53389 13.9539i −0.221495 0.681692i −0.998628 0.0523559i \(-0.983327\pi\)
0.777133 0.629336i \(-0.216673\pi\)
\(420\) −0.816176 7.76540i −0.0398253 0.378913i
\(421\) −17.8764 + 19.8538i −0.871243 + 0.967613i −0.999710 0.0241008i \(-0.992328\pi\)
0.128467 + 0.991714i \(0.458994\pi\)
\(422\) −32.9993 36.6494i −1.60638 1.78407i
\(423\) −0.693091 + 6.59432i −0.0336993 + 0.320627i
\(424\) −23.8385 + 5.06703i −1.15770 + 0.246077i
\(425\) −11.6856 5.20277i −0.566835 0.252371i
\(426\) −14.6980 + 10.6787i −0.712118 + 0.517384i
\(427\) −8.06883 + 3.59247i −0.390478 + 0.173852i
\(428\) 32.4052 56.1274i 1.56636 2.71302i
\(429\) −3.48342 6.03347i −0.168181 0.291299i
\(430\) 3.97845 + 2.89052i 0.191858 + 0.139393i
\(431\) −3.90086 0.829154i −0.187898 0.0399389i 0.113002 0.993595i \(-0.463954\pi\)
−0.300899 + 0.953656i \(0.597287\pi\)
\(432\) 22.6399 69.6783i 1.08926 3.35240i
\(433\) −18.0766 −0.868704 −0.434352 0.900743i \(-0.643023\pi\)
−0.434352 + 0.900743i \(0.643023\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 11.6673 35.9082i 0.558762 1.71969i
\(437\) 1.35439 + 0.287884i 0.0647892 + 0.0137714i
\(438\) 23.1839 + 16.8441i 1.10777 + 0.804843i
\(439\) −11.4543 19.8394i −0.546684 0.946884i −0.998499 0.0547723i \(-0.982557\pi\)
0.451815 0.892112i \(-0.350777\pi\)
\(440\) 3.54257 6.13591i 0.168885 0.292518i
\(441\) 3.61904 1.61130i 0.172335 0.0767285i
\(442\) −22.0715 + 16.0359i −1.04984 + 0.762750i
\(443\) −19.6333 8.74131i −0.932806 0.415312i −0.116669 0.993171i \(-0.537222\pi\)
−0.816137 + 0.577859i \(0.803888\pi\)
\(444\) −56.3034 + 11.9677i −2.67204 + 0.567960i
\(445\) −0.974014 + 9.26713i −0.0461727 + 0.439304i
\(446\) 16.9134 + 18.7843i 0.800874 + 0.889461i
\(447\) 8.55011 9.49586i 0.404406 0.449139i
\(448\) 3.78631 + 36.0244i 0.178886 + 1.70199i
\(449\) −5.80940 17.8795i −0.274163 0.843786i −0.989440 0.144945i \(-0.953700\pi\)
0.715277 0.698841i \(-0.246300\pi\)
\(450\) −3.79484 11.6793i −0.178890 0.550568i
\(451\) 0.0145460 + 0.138396i 0.000684944 + 0.00651681i
\(452\) 58.4212 64.8834i 2.74790 3.05186i
\(453\) −3.04672 3.38373i −0.143148 0.158982i
\(454\) 2.37877 22.6325i 0.111641 1.06220i
\(455\) −3.77215 + 0.801795i −0.176841 + 0.0375887i
\(456\) −28.9878 12.9062i −1.35748 0.604388i
\(457\) 3.32182 2.41344i 0.155388 0.112896i −0.507374 0.861726i \(-0.669384\pi\)
0.662763 + 0.748830i \(0.269384\pi\)
\(458\) 56.1396 24.9949i 2.62323 1.16794i
\(459\) −7.81429 + 13.5347i −0.364740 + 0.631748i
\(460\) −0.859060 1.48794i −0.0400539 0.0693754i
\(461\) −18.5063 13.4456i −0.861924 0.626225i 0.0664836 0.997788i \(-0.478822\pi\)
−0.928408 + 0.371563i \(0.878822\pi\)
\(462\) 8.62453 + 1.83320i 0.401249 + 0.0852882i
\(463\) 5.11947 15.7561i 0.237922 0.732249i −0.758798 0.651326i \(-0.774213\pi\)
0.996720 0.0809233i \(-0.0257869\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 11.7878 36.2792i 0.545476 1.67880i −0.174379 0.984679i \(-0.555792\pi\)
0.719855 0.694124i \(-0.244208\pi\)
\(468\) −18.5392 3.94063i −0.856976 0.182156i
\(469\) 11.5936 + 8.42323i 0.535342 + 0.388949i
\(470\) −5.50321 9.53184i −0.253844 0.439671i
\(471\) −2.36062 + 4.08871i −0.108771 + 0.188398i
\(472\) −3.70889 + 1.65131i −0.170716 + 0.0760075i
\(473\) −3.25101 + 2.36200i −0.149482 + 0.108605i
\(474\) 33.8271 + 15.0608i 1.55373 + 0.691766i
\(475\) −11.6282 + 2.47166i −0.533540 + 0.113407i
\(476\) 2.61172 24.8488i 0.119708 1.13894i
\(477\) 1.84646 + 2.05070i 0.0845435 + 0.0938950i
\(478\) 32.8926 36.5309i 1.50447 1.67089i
\(479\) 3.52102 + 33.5002i 0.160879 + 1.53066i 0.715530 + 0.698582i \(0.246185\pi\)
−0.554651 + 0.832083i \(0.687148\pi\)
\(480\) 4.64938 + 14.3093i 0.212214 + 0.653128i
\(481\) 8.78511 + 27.0378i 0.400567 + 1.23282i
\(482\) 5.10980 + 48.6165i 0.232745 + 2.21442i
\(483\) 0.884309 0.982125i 0.0402375 0.0446882i
\(484\) −32.2785 35.8489i −1.46720 1.62949i
\(485\) 0.0813472 0.773967i 0.00369379 0.0351440i
\(486\) −25.7221 + 5.46740i −1.16678 + 0.248006i
\(487\) 18.8891 + 8.40996i 0.855946 + 0.381092i 0.787315 0.616550i \(-0.211470\pi\)
0.0686306 + 0.997642i \(0.478137\pi\)
\(488\) 36.0319 26.1787i 1.63109 1.18506i
\(489\) −2.25631 + 1.00457i −0.102034 + 0.0454284i
\(490\) −3.28793 + 5.69487i −0.148534 + 0.257268i
\(491\) 12.3664 + 21.4192i 0.558087 + 0.966634i 0.997656 + 0.0684258i \(0.0217976\pi\)
−0.439570 + 0.898209i \(0.644869\pi\)
\(492\) −0.625630 0.454547i −0.0282056 0.0204925i
\(493\) −21.9732 4.67055i −0.989624 0.210351i
\(494\) −7.83511 + 24.1140i −0.352518 + 1.08494i
\(495\) −0.802235 −0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 19.6838 60.5804i 0.882050 2.71467i
\(499\) −24.0235 5.10635i −1.07544 0.228591i −0.364042 0.931383i \(-0.618604\pi\)
−0.711396 + 0.702791i \(0.751937\pi\)
\(500\) 24.8218 + 18.0341i 1.11006 + 0.806509i
\(501\) 9.94584 + 17.2267i 0.444347 + 0.769632i
\(502\) 30.8429 53.4215i 1.37659 2.38432i
\(503\) 13.4649 5.99494i 0.600369 0.267301i −0.0839669 0.996469i \(-0.526759\pi\)
0.684336 + 0.729167i \(0.260092\pi\)
\(504\) 11.9949 8.71479i 0.534295 0.388188i
\(505\) 4.51312 + 2.00937i 0.200831 + 0.0894157i
\(506\) 1.89775 0.403380i 0.0843654 0.0179324i
\(507\) 0.0702822 0.668691i 0.00312134 0.0296976i
\(508\) 45.2372 + 50.2410i 2.00708 + 2.22908i
\(509\) −10.3757 + 11.5234i −0.459896 + 0.510767i −0.927833 0.372995i \(-0.878331\pi\)
0.467937 + 0.883762i \(0.344997\pi\)
\(510\) −0.670772 6.38197i −0.0297023 0.282598i
\(511\) 4.00557 + 12.3279i 0.177196 + 0.545353i
\(512\) −0.0418393 0.128768i −0.00184905 0.00569080i
\(513\) 1.51825 + 14.4451i 0.0670322 + 0.637769i
\(514\) −0.191154 + 0.212298i −0.00843146 + 0.00936409i
\(515\) 6.16841 + 6.85071i 0.271813 + 0.301878i
\(516\) 2.33424 22.2088i 0.102759 0.977690i
\(517\) 8.79740 1.86994i 0.386909 0.0822401i
\(518\) −32.8692 14.6343i −1.44419 0.642995i
\(519\) −0.0137556 + 0.00999402i −0.000603803 + 0.000438689i
\(520\) 17.7650 7.90947i 0.779045 0.346853i
\(521\) −14.7073 + 25.4738i −0.644337 + 1.11603i 0.340117 + 0.940383i \(0.389533\pi\)
−0.984454 + 0.175642i \(0.943800\pi\)
\(522\) −10.7832 18.6771i −0.471970 0.817475i
\(523\) 36.4268 + 26.4656i 1.59283 + 1.15726i 0.899754 + 0.436397i \(0.143746\pi\)
0.693078 + 0.720863i \(0.256254\pi\)
\(524\) 12.4875 + 2.65431i 0.545521 + 0.115954i
\(525\) −3.50627 + 10.7912i −0.153026 + 0.470966i
\(526\) −19.6309 −0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −7.01753 + 21.5977i −0.305110 + 0.939032i
\(530\) −4.48046 0.952352i −0.194619 0.0413675i
\(531\) 0.371899 + 0.270201i 0.0161391 + 0.0117257i
\(532\) −11.6105 20.1099i −0.503378 0.871876i
\(533\) −0.190970 + 0.330769i −0.00827182 + 0.0143272i
\(534\) 53.4187 23.7835i 2.31165 1.02921i
\(535\) 6.09119 4.42551i 0.263345 0.191331i
\(536\) −66.0146 29.3916i −2.85139 1.26952i
\(537\) 13.8510 2.94412i 0.597714 0.127048i
\(538\) −4.56085 + 43.3936i −0.196632 + 1.87083i
\(539\) −3.59557 3.99328i −0.154872 0.172003i
\(540\) 12.0596 13.3935i 0.518962 0.576366i
\(541\) −3.94895 37.5718i −0.169779 1.61534i −0.665188 0.746676i \(-0.731648\pi\)
0.495409 0.868660i \(-0.335018\pi\)
\(542\) −4.27759 13.1651i −0.183738 0.565488i
\(543\) −8.15834 25.1088i −0.350108 1.07752i
\(544\) 5.03256 + 47.8816i 0.215769 + 2.05291i
\(545\) 2.93494 3.25958i 0.125719 0.139625i
\(546\) 16.1930 + 17.9842i 0.692997 + 0.769651i
\(547\) 1.90333 18.1090i 0.0813807 0.774285i −0.875385 0.483426i \(-0.839392\pi\)
0.956766 0.290859i \(-0.0939412\pi\)
\(548\) 41.7167 8.86716i 1.78205 0.378786i
\(549\) −4.60695 2.05115i −0.196620 0.0875408i
\(550\) −13.4761 + 9.79092i −0.574621 + 0.417486i
\(551\) −19.0725 + 8.49162i −0.812516 + 0.361755i
\(552\) −3.33206 + 5.77130i −0.141822 + 0.245643i
\(553\) 8.37446 + 14.5050i 0.356118 + 0.616815i
\(554\) 36.8305 + 26.7590i 1.56478 + 1.13688i
\(555\) −6.54086 1.39030i −0.277644 0.0590151i
\(556\) 2.19015 6.74059i 0.0928831 0.285865i
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −4.20481 + 12.9411i −0.177686 + 0.546860i
\(561\) 5.12919 + 1.09024i 0.216554 + 0.0460301i
\(562\) 4.14964 + 3.01489i 0.175042 + 0.127175i
\(563\) 18.0809 + 31.3170i 0.762019 + 1.31986i 0.941808 + 0.336150i \(0.109125\pi\)
−0.179790 + 0.983705i \(0.557542\pi\)
\(564\) −24.9903 + 43.2844i −1.05228 + 1.82260i
\(565\) 9.26596 4.12547i 0.389822 0.173560i
\(566\) −33.3200 + 24.2084i −1.40054 + 1.01755i
\(567\) 7.99825 + 3.56105i 0.335895 + 0.149550i
\(568\) 40.5327 8.61548i 1.70071 0.361498i
\(569\) 4.33791 41.2724i 0.181855 1.73023i −0.399633 0.916675i \(-0.630863\pi\)
0.581488 0.813555i \(-0.302471\pi\)
\(570\) −3.99061 4.43202i −0.167148 0.185637i
\(571\) 21.6752 24.0728i 0.907080 1.00741i −0.0928510 0.995680i \(-0.529598\pi\)
0.999931 0.0117345i \(-0.00373531\pi\)
\(572\) 2.68730 + 25.5679i 0.112361 + 1.06905i
\(573\) −0.525430 1.61711i −0.0219501 0.0675556i
\(574\) −0.149373 0.459722i −0.00623470 0.0191884i
\(575\) 0.260977 + 2.48303i 0.0108835 + 0.103549i
\(576\) −13.8387 + 15.3695i −0.576613 + 0.640394i
\(577\) 27.4227 + 30.4560i 1.14162 + 1.26790i 0.958590 + 0.284791i \(0.0919241\pi\)
0.183031 + 0.983107i \(0.441409\pi\)
\(578\) −2.63393 + 25.0602i −0.109557 + 1.04237i
\(579\) 17.6664 3.75511i 0.734190 0.156057i
\(580\) 23.6658 + 10.5367i 0.982671 + 0.437513i
\(581\) 23.3096 16.9354i 0.967046 0.702600i
\(582\) −4.46140 + 1.98634i −0.184931 + 0.0823365i
\(583\) 1.87151 3.24155i 0.0775100 0.134251i
\(584\) −32.6814 56.6059i −1.35237 2.34237i
\(585\) −1.78133 1.29421i −0.0736490 0.0535092i
\(586\) 70.5040 + 14.9861i 2.91249 + 0.619070i
\(587\) −7.88963 + 24.2818i −0.325640 + 1.00222i 0.645511 + 0.763751i \(0.276644\pi\)
−0.971151 + 0.238466i \(0.923356\pi\)
\(588\) 29.8612 1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −1.30187 + 4.00673i −0.0535516 + 0.164815i
\(592\) 98.1181 + 20.8556i 4.03263 + 0.857162i
\(593\) −36.0269 26.1751i −1.47945 1.07488i −0.977734 0.209850i \(-0.932702\pi\)
−0.501716 0.865033i \(-0.667298\pi\)
\(594\) 10.1759 + 17.6252i 0.417523 + 0.723170i
\(595\) 1.45132 2.51375i 0.0594982 0.103054i
\(596\) −43.0760 + 19.1787i −1.76446 + 0.785589i
\(597\) 15.1370 10.9977i 0.619515 0.450104i
\(598\) 4.86464 + 2.16588i 0.198930 + 0.0885694i
\(599\) −18.5652 + 3.94615i −0.758553 + 0.161235i −0.570922 0.821004i \(-0.693414\pi\)
−0.187631 + 0.982240i \(0.560081\pi\)
\(600\) 5.98064 56.9020i 0.244159 2.32301i
\(601\) 8.59151 + 9.54184i 0.350455 + 0.389220i 0.892438 0.451170i \(-0.148993\pi\)
−0.541983 + 0.840389i \(0.682326\pi\)
\(602\) 9.34011 10.3732i 0.380674 0.422782i
\(603\) 0.855259 + 8.13724i 0.0348288 + 0.331374i
\(604\) 5.19217 + 15.9799i 0.211267 + 0.650212i
\(605\) −1.73175 5.32977i −0.0704056 0.216686i
\(606\) −3.24051 30.8314i −0.131637 1.25244i
\(607\) −25.5202 + 28.3430i −1.03583 + 1.15041i −0.0473790 + 0.998877i \(0.515087\pi\)
−0.988453 + 0.151531i \(0.951580\pi\)
\(608\) 29.9401 + 33.2519i 1.21423 + 1.34854i
\(609\) −2.08289 + 19.8174i −0.0844029 + 0.803040i
\(610\) 8.18800 1.74041i 0.331522 0.0704672i
\(611\) 22.5510 + 10.0404i 0.912316 + 0.406189i
\(612\) 11.5412 8.38520i 0.466527 0.338952i
\(613\) 16.9393 7.54186i 0.684172 0.304613i −0.0350577 0.999385i \(-0.511162\pi\)
0.719230 + 0.694772i \(0.244495\pi\)
\(614\) 12.0401 20.8541i 0.485901 0.841605i
\(615\) −0.0449190 0.0778020i −0.00181131 0.00313728i
\(616\) −16.2701 11.8209i −0.655541 0.476278i
\(617\) −7.95777 1.69148i −0.320368 0.0680962i 0.0449211 0.998991i \(-0.485696\pi\)
−0.365289 + 0.930894i \(0.619030\pi\)
\(618\) 17.8763 55.0175i 0.719089 2.21313i
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −17.1711 + 52.8472i −0.688499 + 2.11898i
\(623\) 25.8714 + 5.49913i 1.03651 + 0.220318i
\(624\) −54.5833 39.6571i −2.18508 1.58755i
\(625\) −9.79252 16.9611i −0.391701 0.678446i
\(626\) −0.607062 + 1.05146i −0.0242631 + 0.0420249i
\(627\) 4.45207 1.98219i 0.177799 0.0791610i
\(628\) 14.0948 10.2404i 0.562442 0.408638i
\(629\) −19.5480 8.70334i −0.779431 0.347025i
\(630\) 2.72575 0.579376i 0.108597 0.0230829i
\(631\) 3.03624 28.8879i 0.120871 1.15001i −0.751010 0.660291i \(-0.770433\pi\)
0.871881 0.489718i \(-0.162900\pi\)
\(632\) −56.5129 62.7639i −2.24796 2.49661i
\(633\) −17.4084 + 19.3340i −0.691924 + 0.768459i
\(634\) −1.56932 14.9311i −0.0623257 0.592989i
\(635\) 2.42699 + 7.46949i 0.0963120 + 0.296418i
\(636\) 6.42770 + 19.7824i 0.254875 + 0.784424i
\(637\) −1.54162 14.6675i −0.0610812 0.581149i
\(638\) −19.5742 + 21.7394i −0.774950 + 0.860669i
\(639\) −3.13953 3.48680i −0.124198 0.137936i
\(640\) 1.37209 13.0546i 0.0542367 0.516027i
\(641\) −27.0023 + 5.73951i −1.06653 + 0.226697i −0.707560 0.706653i \(-0.750204\pi\)
−0.358966 + 0.933350i \(0.616871\pi\)
\(642\) −43.1625 19.2172i −1.70349 0.758442i
\(643\) −3.42136 + 2.48577i −0.134925 + 0.0980291i −0.653201 0.757185i \(-0.726574\pi\)
0.518275 + 0.855214i \(0.326574\pi\)
\(644\) −4.45521 + 1.98359i −0.175560 + 0.0781643i
\(645\) 1.29713 2.24669i 0.0510742 0.0884632i
\(646\) −9.54202 16.5273i −0.375426 0.650257i
\(647\) −21.2617 15.4475i −0.835883 0.607304i 0.0853349 0.996352i \(-0.472804\pi\)
−0.921217 + 0.389048i \(0.872804\pi\)
\(648\) −43.1836 9.17895i −1.69641 0.360583i
\(649\) 0.192683 0.593018i 0.00756348 0.0232780i
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −4.12592 + 12.6983i −0.161460 + 0.496922i −0.998758 0.0498246i \(-0.984134\pi\)
0.837298 + 0.546746i \(0.184134\pi\)
\(654\) −26.9231 5.72267i −1.05278 0.223774i
\(655\) 1.19986 + 0.871749i 0.0468824 + 0.0340621i
\(656\) 0.673821 + 1.16709i 0.0263083 + 0.0455673i
\(657\) −3.70045 + 6.40937i −0.144368 + 0.250053i
\(658\) −28.5404 + 12.7070i −1.11262 + 0.495371i
\(659\) 12.4717 9.06119i 0.485827 0.352974i −0.317750 0.948174i \(-0.602927\pi\)
0.803577 + 0.595200i \(0.202927\pi\)
\(660\) −5.52429 2.45957i −0.215033 0.0957388i
\(661\) 4.61985 0.981980i 0.179691 0.0381946i −0.117187 0.993110i \(-0.537388\pi\)
0.296879 + 0.954915i \(0.404054\pi\)
\(662\) −6.80652 + 64.7597i −0.264543 + 2.51696i
\(663\) 9.63032 + 10.6956i 0.374011 + 0.415381i
\(664\) −97.2160 + 107.969i −3.77271 + 4.19002i
\(665\) −0.281978 2.68284i −0.0109346 0.104036i
\(666\) −6.34812 19.5375i −0.245984 0.757062i
\(667\) 1.35493 + 4.17006i 0.0524632 + 0.161465i
\(668\) −7.67274 73.0013i −0.296867 2.82450i
\(669\) 8.92251 9.90945i 0.344964 0.383122i
\(670\) −9.08791 10.0931i −0.351096 0.389932i
\(671\) −0.715009 + 6.80286i −0.0276026 + 0.262621i
\(672\) 41.7735 8.87924i 1.61145 0.342524i
\(673\) 28.3866 + 12.6385i 1.09422 + 0.487180i 0.872840 0.488007i \(-0.162276\pi\)
0.221384 + 0.975187i \(0.428943\pi\)
\(674\) −24.0185 + 17.4505i −0.925158 + 0.672167i
\(675\) −23.9258 + 10.6524i −0.920903 + 0.410013i
\(676\) −1.24058 + 2.14875i −0.0477147 + 0.0826443i
\(677\) −4.51998 7.82883i −0.173717 0.300886i 0.766000 0.642841i \(-0.222244\pi\)
−0.939716 + 0.341955i \(0.888911\pi\)
\(678\) −51.4932 37.4120i −1.97759 1.43680i
\(679\) −2.16071 0.459273i −0.0829205 0.0176253i
\(680\) −4.52297 + 13.9203i −0.173448 + 0.533818i
\(681\) −12.0053 −0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 4.09699 12.6092i 0.156652 0.482127i
\(685\) 4.84630 + 1.03011i 0.185168 + 0.0393586i
\(686\) 41.4091 + 30.0854i 1.58101 + 1.14867i
\(687\) −16.2093 28.0753i −0.618423 1.07114i
\(688\) −19.4579 + 33.7021i −0.741826 + 1.28488i
\(689\) 9.38509 4.17851i 0.357543 0.159189i
\(690\) −1.01331 + 0.736216i −0.0385762 + 0.0280273i
\(691\) 33.3220 + 14.8359i 1.26763 + 0.564384i 0.926734 0.375718i \(-0.122604\pi\)
0.340893 + 0.940102i \(0.389271\pi\)
\(692\) 0.0613720 0.0130450i 0.00233301 0.000495898i
\(693\) −0.238024 + 2.26464i −0.00904177 + 0.0860267i
\(694\) −33.4225 37.1194i −1.26870 1.40903i
\(695\) 0.550938 0.611879i 0.0208983 0.0232099i
\(696\) −10.5031 99.9299i −0.398117 3.78783i
\(697\) −0.0888351 0.273406i −0.00336487 0.0103560i
\(698\) 26.7469 + 82.3185i 1.01238 + 3.11580i
\(699\) 2.41109 + 22.9400i 0.0911958 + 0.867670i
\(700\) 28.0168 31.1158i 1.05894 1.17607i
\(701\) −1.08027 1.19976i −0.0408013 0.0453144i 0.722399 0.691477i \(-0.243040\pi\)
−0.763200 + 0.646162i \(0.776373\pi\)
\(702\) −5.83880 + 55.5525i −0.220371 + 2.09669i
\(703\) −19.4520 + 4.13466i −0.733647 + 0.155942i
\(704\) 25.6277 + 11.4102i 0.965879 + 0.430037i
\(705\) −4.69742 + 3.41287i −0.176915 + 0.128536i
\(706\) 79.1669 35.2474i 2.97949 1.32655i
\(707\) 7.01134 12.1440i 0.263688 0.456722i
\(708\) 1.73254 + 3.00084i 0.0651127 + 0.112779i
\(709\) 9.29395 + 6.75245i 0.349042 + 0.253594i 0.748467 0.663172i \(-0.230790\pi\)
−0.399425 + 0.916766i \(0.630790\pi\)
\(710\) 7.61813 + 1.61928i 0.285903 + 0.0607706i
\(711\) −2.95510 + 9.09487i −0.110825 + 0.341084i
\(712\) −133.372 −4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −0.922919 + 2.84045i −0.0345152 + 0.106227i
\(716\) −51.1123 10.8643i −1.91016 0.406016i
\(717\) −20.9797 15.2427i −0.783503 0.569248i
\(718\) 28.4649 + 49.3026i 1.06230 + 1.83996i
\(719\) −7.08549 + 12.2724i −0.264244 + 0.457685i −0.967365 0.253386i \(-0.918456\pi\)
0.703121 + 0.711070i \(0.251789\pi\)
\(720\) −7.09737 + 3.15995i −0.264503 + 0.117764i
\(721\) 21.1692 15.3803i 0.788382 0.572793i
\(722\) 30.4913 + 13.5756i 1.13477 + 0.505231i
\(723\) 25.2249 5.36171i 0.938123 0.199404i
\(724\) −10.1835 + 96.8899i −0.378468 + 3.60089i
\(725\) −25.1893 27.9756i −0.935508 1.03899i
\(726\) −23.5313 + 26.1341i −0.873328 + 0.969929i
\(727\) 2.81680 + 26.8001i 0.104470 + 0.993961i 0.913678 + 0.406439i \(0.133230\pi\)
−0.809208 + 0.587522i \(0.800104\pi\)
\(728\) −17.0569 52.4958i −0.632172 1.94562i
\(729\) 8.98695 + 27.6590i 0.332850 + 1.02441i
\(730\) −1.28413 12.2177i −0.0475278 0.452197i
\(731\) 5.55476 6.16918i 0.205450 0.228175i
\(732\) −25.4354 28.2489i −0.940121 1.04411i
\(733\) 2.97107 28.2678i 0.109739 1.04410i −0.791617 0.611017i \(-0.790761\pi\)
0.901356 0.433079i \(-0.142573\pi\)
\(734\) −34.1984 + 7.26910i −1.26229 + 0.268307i
\(735\) 3.16912 + 1.41098i 0.116895 + 0.0520449i
\(736\) 7.60254 5.52357i 0.280233 0.203601i
\(737\) 10.1388 4.51409i 0.373468 0.166279i
\(738\) 0.137995 0.239014i 0.00507965 0.00879822i
\(739\) −0.348653 0.603885i −0.0128254 0.0222143i 0.859541 0.511066i \(-0.170749\pi\)
−0.872367 + 0.488852i \(0.837416\pi\)
\(740\) 19.9633 + 14.5042i 0.733866 + 0.533185i
\(741\) 13.0834 + 2.78097i 0.480633 + 0.102162i
\(742\) −4.01777 + 12.3654i −0.147497 + 0.453949i
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 3.67929 11.3237i 0.134708 0.414589i
\(747\) 16.0911 + 3.42026i 0.588741 + 0.125141i
\(748\) −15.6548 11.3738i −0.572395 0.415869i
\(749\) −10.6856 18.5080i −0.390443 0.676267i
\(750\) 11.1835 19.3704i 0.408364 0.707307i
\(751\) −33.8615 + 15.0761i −1.23562 + 0.550135i −0.917432 0.397892i \(-0.869742\pi\)
−0.318190 + 0.948027i \(0.603075\pi\)
\(752\) 70.4650 51.1958i 2.56959 1.86692i
\(753\) −29.7284 13.2359i −1.08336 0.482344i
\(754\) −78.5350 + 16.6931i −2.86008 + 0.607928i
\(755\) −0.204034 + 1.94125i −0.00742554 + 0.0706493i
\(756\) −34.2308 38.0172i −1.24496 1.38267i
\(757\) −4.28378 + 4.75762i −0.155697 + 0.172919i −0.815947 0.578127i \(-0.803784\pi\)
0.660250 + 0.751046i \(0.270450\pi\)
\(758\) −4.20552 40.0129i −0.152751 1.45333i
\(759\) −0.316281 0.973412i −0.0114803 0.0353326i
\(760\) 4.20351 + 12.9371i 0.152477 + 0.469277i
\(761\) −2.23052 21.2219i −0.0808561 0.769294i −0.957554 0.288253i \(-0.906925\pi\)
0.876698 0.481041i \(-0.159741\pi\)
\(762\) 32.9783 36.6261i 1.19468 1.32682i
\(763\) −8.33073 9.25221i −0.301593 0.334952i
\(764\) −0.655861 + 6.24010i −0.0237282 + 0.225759i
\(765\) 1.62106 0.344567i 0.0586096 0.0124579i
\(766\) −28.6316 12.7476i −1.03450 0.460591i
\(767\) 1.38454 1.00593i 0.0499928 0.0363219i
\(768\) −20.8616 + 9.28816i −0.752777 + 0.335158i
\(769\) 6.12828 10.6145i 0.220991 0.382768i −0.734118 0.679022i \(-0.762404\pi\)
0.955109 + 0.296254i \(0.0957374\pi\)
\(770\) −1.88993 3.27346i −0.0681084 0.117967i
\(771\) 0.121923 + 0.0885824i 0.00439096 + 0.00319022i
\(772\) −65.1918 13.8569i −2.34630 0.498722i
\(773\) 10.7240 33.0050i 0.385714 1.18711i −0.550247 0.835002i \(-0.685466\pi\)
0.935961 0.352104i \(-0.114534\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −5.86539 + 18.0518i −0.210420 + 0.647605i
\(778\) −37.8968 8.05521i −1.35867 0.288793i
\(779\) −0.216146 0.157040i −0.00774425 0.00562652i
\(780\) −8.29855 14.3735i −0.297136 0.514654i
\(781\) −3.18213 + 5.51161i −0.113866 + 0.197221i
\(782\) −3.66150 + 1.63020i −0.130935 + 0.0582960i
\(783\) −37.2102 + 27.0348i −1.32978 + 0.966144i
\(784\) −47.5393 21.1659i −1.69783 0.755923i
\(785\) 1.97972 0.420804i 0.0706594 0.0150191i
\(786\) 0.972836 9.25592i 0.0346999 0.330148i
\(787\) 13.4617 + 14.9507i 0.479858 + 0.532936i 0.933657 0.358168i \(-0.116598\pi\)
−0.453799 + 0.891104i \(0.649932\pi\)
\(788\) 10.4025 11.5532i 0.370575 0.411565i
\(789\) 1.08250 + 10.2993i 0.0385382 + 0.366666i
\(790\) −4.90526 15.0968i −0.174521 0.537122i
\(791\) −8.89666 27.3811i −0.316329 0.973559i
\(792\) −1.20025 11.4196i −0.0426489 0.405777i
\(793\) −12.5624 + 13.9520i −0.446105 + 0.495450i
\(794\) −28.4233 31.5672i −1.00870 1.12028i
\(795\) −0.252585 + 2.40319i −0.00895828 + 0.0852323i
\(796\) −67.5353 + 14.3551i −2.39372 + 0.508802i
\(797\) −23.9367 10.6573i −0.847880 0.377501i −0.0636514 0.997972i \(-0.520275\pi\)
−0.784229 + 0.620472i \(0.786941\pi\)
\(798\) −13.6953 + 9.95018i −0.484807 + 0.352233i
\(799\) −16.9736 + 7.55713i −0.600482 + 0.267352i
\(800\) −40.3405 + 69.8717i −1.42625 + 2.47034i
\(801\) 7.55072 + 13.0782i 0.266791 + 0.462096i
\(802\) −67.5183 49.0549i −2.38416 1.73219i
\(803\) 9.81935 + 2.08717i 0.346517 + 0.0736545i
\(804\) −19.0586 + 58.6562i −0.672144 + 2.06865i
\(805\) −0.566550 −0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −21.8506 + 67.2491i −0.768700 + 2.36582i
\(809\) 35.6536 + 7.57841i 1.25351 + 0.266443i 0.786380 0.617743i \(-0.211953\pi\)
0.467135 + 0.884186i \(0.345286\pi\)
\(810\) −6.71298 4.87727i −0.235870 0.171370i
\(811\) 9.55322 + 16.5467i 0.335459 + 0.581032i 0.983573 0.180511i \(-0.0577753\pi\)
−0.648114 + 0.761543i \(0.724442\pi\)
\(812\) 36.7660 63.6805i 1.29023 2.23475i
\(813\) −6.67117 + 2.97020i −0.233968 + 0.104169i
\(814\) −22.5431 + 16.3785i −0.790136 + 0.574067i
\(815\) 0.967260 + 0.430652i 0.0338816 + 0.0150851i
\(816\) 49.6723 10.5582i 1.73888 0.369610i
\(817\) 0.806448 7.67284i 0.0282141 0.268439i
\(818\) 11.8549 + 13.1662i 0.414497 + 0.460346i
\(819\) −4.18199 + 4.64457i −0.146130 + 0.162294i
\(820\) 0.0346529 + 0.329700i 0.00121013 + 0.0115136i
\(821\) −12.1937 37.5285i −0.425565 1.30975i −0.902453 0.430789i \(-0.858235\pi\)
0.476888 0.878964i \(-0.341765\pi\)
\(822\) −9.60773 29.5696i −0.335108 1.03136i
\(823\) −3.30184 31.4149i −0.115095 1.09506i −0.887781 0.460267i \(-0.847754\pi\)
0.772686 0.634789i \(-0.218913\pi\)
\(824\) −88.2891 + 98.0550i −3.07570 + 3.41591i
\(825\) 5.87992 + 6.53031i 0.204712 + 0.227356i
\(826\) −0.226400 + 2.15405i −0.00787746 + 0.0749491i
\(827\) 19.3965 4.12286i 0.674483 0.143366i 0.142078 0.989855i \(-0.454622\pi\)
0.532405 + 0.846490i \(0.321288\pi\)
\(828\) −2.54373 1.13254i −0.0884008 0.0393586i
\(829\) 7.28104 5.28999i 0.252881 0.183729i −0.454122 0.890940i \(-0.650047\pi\)
0.707003 + 0.707211i \(0.250047\pi\)
\(830\) −24.9460 + 11.1067i −0.865888 + 0.385518i
\(831\) 12.0081 20.7987i 0.416558 0.721499i
\(832\) 38.4977 + 66.6800i 1.33467 + 2.31171i
\(833\) 8.98066 + 6.52483i 0.311161 + 0.226072i
\(834\) −5.05392 1.07424i −0.175003 0.0371981i
\(835\) 2.63511 8.11003i 0.0911917 0.280659i
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −9.84070 + 30.2866i −0.339739 + 1.04561i 0.624602 + 0.780944i \(0.285261\pi\)
−0.964340 + 0.264665i \(0.914739\pi\)
\(840\) 12.6995 + 2.69937i 0.438176 + 0.0931372i
\(841\) −30.0234 21.8133i −1.03529 0.752183i
\(842\) −35.9349 62.2411i −1.23840 2.14497i
\(843\) 1.35294 2.34336i 0.0465976 0.0807095i
\(844\) 87.7049 39.0487i 3.01893 1.34411i
\(845\) −0.233192 + 0.169424i −0.00802205 + 0.00582836i
\(846\) −16.2953 7.25515i −0.560245 0.249437i
\(847\) −15.5593 + 3.30724i −0.534625 + 0.113638i
\(848\) 3.78898 36.0498i 0.130114 1.23795i
\(849\) 14.5383 + 16.1464i 0.498953 + 0.554143i
\(850\) 23.0255 25.5724i 0.789769 0.877127i
\(851\) 0.436570 + 4.15368i 0.0149654 + 0.142386i
\(852\) −10.9290 33.6361i −0.374422 1.15235i
\(853\) −15.1702 46.6890i −0.519417 1.59860i −0.775099 0.631839i \(-0.782300\pi\)
0.255683 0.966761i \(-0.417700\pi\)
\(854\) −2.48366 23.6304i −0.0849891 0.808617i
\(855\) 1.03061 1.14461i 0.0352461 0.0391447i
\(856\) 72.1090 + 80.0851i 2.46463 + 2.73725i
\(857\) −2.01118 + 19.1351i −0.0687005 + 0.653641i 0.904938 + 0.425544i \(0.139917\pi\)
−0.973638 + 0.228098i \(0.926749\pi\)
\(858\) 18.3323 3.89666i 0.625856 0.133030i
\(859\) −4.24081 1.88813i −0.144695 0.0644222i 0.333112 0.942887i \(-0.391901\pi\)
−0.477806 + 0.878465i \(0.658568\pi\)
\(860\) −7.74487 + 5.62698i −0.264098 + 0.191878i
\(861\) −0.232956 + 0.103719i −0.00793913 + 0.00353473i
\(862\) 5.36418 9.29104i 0.182705 0.316454i
\(863\) −19.2652 33.3683i −0.655795 1.13587i −0.981694 0.190466i \(-0.939000\pi\)
0.325899 0.945405i \(-0.394333\pi\)
\(864\) 79.7493 + 57.9413i 2.71313 + 1.97120i
\(865\) 0.00712969 + 0.00151546i 0.000242417 + 5.15273e-5i
\(866\) 15.0271 46.2487i 0.510642 1.57159i
\(867\) 13.2931 0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 5.83589 17.9610i 0.197855 0.608935i
\(871\) 29.7953 + 6.33318i 1.00957 + 0.214592i
\(872\) 50.7901 + 36.9012i 1.71997 + 1.24963i
\(873\) −0.630617 1.09226i −0.0213431 0.0369674i
\(874\) −1.86246 + 3.22587i −0.0629986 + 0.109117i
\(875\) 9.24251 4.11503i 0.312454 0.139113i
\(876\) −45.1323 + 32.7905i −1.52488 + 1.10789i
\(877\) −8.45792 3.76571i −0.285604 0.127159i 0.258935 0.965895i \(-0.416628\pi\)
−0.544538 + 0.838736i \(0.683295\pi\)
\(878\) 60.2810 12.8131i 2.03438 0.432422i
\(879\) 3.97465 37.8163i 0.134062 1.27551i
\(880\) 7.05134 + 7.83131i 0.237701 + 0.263993i
\(881\) 11.9634 13.2867i 0.403058 0.447642i −0.507109 0.861882i \(-0.669286\pi\)
0.910168 + 0.414240i \(0.135953\pi\)
\(882\) 1.11397 + 10.5987i 0.0375094 + 0.356878i
\(883\) 14.9303 + 45.9509i 0.502446 + 1.54637i 0.805022 + 0.593244i \(0.202153\pi\)
−0.302577 + 0.953125i \(0.597847\pi\)
\(884\) −16.4118 50.5104i −0.551990 1.69885i
\(885\) 0.0420773 + 0.400338i 0.00141441 + 0.0134572i
\(886\) 38.6858 42.9649i 1.29967 1.44343i
\(887\) 15.7327 + 17.4730i 0.528254 + 0.586685i 0.946926 0.321452i \(-0.104171\pi\)
−0.418672 + 0.908138i \(0.637504\pi\)
\(888\) 10.0046 95.1872i 0.335732 3.19427i
\(889\) 21.8059 4.63498i 0.731346 0.155452i
\(890\) −22.9001 10.1958i −0.767615 0.341764i
\(891\) 5.48554 3.98548i 0.183772 0.133518i
\(892\) −44.9522 + 20.0140i −1.50511 + 0.670119i
\(893\) −8.63379 + 14.9542i −0.288919 + 0.500422i
\(894\) 17.1873 + 29.7693i 0.574830 + 0.995635i
\(895\) −4.91110 3.56812i −0.164160 0.119269i
\(896\) −36.4449 7.74661i −1.21754 0.258796i
\(897\) 0.868078 2.67167i 0.0289843 0.0892044i
\(898\) 50.5739 1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −2.38945 + 7.35398i −0.0796042 + 0.244996i
\(902\) −0.366177 0.0778332i −0.0121923 0.00259156i
\(903\) −5.95736 4.32827i −0.198249 0.144036i
\(904\) 72.5879 + 125.726i 2.41424 + 4.18158i
\(905\) −5.65893 + 9.80156i −0.188109 + 0.325815i
\(906\) 11.1900 4.98211i 0.371763 0.165519i
\(907\) 10.1792 7.39560i 0.337994 0.245567i −0.405821 0.913952i \(-0.633014\pi\)
0.743815 + 0.668386i \(0.233014\pi\)
\(908\) 40.4714 + 18.0190i 1.34309 + 0.597982i
\(909\) 7.83138 1.66461i 0.259750 0.0552117i
\(910\) 1.08442 10.3175i 0.0359481 0.342023i
\(911\) 31.6395 + 35.1392i 1.04826 + 1.16421i 0.986101 + 0.166148i \(0.0531330\pi\)
0.0621624 + 0.998066i \(0.480200\pi\)
\(912\) 31.5797 35.0729i 1.04571 1.16138i
\(913\) −2.33243 22.1916i −0.0771922 0.734435i
\(914\) 3.41333 + 10.5051i 0.112903 + 0.347479i
\(915\) −1.36462 4.19986i −0.0451129 0.138843i
\(916\) 12.5047 + 118.974i 0.413167 + 3.93102i
\(917\) 2.81688 3.12846i 0.0930215 0.103311i
\(918\) −28.1325 31.2443i −0.928510 1.03121i
\(919\) 2.41794 23.0052i 0.0797605 0.758870i −0.879415 0.476057i \(-0.842066\pi\)
0.959175 0.282813i \(-0.0912677\pi\)
\(920\) 2.79442 0.593973i 0.0921294 0.0195827i
\(921\) −11.6051 5.16690i −0.382399 0.170255i
\(922\) 49.7848 36.1708i 1.63958 1.19122i
\(923\) −15.9575 + 7.10472i −0.525246 + 0.233855i
\(924\) −8.58224 + 14.8649i −0.282335 + 0.489019i
\(925\) −17.9291 31.0541i −0.589506 1.02105i
\(926\) 36.0560 + 26.1962i 1.18488 + 0.860862i
\(927\) 14.6135 + 3.10619i 0.479970 + 0.102021i
\(928\) −43.7846 + 134.755i −1.43730 + 4.42355i
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 26.3030 80.9524i 0.861585 2.65169i
\(933\) 28.6732 + 6.09467i 0.938717 + 0.199531i
\(934\) 83.0208 + 60.3181i 2.71652 + 1.97367i
\(935\) −1.12398 1.94679i −0.0367581 0.0636669i
\(936\) 15.7576 27.2930i 0.515055 0.892101i
\(937\) 18.0212 8.02355i 0.588727 0.262118i −0.0906798 0.995880i \(-0.528904\pi\)
0.679407 + 0.733762i \(0.262237\pi\)
\(938\) −31.1885 + 22.6598i −1.01834 + 0.739868i
\(939\) 0.585124 + 0.260514i 0.0190948 + 0.00850156i
\(940\) 20.9580 4.45477i 0.683575 0.145298i
\(941\) −0.922282 + 8.77493i −0.0300655 + 0.286054i 0.969151 + 0.246469i \(0.0792704\pi\)
−0.999216 + 0.0395854i \(0.987396\pi\)
\(942\) −8.49853 9.43857i −0.276897 0.307525i
\(943\) −0.0375456 + 0.0416987i −0.00122265 + 0.00135789i
\(944\) −0.631192 6.00539i −0.0205436 0.195459i
\(945\) −1.83649 5.65214i −0.0597411 0.183864i
\(946\) −3.34057 10.2812i −0.108611 0.334271i
\(947\) 1.62659 + 15.4759i 0.0528569 + 0.502900i 0.988638 + 0.150318i \(0.0480297\pi\)
−0.935781 + 0.352582i \(0.885304\pi\)
\(948\) −48.2332 + 53.5684i −1.56654 + 1.73982i
\(949\) 18.4364 + 20.4757i 0.598470 + 0.664668i
\(950\) 3.34288 31.8054i 0.108457 1.03190i
\(951\) −7.74706 + 1.64669i −0.251216 + 0.0533975i
\(952\) 37.9539 + 16.8982i 1.23009 + 0.547672i
\(953\) 7.80840 5.67314i 0.252939 0.183771i −0.454089 0.890956i \(-0.650035\pi\)
0.707028 + 0.707185i \(0.250035\pi\)
\(954\) −6.78166 + 3.01939i −0.219564 + 0.0977563i
\(955\) −0.364458 + 0.631260i −0.0117936 + 0.0204271i
\(956\) 47.8473 + 82.8739i 1.54749 + 2.68033i
\(957\) 12.4849 + 9.07083i 0.403580 + 0.293218i
\(958\) −88.6370 18.8404i −2.86373 0.608705i
\(959\) 4.34583 13.3751i 0.140334 0.431904i
\(960\) −18.1105 −0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 3.77063 11.6048i 0.121507 0.373960i
\(964\) −93.0837 19.7856i −2.99802 0.637250i
\(965\) −6.26392 4.55100i −0.201643 0.146502i
\(966\) 1.77763 + 3.07894i 0.0571942 + 0.0990633i
\(967\) 14.1988 24.5930i 0.456602 0.790858i −0.542177 0.840264i \(-0.682400\pi\)
0.998779 + 0.0494066i \(0.0157330\pi\)
\(968\) 73.2768 32.6249i 2.35521 1.04861i
\(969\) −8.14485 + 5.91758i −0.261650 + 0.190100i
\(970\) 1.91256 + 0.851528i 0.0614087 + 0.0273409i
\(971\) 21.6435 4.60048i 0.694574 0.147636i 0.152921 0.988238i \(-0.451132\pi\)
0.541653 + 0.840602i \(0.317799\pi\)
\(972\) 5.35102 50.9115i 0.171634 1.63299i
\(973\) −1.56382 1.73680i −0.0501338 0.0556792i
\(974\) −37.2194 + 41.3363i −1.19259 + 1.32450i
\(975\) 2.52105 + 23.9861i 0.0807381 + 0.768171i
\(976\) 20.4703 + 63.0012i 0.655240 + 2.01662i
\(977\) −6.15324 18.9377i −0.196859 0.605871i −0.999950 0.0100140i \(-0.996812\pi\)
0.803090 0.595857i \(-0.203188\pi\)
\(978\) −0.694513 6.60785i −0.0222081 0.211296i
\(979\) 13.7064 15.2225i 0.438058 0.486513i
\(980\) −8.56572 9.51319i −0.273622 0.303888i
\(981\) 0.743036 7.06951i 0.0237233 0.225712i
\(982\) −65.0810 + 13.8334i −2.07682 + 0.441441i
\(983\) 22.7750 + 10.1401i 0.726411 + 0.323419i 0.736414 0.676531i \(-0.236518\pi\)
−0.0100033 + 0.999950i \(0.503184\pi\)
\(984\) 1.04028 0.755810i 0.0331630 0.0240944i
\(985\) 1.64990 0.734585i 0.0525703 0.0234058i
\(986\) 30.2160 52.3356i 0.962273 1.66671i
\(987\) 8.24054 + 14.2730i 0.262299 + 0.454316i
\(988\) −39.9319 29.0122i −1.27040 0.923002i
\(989\) −1.58491 0.336883i −0.0503972 0.0107123i
\(990\) 0.666901 2.05251i 0.0211955 0.0652330i
\(991\) 42.0512 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 6.83142 21.0249i 0.216679 0.666871i
\(995\) −7.84569 1.66765i −0.248725 0.0528681i
\(996\) 100.319 + 72.8860i 3.17873 + 2.30948i
\(997\) −7.23233 12.5268i −0.229050 0.396727i 0.728477 0.685071i \(-0.240229\pi\)
−0.957527 + 0.288344i \(0.906895\pi\)
\(998\) 33.0353 57.2189i 1.04572 1.81123i
\(999\) −40.0237 + 17.8197i −1.26629 + 0.563790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.j.846.1 16
31.2 even 5 961.2.c.i.439.1 16
31.3 odd 30 961.2.g.s.732.2 16
31.4 even 5 961.2.g.l.547.1 16
31.5 even 3 961.2.d.n.628.1 16
31.6 odd 6 31.2.g.a.14.1 16
31.7 even 15 inner 961.2.g.j.844.1 16
31.8 even 5 961.2.g.m.235.2 16
31.9 even 15 961.2.d.q.388.4 16
31.10 even 15 961.2.a.j.1.1 8
31.11 odd 30 961.2.d.o.531.1 16
31.12 odd 30 961.2.c.j.521.1 16
31.13 odd 30 961.2.d.p.374.4 16
31.14 even 15 961.2.g.n.338.2 16
31.15 odd 10 961.2.g.t.816.2 16
31.16 even 5 961.2.g.n.816.2 16
31.17 odd 30 961.2.g.t.338.2 16
31.18 even 15 961.2.d.q.374.4 16
31.19 even 15 961.2.c.i.521.1 16
31.20 even 15 961.2.d.n.531.1 16
31.21 odd 30 961.2.a.i.1.1 8
31.22 odd 30 961.2.d.p.388.4 16
31.23 odd 10 961.2.g.s.235.2 16
31.24 odd 30 961.2.g.k.844.1 16
31.25 even 3 961.2.g.l.448.1 16
31.26 odd 6 961.2.d.o.628.1 16
31.27 odd 10 31.2.g.a.20.1 yes 16
31.28 even 15 961.2.g.m.732.2 16
31.29 odd 10 961.2.c.j.439.1 16
31.30 odd 2 961.2.g.k.846.1 16
93.41 odd 30 8649.2.a.be.1.8 8
93.68 even 6 279.2.y.c.262.2 16
93.83 even 30 8649.2.a.bf.1.8 8
93.89 even 10 279.2.y.c.82.2 16
124.27 even 10 496.2.bg.c.113.1 16
124.99 even 6 496.2.bg.c.417.1 16
155.27 even 20 775.2.ck.a.299.4 32
155.37 even 12 775.2.ck.a.324.1 32
155.58 even 20 775.2.ck.a.299.1 32
155.68 even 12 775.2.ck.a.324.4 32
155.89 odd 10 775.2.bl.a.51.2 16
155.99 odd 6 775.2.bl.a.76.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.6 odd 6
31.2.g.a.20.1 yes 16 31.27 odd 10
279.2.y.c.82.2 16 93.89 even 10
279.2.y.c.262.2 16 93.68 even 6
496.2.bg.c.113.1 16 124.27 even 10
496.2.bg.c.417.1 16 124.99 even 6
775.2.bl.a.51.2 16 155.89 odd 10
775.2.bl.a.76.2 16 155.99 odd 6
775.2.ck.a.299.1 32 155.58 even 20
775.2.ck.a.299.4 32 155.27 even 20
775.2.ck.a.324.1 32 155.37 even 12
775.2.ck.a.324.4 32 155.68 even 12
961.2.a.i.1.1 8 31.21 odd 30
961.2.a.j.1.1 8 31.10 even 15
961.2.c.i.439.1 16 31.2 even 5
961.2.c.i.521.1 16 31.19 even 15
961.2.c.j.439.1 16 31.29 odd 10
961.2.c.j.521.1 16 31.12 odd 30
961.2.d.n.531.1 16 31.20 even 15
961.2.d.n.628.1 16 31.5 even 3
961.2.d.o.531.1 16 31.11 odd 30
961.2.d.o.628.1 16 31.26 odd 6
961.2.d.p.374.4 16 31.13 odd 30
961.2.d.p.388.4 16 31.22 odd 30
961.2.d.q.374.4 16 31.18 even 15
961.2.d.q.388.4 16 31.9 even 15
961.2.g.j.844.1 16 31.7 even 15 inner
961.2.g.j.846.1 16 1.1 even 1 trivial
961.2.g.k.844.1 16 31.24 odd 30
961.2.g.k.846.1 16 31.30 odd 2
961.2.g.l.448.1 16 31.25 even 3
961.2.g.l.547.1 16 31.4 even 5
961.2.g.m.235.2 16 31.8 even 5
961.2.g.m.732.2 16 31.28 even 15
961.2.g.n.338.2 16 31.14 even 15
961.2.g.n.816.2 16 31.16 even 5
961.2.g.s.235.2 16 31.23 odd 10
961.2.g.s.732.2 16 31.3 odd 30
961.2.g.t.338.2 16 31.17 odd 30
961.2.g.t.816.2 16 31.15 odd 10
8649.2.a.be.1.8 8 93.41 odd 30
8649.2.a.bf.1.8 8 93.83 even 30