Properties

Label 8649.2.a.bf.1.8
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,8,-3,0,-2,9,0,-13,18,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.28064\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69016 q^{2} +5.23694 q^{4} -0.608384 q^{5} -1.72688 q^{7} +8.70786 q^{8} -1.63665 q^{10} +1.33739 q^{11} +3.67067 q^{13} -4.64557 q^{14} +12.9516 q^{16} +2.76282 q^{17} -2.56768 q^{19} -3.18607 q^{20} +3.59779 q^{22} +0.539261 q^{23} -4.62987 q^{25} +9.87466 q^{26} -9.04356 q^{28} +8.13087 q^{29} +17.4262 q^{32} +7.43241 q^{34} +1.05061 q^{35} +7.74498 q^{37} -6.90745 q^{38} -5.29772 q^{40} +0.104052 q^{41} -3.00470 q^{43} +7.00384 q^{44} +1.45070 q^{46} +6.72498 q^{47} -4.01789 q^{49} -12.4551 q^{50} +19.2230 q^{52} -2.79875 q^{53} -0.813648 q^{55} -15.0374 q^{56} +21.8733 q^{58} -0.466233 q^{59} -5.11468 q^{61} +20.9759 q^{64} -2.23317 q^{65} +8.29847 q^{67} +14.4687 q^{68} +2.82629 q^{70} -4.75871 q^{71} +7.50619 q^{73} +20.8352 q^{74} -13.4468 q^{76} -2.30951 q^{77} -9.69896 q^{79} -7.87956 q^{80} +0.279916 q^{82} +16.6846 q^{83} -1.68085 q^{85} -8.08312 q^{86} +11.6458 q^{88} +15.3163 q^{89} -6.33879 q^{91} +2.82407 q^{92} +18.0912 q^{94} +1.56213 q^{95} -1.27918 q^{97} -10.8087 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} + 18 q^{11} - 8 q^{13} + 9 q^{14} + 4 q^{16} + 14 q^{17} - 6 q^{19} + 7 q^{20} - 4 q^{22} + 22 q^{23} + 13 q^{25} + 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69016 1.90223 0.951114 0.308841i \(-0.0999412\pi\)
0.951114 + 0.308841i \(0.0999412\pi\)
\(3\) 0 0
\(4\) 5.23694 2.61847
\(5\) −0.608384 −0.272077 −0.136039 0.990704i \(-0.543437\pi\)
−0.136039 + 0.990704i \(0.543437\pi\)
\(6\) 0 0
\(7\) −1.72688 −0.652699 −0.326349 0.945249i \(-0.605819\pi\)
−0.326349 + 0.945249i \(0.605819\pi\)
\(8\) 8.70786 3.07869
\(9\) 0 0
\(10\) −1.63665 −0.517553
\(11\) 1.33739 0.403239 0.201619 0.979464i \(-0.435380\pi\)
0.201619 + 0.979464i \(0.435380\pi\)
\(12\) 0 0
\(13\) 3.67067 1.01806 0.509030 0.860749i \(-0.330004\pi\)
0.509030 + 0.860749i \(0.330004\pi\)
\(14\) −4.64557 −1.24158
\(15\) 0 0
\(16\) 12.9516 3.23791
\(17\) 2.76282 0.670082 0.335041 0.942204i \(-0.391250\pi\)
0.335041 + 0.942204i \(0.391250\pi\)
\(18\) 0 0
\(19\) −2.56768 −0.589066 −0.294533 0.955641i \(-0.595164\pi\)
−0.294533 + 0.955641i \(0.595164\pi\)
\(20\) −3.18607 −0.712426
\(21\) 0 0
\(22\) 3.59779 0.767052
\(23\) 0.539261 0.112444 0.0562218 0.998418i \(-0.482095\pi\)
0.0562218 + 0.998418i \(0.482095\pi\)
\(24\) 0 0
\(25\) −4.62987 −0.925974
\(26\) 9.87466 1.93658
\(27\) 0 0
\(28\) −9.04356 −1.70907
\(29\) 8.13087 1.50986 0.754932 0.655803i \(-0.227670\pi\)
0.754932 + 0.655803i \(0.227670\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 17.4262 3.08054
\(33\) 0 0
\(34\) 7.43241 1.27465
\(35\) 1.05061 0.177585
\(36\) 0 0
\(37\) 7.74498 1.27327 0.636633 0.771167i \(-0.280327\pi\)
0.636633 + 0.771167i \(0.280327\pi\)
\(38\) −6.90745 −1.12054
\(39\) 0 0
\(40\) −5.29772 −0.837643
\(41\) 0.104052 0.0162502 0.00812508 0.999967i \(-0.497414\pi\)
0.00812508 + 0.999967i \(0.497414\pi\)
\(42\) 0 0
\(43\) −3.00470 −0.458213 −0.229106 0.973401i \(-0.573580\pi\)
−0.229106 + 0.973401i \(0.573580\pi\)
\(44\) 7.00384 1.05587
\(45\) 0 0
\(46\) 1.45070 0.213893
\(47\) 6.72498 0.980939 0.490470 0.871458i \(-0.336825\pi\)
0.490470 + 0.871458i \(0.336825\pi\)
\(48\) 0 0
\(49\) −4.01789 −0.573984
\(50\) −12.4551 −1.76141
\(51\) 0 0
\(52\) 19.2230 2.66576
\(53\) −2.79875 −0.384437 −0.192219 0.981352i \(-0.561568\pi\)
−0.192219 + 0.981352i \(0.561568\pi\)
\(54\) 0 0
\(55\) −0.813648 −0.109712
\(56\) −15.0374 −2.00946
\(57\) 0 0
\(58\) 21.8733 2.87210
\(59\) −0.466233 −0.0606983 −0.0303492 0.999539i \(-0.509662\pi\)
−0.0303492 + 0.999539i \(0.509662\pi\)
\(60\) 0 0
\(61\) −5.11468 −0.654867 −0.327434 0.944874i \(-0.606184\pi\)
−0.327434 + 0.944874i \(0.606184\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 20.9759 2.62198
\(65\) −2.23317 −0.276991
\(66\) 0 0
\(67\) 8.29847 1.01382 0.506910 0.861999i \(-0.330788\pi\)
0.506910 + 0.861999i \(0.330788\pi\)
\(68\) 14.4687 1.75459
\(69\) 0 0
\(70\) 2.82629 0.337806
\(71\) −4.75871 −0.564755 −0.282377 0.959303i \(-0.591123\pi\)
−0.282377 + 0.959303i \(0.591123\pi\)
\(72\) 0 0
\(73\) 7.50619 0.878533 0.439267 0.898357i \(-0.355238\pi\)
0.439267 + 0.898357i \(0.355238\pi\)
\(74\) 20.8352 2.42204
\(75\) 0 0
\(76\) −13.4468 −1.54245
\(77\) −2.30951 −0.263194
\(78\) 0 0
\(79\) −9.69896 −1.09122 −0.545609 0.838040i \(-0.683702\pi\)
−0.545609 + 0.838040i \(0.683702\pi\)
\(80\) −7.87956 −0.880962
\(81\) 0 0
\(82\) 0.279916 0.0309115
\(83\) 16.6846 1.83137 0.915686 0.401895i \(-0.131648\pi\)
0.915686 + 0.401895i \(0.131648\pi\)
\(84\) 0 0
\(85\) −1.68085 −0.182314
\(86\) −8.08312 −0.871625
\(87\) 0 0
\(88\) 11.6458 1.24145
\(89\) 15.3163 1.62352 0.811761 0.583990i \(-0.198509\pi\)
0.811761 + 0.583990i \(0.198509\pi\)
\(90\) 0 0
\(91\) −6.33879 −0.664486
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) 1.56213 0.160271
\(96\) 0 0
\(97\) −1.27918 −0.129881 −0.0649404 0.997889i \(-0.520686\pi\)
−0.0649404 + 0.997889i \(0.520686\pi\)
\(98\) −10.8087 −1.09185
\(99\) 0 0
\(100\) −24.2463 −2.42463
\(101\) −8.12024 −0.807994 −0.403997 0.914760i \(-0.632379\pi\)
−0.403997 + 0.914760i \(0.632379\pi\)
\(102\) 0 0
\(103\) 15.1525 1.49302 0.746511 0.665374i \(-0.231728\pi\)
0.746511 + 0.665374i \(0.231728\pi\)
\(104\) 31.9636 3.13429
\(105\) 0 0
\(106\) −7.52906 −0.731287
\(107\) 12.3756 1.19640 0.598198 0.801348i \(-0.295884\pi\)
0.598198 + 0.801348i \(0.295884\pi\)
\(108\) 0 0
\(109\) 7.20958 0.690553 0.345276 0.938501i \(-0.387785\pi\)
0.345276 + 0.938501i \(0.387785\pi\)
\(110\) −2.18884 −0.208698
\(111\) 0 0
\(112\) −22.3659 −2.11338
\(113\) −16.6718 −1.56835 −0.784176 0.620539i \(-0.786914\pi\)
−0.784176 + 0.620539i \(0.786914\pi\)
\(114\) 0 0
\(115\) −0.328077 −0.0305934
\(116\) 42.5808 3.95353
\(117\) 0 0
\(118\) −1.25424 −0.115462
\(119\) −4.77105 −0.437362
\(120\) 0 0
\(121\) −9.21138 −0.837398
\(122\) −13.7593 −1.24571
\(123\) 0 0
\(124\) 0 0
\(125\) 5.85866 0.524014
\(126\) 0 0
\(127\) −12.9094 −1.14553 −0.572764 0.819721i \(-0.694129\pi\)
−0.572764 + 0.819721i \(0.694129\pi\)
\(128\) 21.5760 1.90707
\(129\) 0 0
\(130\) −6.00758 −0.526900
\(131\) 2.43778 0.212990 0.106495 0.994313i \(-0.466037\pi\)
0.106495 + 0.994313i \(0.466037\pi\)
\(132\) 0 0
\(133\) 4.43407 0.384482
\(134\) 22.3242 1.92851
\(135\) 0 0
\(136\) 24.0583 2.06298
\(137\) −8.14382 −0.695774 −0.347887 0.937536i \(-0.613101\pi\)
−0.347887 + 0.937536i \(0.613101\pi\)
\(138\) 0 0
\(139\) −1.35336 −0.114791 −0.0573954 0.998352i \(-0.518280\pi\)
−0.0573954 + 0.998352i \(0.518280\pi\)
\(140\) 5.50195 0.465000
\(141\) 0 0
\(142\) −12.8017 −1.07429
\(143\) 4.90912 0.410521
\(144\) 0 0
\(145\) −4.94669 −0.410800
\(146\) 20.1928 1.67117
\(147\) 0 0
\(148\) 40.5600 3.33401
\(149\) 9.00385 0.737624 0.368812 0.929504i \(-0.379765\pi\)
0.368812 + 0.929504i \(0.379765\pi\)
\(150\) 0 0
\(151\) −3.20841 −0.261097 −0.130548 0.991442i \(-0.541674\pi\)
−0.130548 + 0.991442i \(0.541674\pi\)
\(152\) −22.3590 −1.81355
\(153\) 0 0
\(154\) −6.21295 −0.500654
\(155\) 0 0
\(156\) 0 0
\(157\) −3.32677 −0.265505 −0.132753 0.991149i \(-0.542382\pi\)
−0.132753 + 0.991149i \(0.542382\pi\)
\(158\) −26.0917 −2.07574
\(159\) 0 0
\(160\) −10.6018 −0.838146
\(161\) −0.931238 −0.0733918
\(162\) 0 0
\(163\) 1.74035 0.136314 0.0681572 0.997675i \(-0.478288\pi\)
0.0681572 + 0.997675i \(0.478288\pi\)
\(164\) 0.544913 0.0425506
\(165\) 0 0
\(166\) 44.8841 3.48368
\(167\) 14.0165 1.08463 0.542314 0.840176i \(-0.317548\pi\)
0.542314 + 0.840176i \(0.317548\pi\)
\(168\) 0 0
\(169\) 0.473782 0.0364447
\(170\) −4.52176 −0.346803
\(171\) 0 0
\(172\) −15.7354 −1.19982
\(173\) 0.0119809 0.000910890 0 0.000455445 1.00000i \(-0.499855\pi\)
0.000455445 1.00000i \(0.499855\pi\)
\(174\) 0 0
\(175\) 7.99522 0.604382
\(176\) 17.3214 1.30565
\(177\) 0 0
\(178\) 41.2032 3.08831
\(179\) 9.97800 0.745791 0.372896 0.927873i \(-0.378365\pi\)
0.372896 + 0.927873i \(0.378365\pi\)
\(180\) 0 0
\(181\) −18.6032 −1.38276 −0.691381 0.722490i \(-0.742997\pi\)
−0.691381 + 0.722490i \(0.742997\pi\)
\(182\) −17.0523 −1.26400
\(183\) 0 0
\(184\) 4.69581 0.346180
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) 35.2183 2.56856
\(189\) 0 0
\(190\) 4.20238 0.304873
\(191\) −1.19812 −0.0866928 −0.0433464 0.999060i \(-0.513802\pi\)
−0.0433464 + 0.999060i \(0.513802\pi\)
\(192\) 0 0
\(193\) 12.7266 0.916078 0.458039 0.888932i \(-0.348552\pi\)
0.458039 + 0.888932i \(0.348552\pi\)
\(194\) −3.44118 −0.247063
\(195\) 0 0
\(196\) −21.0414 −1.50296
\(197\) 2.96860 0.211504 0.105752 0.994393i \(-0.466275\pi\)
0.105752 + 0.994393i \(0.466275\pi\)
\(198\) 0 0
\(199\) −13.1841 −0.934593 −0.467296 0.884101i \(-0.654772\pi\)
−0.467296 + 0.884101i \(0.654772\pi\)
\(200\) −40.3163 −2.85079
\(201\) 0 0
\(202\) −21.8447 −1.53699
\(203\) −14.0410 −0.985487
\(204\) 0 0
\(205\) −0.0633035 −0.00442131
\(206\) 40.7626 2.84007
\(207\) 0 0
\(208\) 47.5411 3.29638
\(209\) −3.43399 −0.237534
\(210\) 0 0
\(211\) 18.3323 1.26205 0.631023 0.775764i \(-0.282635\pi\)
0.631023 + 0.775764i \(0.282635\pi\)
\(212\) −14.6569 −1.00664
\(213\) 0 0
\(214\) 33.2923 2.27582
\(215\) 1.82801 0.124669
\(216\) 0 0
\(217\) 0 0
\(218\) 19.3949 1.31359
\(219\) 0 0
\(220\) −4.26102 −0.287278
\(221\) 10.1414 0.682183
\(222\) 0 0
\(223\) 9.39601 0.629203 0.314602 0.949224i \(-0.398129\pi\)
0.314602 + 0.949224i \(0.398129\pi\)
\(224\) −30.0929 −2.01067
\(225\) 0 0
\(226\) −44.8497 −2.98336
\(227\) −8.45942 −0.561472 −0.280736 0.959785i \(-0.590578\pi\)
−0.280736 + 0.959785i \(0.590578\pi\)
\(228\) 0 0
\(229\) 22.8434 1.50954 0.754768 0.655991i \(-0.227749\pi\)
0.754768 + 0.655991i \(0.227749\pi\)
\(230\) −0.882579 −0.0581956
\(231\) 0 0
\(232\) 70.8025 4.64841
\(233\) −16.2535 −1.06480 −0.532400 0.846493i \(-0.678710\pi\)
−0.532400 + 0.846493i \(0.678710\pi\)
\(234\) 0 0
\(235\) −4.09137 −0.266891
\(236\) −2.44163 −0.158937
\(237\) 0 0
\(238\) −12.8349 −0.831962
\(239\) −18.2730 −1.18198 −0.590991 0.806678i \(-0.701263\pi\)
−0.590991 + 0.806678i \(0.701263\pi\)
\(240\) 0 0
\(241\) −18.1715 −1.17053 −0.585266 0.810841i \(-0.699010\pi\)
−0.585266 + 0.810841i \(0.699010\pi\)
\(242\) −24.7800 −1.59292
\(243\) 0 0
\(244\) −26.7852 −1.71475
\(245\) 2.44442 0.156168
\(246\) 0 0
\(247\) −9.42508 −0.599704
\(248\) 0 0
\(249\) 0 0
\(250\) 15.7607 0.996794
\(251\) 22.9302 1.44734 0.723671 0.690145i \(-0.242453\pi\)
0.723671 + 0.690145i \(0.242453\pi\)
\(252\) 0 0
\(253\) 0.721203 0.0453417
\(254\) −34.7284 −2.17905
\(255\) 0 0
\(256\) 16.0910 1.00569
\(257\) −0.106193 −0.00662414 −0.00331207 0.999995i \(-0.501054\pi\)
−0.00331207 + 0.999995i \(0.501054\pi\)
\(258\) 0 0
\(259\) −13.3746 −0.831060
\(260\) −11.6950 −0.725292
\(261\) 0 0
\(262\) 6.55802 0.405156
\(263\) 7.29731 0.449971 0.224986 0.974362i \(-0.427766\pi\)
0.224986 + 0.974362i \(0.427766\pi\)
\(264\) 0 0
\(265\) 1.70271 0.104597
\(266\) 11.9283 0.731373
\(267\) 0 0
\(268\) 43.4586 2.65465
\(269\) −16.2194 −0.988912 −0.494456 0.869203i \(-0.664633\pi\)
−0.494456 + 0.869203i \(0.664633\pi\)
\(270\) 0 0
\(271\) −5.14564 −0.312575 −0.156288 0.987712i \(-0.549953\pi\)
−0.156288 + 0.987712i \(0.549953\pi\)
\(272\) 35.7830 2.16966
\(273\) 0 0
\(274\) −21.9082 −1.32352
\(275\) −6.19195 −0.373389
\(276\) 0 0
\(277\) −16.9228 −1.01679 −0.508397 0.861123i \(-0.669762\pi\)
−0.508397 + 0.861123i \(0.669762\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) −1.90667 −0.113742 −0.0568711 0.998382i \(-0.518112\pi\)
−0.0568711 + 0.998382i \(0.518112\pi\)
\(282\) 0 0
\(283\) −15.3098 −0.910074 −0.455037 0.890473i \(-0.650374\pi\)
−0.455037 + 0.890473i \(0.650374\pi\)
\(284\) −24.9211 −1.47879
\(285\) 0 0
\(286\) 13.2063 0.780905
\(287\) −0.179685 −0.0106065
\(288\) 0 0
\(289\) −9.36683 −0.550990
\(290\) −13.3074 −0.781435
\(291\) 0 0
\(292\) 39.3094 2.30041
\(293\) −26.7937 −1.56530 −0.782651 0.622460i \(-0.786133\pi\)
−0.782651 + 0.622460i \(0.786133\pi\)
\(294\) 0 0
\(295\) 0.283648 0.0165146
\(296\) 67.4422 3.92000
\(297\) 0 0
\(298\) 24.2218 1.40313
\(299\) 1.97945 0.114474
\(300\) 0 0
\(301\) 5.18876 0.299075
\(302\) −8.63112 −0.496665
\(303\) 0 0
\(304\) −33.2556 −1.90734
\(305\) 3.11169 0.178175
\(306\) 0 0
\(307\) 8.95126 0.510875 0.255438 0.966826i \(-0.417780\pi\)
0.255438 + 0.966826i \(0.417780\pi\)
\(308\) −12.0948 −0.689164
\(309\) 0 0
\(310\) 0 0
\(311\) −20.6556 −1.17127 −0.585637 0.810574i \(-0.699156\pi\)
−0.585637 + 0.810574i \(0.699156\pi\)
\(312\) 0 0
\(313\) 0.451321 0.0255102 0.0127551 0.999919i \(-0.495940\pi\)
0.0127551 + 0.999919i \(0.495940\pi\)
\(314\) −8.94953 −0.505051
\(315\) 0 0
\(316\) −50.7928 −2.85732
\(317\) 5.58084 0.313451 0.156726 0.987642i \(-0.449906\pi\)
0.156726 + 0.987642i \(0.449906\pi\)
\(318\) 0 0
\(319\) 10.8742 0.608836
\(320\) −12.7614 −0.713383
\(321\) 0 0
\(322\) −2.50517 −0.139608
\(323\) −7.09403 −0.394722
\(324\) 0 0
\(325\) −16.9947 −0.942696
\(326\) 4.68180 0.259301
\(327\) 0 0
\(328\) 0.906069 0.0500293
\(329\) −11.6132 −0.640258
\(330\) 0 0
\(331\) 24.2055 1.33045 0.665226 0.746642i \(-0.268335\pi\)
0.665226 + 0.746642i \(0.268335\pi\)
\(332\) 87.3761 4.79539
\(333\) 0 0
\(334\) 37.7065 2.06321
\(335\) −5.04865 −0.275837
\(336\) 0 0
\(337\) 11.0360 0.601168 0.300584 0.953755i \(-0.402818\pi\)
0.300584 + 0.953755i \(0.402818\pi\)
\(338\) 1.27455 0.0693262
\(339\) 0 0
\(340\) −8.80253 −0.477384
\(341\) 0 0
\(342\) 0 0
\(343\) 19.0266 1.02734
\(344\) −26.1645 −1.41070
\(345\) 0 0
\(346\) 0.0322304 0.00173272
\(347\) 18.5674 0.996749 0.498375 0.866962i \(-0.333930\pi\)
0.498375 + 0.866962i \(0.333930\pi\)
\(348\) 0 0
\(349\) −32.1746 −1.72227 −0.861134 0.508378i \(-0.830245\pi\)
−0.861134 + 0.508378i \(0.830245\pi\)
\(350\) 21.5084 1.14967
\(351\) 0 0
\(352\) 23.3056 1.24219
\(353\) −32.2134 −1.71455 −0.857273 0.514863i \(-0.827843\pi\)
−0.857273 + 0.514863i \(0.827843\pi\)
\(354\) 0 0
\(355\) 2.89512 0.153657
\(356\) 80.2104 4.25114
\(357\) 0 0
\(358\) 26.8424 1.41866
\(359\) −21.1623 −1.11690 −0.558451 0.829538i \(-0.688604\pi\)
−0.558451 + 0.829538i \(0.688604\pi\)
\(360\) 0 0
\(361\) −12.4070 −0.653002
\(362\) −50.0454 −2.63033
\(363\) 0 0
\(364\) −33.1959 −1.73994
\(365\) −4.56664 −0.239029
\(366\) 0 0
\(367\) 12.9964 0.678408 0.339204 0.940713i \(-0.389842\pi\)
0.339204 + 0.940713i \(0.389842\pi\)
\(368\) 6.98431 0.364082
\(369\) 0 0
\(370\) −12.6758 −0.658983
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) 9.94005 0.513988
\(375\) 0 0
\(376\) 58.5602 3.02001
\(377\) 29.8457 1.53713
\(378\) 0 0
\(379\) −14.9557 −0.768225 −0.384112 0.923286i \(-0.625492\pi\)
−0.384112 + 0.923286i \(0.625492\pi\)
\(380\) 8.18079 0.419666
\(381\) 0 0
\(382\) −3.22312 −0.164909
\(383\) 11.6503 0.595305 0.297652 0.954674i \(-0.403796\pi\)
0.297652 + 0.954674i \(0.403796\pi\)
\(384\) 0 0
\(385\) 1.40507 0.0716091
\(386\) 34.2364 1.74259
\(387\) 0 0
\(388\) −6.69897 −0.340089
\(389\) −14.4019 −0.730207 −0.365103 0.930967i \(-0.618966\pi\)
−0.365103 + 0.930967i \(0.618966\pi\)
\(390\) 0 0
\(391\) 1.48988 0.0753465
\(392\) −34.9872 −1.76712
\(393\) 0 0
\(394\) 7.98598 0.402328
\(395\) 5.90069 0.296896
\(396\) 0 0
\(397\) 15.7901 0.792484 0.396242 0.918146i \(-0.370314\pi\)
0.396242 + 0.918146i \(0.370314\pi\)
\(398\) −35.4672 −1.77781
\(399\) 0 0
\(400\) −59.9644 −2.99822
\(401\) −31.0232 −1.54923 −0.774613 0.632436i \(-0.782055\pi\)
−0.774613 + 0.632436i \(0.782055\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −42.5252 −2.11571
\(405\) 0 0
\(406\) −37.7725 −1.87462
\(407\) 10.3581 0.513431
\(408\) 0 0
\(409\) 6.58582 0.325648 0.162824 0.986655i \(-0.447940\pi\)
0.162824 + 0.986655i \(0.447940\pi\)
\(410\) −0.170296 −0.00841033
\(411\) 0 0
\(412\) 79.3527 3.90943
\(413\) 0.805127 0.0396177
\(414\) 0 0
\(415\) −10.1506 −0.498275
\(416\) 63.9657 3.13618
\(417\) 0 0
\(418\) −9.23797 −0.451844
\(419\) 14.6720 0.716773 0.358387 0.933573i \(-0.383327\pi\)
0.358387 + 0.933573i \(0.383327\pi\)
\(420\) 0 0
\(421\) −26.7159 −1.30205 −0.651026 0.759056i \(-0.725661\pi\)
−0.651026 + 0.759056i \(0.725661\pi\)
\(422\) 49.3167 2.40070
\(423\) 0 0
\(424\) −24.3711 −1.18356
\(425\) −12.7915 −0.620479
\(426\) 0 0
\(427\) 8.83243 0.427431
\(428\) 64.8103 3.13272
\(429\) 0 0
\(430\) 4.91764 0.237150
\(431\) −3.98801 −0.192096 −0.0960478 0.995377i \(-0.530620\pi\)
−0.0960478 + 0.995377i \(0.530620\pi\)
\(432\) 0 0
\(433\) 18.0766 0.868704 0.434352 0.900743i \(-0.356977\pi\)
0.434352 + 0.900743i \(0.356977\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 37.7561 1.80819
\(437\) −1.38465 −0.0662367
\(438\) 0 0
\(439\) 22.9086 1.09337 0.546684 0.837339i \(-0.315890\pi\)
0.546684 + 0.837339i \(0.315890\pi\)
\(440\) −7.08513 −0.337771
\(441\) 0 0
\(442\) 27.2819 1.29767
\(443\) 21.4913 1.02108 0.510542 0.859853i \(-0.329445\pi\)
0.510542 + 0.859853i \(0.329445\pi\)
\(444\) 0 0
\(445\) −9.31817 −0.441724
\(446\) 25.2767 1.19689
\(447\) 0 0
\(448\) −36.2228 −1.71137
\(449\) −18.7996 −0.887209 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(450\) 0 0
\(451\) 0.139158 0.00655270
\(452\) −87.3092 −4.10668
\(453\) 0 0
\(454\) −22.7572 −1.06805
\(455\) 3.85642 0.180792
\(456\) 0 0
\(457\) 4.10599 0.192070 0.0960351 0.995378i \(-0.469384\pi\)
0.0960351 + 0.995378i \(0.469384\pi\)
\(458\) 61.4524 2.87148
\(459\) 0 0
\(460\) −1.71812 −0.0801078
\(461\) 22.8750 1.06540 0.532698 0.846305i \(-0.321178\pi\)
0.532698 + 0.846305i \(0.321178\pi\)
\(462\) 0 0
\(463\) −16.5670 −0.769932 −0.384966 0.922931i \(-0.625787\pi\)
−0.384966 + 0.922931i \(0.625787\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) −38.1462 −1.76520 −0.882599 0.470127i \(-0.844208\pi\)
−0.882599 + 0.470127i \(0.844208\pi\)
\(468\) 0 0
\(469\) −14.3305 −0.661719
\(470\) −11.0064 −0.507688
\(471\) 0 0
\(472\) −4.05989 −0.186872
\(473\) −4.01847 −0.184769
\(474\) 0 0
\(475\) 11.8880 0.545459
\(476\) −24.9857 −1.14522
\(477\) 0 0
\(478\) −49.1572 −2.24840
\(479\) 33.6848 1.53910 0.769548 0.638589i \(-0.220482\pi\)
0.769548 + 0.638589i \(0.220482\pi\)
\(480\) 0 0
\(481\) 28.4292 1.29626
\(482\) −48.8843 −2.22662
\(483\) 0 0
\(484\) −48.2394 −2.19270
\(485\) 0.778230 0.0353376
\(486\) 0 0
\(487\) −20.6767 −0.936950 −0.468475 0.883477i \(-0.655196\pi\)
−0.468475 + 0.883477i \(0.655196\pi\)
\(488\) −44.5379 −2.01614
\(489\) 0 0
\(490\) 6.57587 0.297067
\(491\) −24.7327 −1.11617 −0.558087 0.829783i \(-0.688464\pi\)
−0.558087 + 0.829783i \(0.688464\pi\)
\(492\) 0 0
\(493\) 22.4641 1.01173
\(494\) −25.3549 −1.14077
\(495\) 0 0
\(496\) 0 0
\(497\) 8.21771 0.368615
\(498\) 0 0
\(499\) −24.5602 −1.09946 −0.549732 0.835341i \(-0.685270\pi\)
−0.549732 + 0.835341i \(0.685270\pi\)
\(500\) 30.6814 1.37211
\(501\) 0 0
\(502\) 61.6858 2.75317
\(503\) −14.7391 −0.657185 −0.328593 0.944472i \(-0.606574\pi\)
−0.328593 + 0.944472i \(0.606574\pi\)
\(504\) 0 0
\(505\) 4.94022 0.219837
\(506\) 1.94015 0.0862501
\(507\) 0 0
\(508\) −67.6059 −2.99953
\(509\) −15.5063 −0.687304 −0.343652 0.939097i \(-0.611664\pi\)
−0.343652 + 0.939097i \(0.611664\pi\)
\(510\) 0 0
\(511\) −12.9623 −0.573418
\(512\) 0.135395 0.00598366
\(513\) 0 0
\(514\) −0.285676 −0.0126006
\(515\) −9.21854 −0.406217
\(516\) 0 0
\(517\) 8.99394 0.395553
\(518\) −35.9799 −1.58086
\(519\) 0 0
\(520\) −19.4462 −0.852771
\(521\) −29.4146 −1.28867 −0.644337 0.764741i \(-0.722867\pi\)
−0.644337 + 0.764741i \(0.722867\pi\)
\(522\) 0 0
\(523\) 45.0260 1.96885 0.984424 0.175810i \(-0.0562543\pi\)
0.984424 + 0.175810i \(0.0562543\pi\)
\(524\) 12.7665 0.557708
\(525\) 0 0
\(526\) 19.6309 0.855947
\(527\) 0 0
\(528\) 0 0
\(529\) −22.7092 −0.987356
\(530\) 4.58056 0.198967
\(531\) 0 0
\(532\) 23.2209 1.00676
\(533\) 0.381940 0.0165436
\(534\) 0 0
\(535\) −7.52912 −0.325512
\(536\) 72.2619 3.12124
\(537\) 0 0
\(538\) −43.6326 −1.88114
\(539\) −5.37349 −0.231453
\(540\) 0 0
\(541\) 37.7787 1.62423 0.812117 0.583495i \(-0.198315\pi\)
0.812117 + 0.583495i \(0.198315\pi\)
\(542\) −13.8426 −0.594589
\(543\) 0 0
\(544\) 48.1454 2.06422
\(545\) −4.38619 −0.187884
\(546\) 0 0
\(547\) −18.2088 −0.778550 −0.389275 0.921122i \(-0.627274\pi\)
−0.389275 + 0.921122i \(0.627274\pi\)
\(548\) −42.6487 −1.82186
\(549\) 0 0
\(550\) −16.6573 −0.710270
\(551\) −20.8774 −0.889409
\(552\) 0 0
\(553\) 16.7489 0.712237
\(554\) −45.5250 −1.93417
\(555\) 0 0
\(556\) −7.08748 −0.300576
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) 13.6071 0.575003
\(561\) 0 0
\(562\) −5.12923 −0.216364
\(563\) 36.1618 1.52404 0.762019 0.647555i \(-0.224208\pi\)
0.762019 + 0.647555i \(0.224208\pi\)
\(564\) 0 0
\(565\) 10.1429 0.426713
\(566\) −41.1858 −1.73117
\(567\) 0 0
\(568\) −41.4382 −1.73871
\(569\) −41.4998 −1.73976 −0.869880 0.493263i \(-0.835804\pi\)
−0.869880 + 0.493263i \(0.835804\pi\)
\(570\) 0 0
\(571\) −32.3931 −1.35561 −0.677805 0.735242i \(-0.737069\pi\)
−0.677805 + 0.735242i \(0.737069\pi\)
\(572\) 25.7087 1.07494
\(573\) 0 0
\(574\) −0.483381 −0.0201759
\(575\) −2.49671 −0.104120
\(576\) 0 0
\(577\) 40.9825 1.70613 0.853063 0.521809i \(-0.174743\pi\)
0.853063 + 0.521809i \(0.174743\pi\)
\(578\) −25.1982 −1.04811
\(579\) 0 0
\(580\) −25.9055 −1.07567
\(581\) −28.8123 −1.19533
\(582\) 0 0
\(583\) −3.74302 −0.155020
\(584\) 65.3629 2.70474
\(585\) 0 0
\(586\) −72.0791 −2.97756
\(587\) −25.5314 −1.05379 −0.526897 0.849929i \(-0.676644\pi\)
−0.526897 + 0.849929i \(0.676644\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.763058 0.0314146
\(591\) 0 0
\(592\) 100.310 4.12272
\(593\) −44.5318 −1.82870 −0.914350 0.404925i \(-0.867298\pi\)
−0.914350 + 0.404925i \(0.867298\pi\)
\(594\) 0 0
\(595\) 2.90263 0.118996
\(596\) 47.1526 1.93145
\(597\) 0 0
\(598\) 5.32502 0.217756
\(599\) −18.9800 −0.775500 −0.387750 0.921765i \(-0.626748\pi\)
−0.387750 + 0.921765i \(0.626748\pi\)
\(600\) 0 0
\(601\) −12.8398 −0.523747 −0.261873 0.965102i \(-0.584340\pi\)
−0.261873 + 0.965102i \(0.584340\pi\)
\(602\) 13.9586 0.568909
\(603\) 0 0
\(604\) −16.8022 −0.683673
\(605\) 5.60405 0.227837
\(606\) 0 0
\(607\) −38.1393 −1.54803 −0.774013 0.633170i \(-0.781754\pi\)
−0.774013 + 0.633170i \(0.781754\pi\)
\(608\) −44.7448 −1.81464
\(609\) 0 0
\(610\) 8.37092 0.338929
\(611\) 24.6852 0.998654
\(612\) 0 0
\(613\) −18.5424 −0.748920 −0.374460 0.927243i \(-0.622172\pi\)
−0.374460 + 0.927243i \(0.622172\pi\)
\(614\) 24.0803 0.971801
\(615\) 0 0
\(616\) −20.1109 −0.810293
\(617\) −8.13555 −0.327525 −0.163762 0.986500i \(-0.552363\pi\)
−0.163762 + 0.986500i \(0.552363\pi\)
\(618\) 0 0
\(619\) −5.36063 −0.215462 −0.107731 0.994180i \(-0.534359\pi\)
−0.107731 + 0.994180i \(0.534359\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −55.5669 −2.22803
\(623\) −26.4494 −1.05967
\(624\) 0 0
\(625\) 19.5850 0.783401
\(626\) 1.21412 0.0485261
\(627\) 0 0
\(628\) −17.4221 −0.695217
\(629\) 21.3980 0.853193
\(630\) 0 0
\(631\) 29.0470 1.15634 0.578172 0.815915i \(-0.303766\pi\)
0.578172 + 0.815915i \(0.303766\pi\)
\(632\) −84.4572 −3.35953
\(633\) 0 0
\(634\) 15.0133 0.596256
\(635\) 7.85389 0.311672
\(636\) 0 0
\(637\) −14.7483 −0.584350
\(638\) 29.2532 1.15814
\(639\) 0 0
\(640\) −13.1265 −0.518870
\(641\) 27.6055 1.09035 0.545177 0.838321i \(-0.316463\pi\)
0.545177 + 0.838321i \(0.316463\pi\)
\(642\) 0 0
\(643\) −4.22904 −0.166777 −0.0833885 0.996517i \(-0.526574\pi\)
−0.0833885 + 0.996517i \(0.526574\pi\)
\(644\) −4.87683 −0.192174
\(645\) 0 0
\(646\) −19.0840 −0.750852
\(647\) 26.2809 1.03321 0.516604 0.856225i \(-0.327196\pi\)
0.516604 + 0.856225i \(0.327196\pi\)
\(648\) 0 0
\(649\) −0.623536 −0.0244759
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) 13.3517 0.522494 0.261247 0.965272i \(-0.415866\pi\)
0.261247 + 0.965272i \(0.415866\pi\)
\(654\) 0 0
\(655\) −1.48311 −0.0579498
\(656\) 1.34764 0.0526166
\(657\) 0 0
\(658\) −31.2414 −1.21792
\(659\) 15.4158 0.600515 0.300258 0.953858i \(-0.402927\pi\)
0.300258 + 0.953858i \(0.402927\pi\)
\(660\) 0 0
\(661\) −4.72306 −0.183706 −0.0918530 0.995773i \(-0.529279\pi\)
−0.0918530 + 0.995773i \(0.529279\pi\)
\(662\) 65.1164 2.53082
\(663\) 0 0
\(664\) 145.287 5.63823
\(665\) −2.69762 −0.104609
\(666\) 0 0
\(667\) 4.38466 0.169775
\(668\) 73.4034 2.84006
\(669\) 0 0
\(670\) −13.5817 −0.524705
\(671\) −6.84033 −0.264068
\(672\) 0 0
\(673\) −31.0730 −1.19778 −0.598888 0.800833i \(-0.704391\pi\)
−0.598888 + 0.800833i \(0.704391\pi\)
\(674\) 29.6885 1.14356
\(675\) 0 0
\(676\) 2.48116 0.0954294
\(677\) 9.03995 0.347434 0.173717 0.984796i \(-0.444422\pi\)
0.173717 + 0.984796i \(0.444422\pi\)
\(678\) 0 0
\(679\) 2.20898 0.0847730
\(680\) −14.6367 −0.561290
\(681\) 0 0
\(682\) 0 0
\(683\) −7.13535 −0.273027 −0.136513 0.990638i \(-0.543590\pi\)
−0.136513 + 0.990638i \(0.543590\pi\)
\(684\) 0 0
\(685\) 4.95457 0.189304
\(686\) 51.1844 1.95423
\(687\) 0 0
\(688\) −38.9158 −1.48365
\(689\) −10.2733 −0.391380
\(690\) 0 0
\(691\) 36.4754 1.38759 0.693795 0.720172i \(-0.255937\pi\)
0.693795 + 0.720172i \(0.255937\pi\)
\(692\) 0.0627431 0.00238514
\(693\) 0 0
\(694\) 49.9491 1.89604
\(695\) 0.823364 0.0312320
\(696\) 0 0
\(697\) 0.287476 0.0108889
\(698\) −86.5547 −3.27615
\(699\) 0 0
\(700\) 41.8705 1.58256
\(701\) 1.61444 0.0609766 0.0304883 0.999535i \(-0.490294\pi\)
0.0304883 + 0.999535i \(0.490294\pi\)
\(702\) 0 0
\(703\) −19.8866 −0.750037
\(704\) 28.0530 1.05729
\(705\) 0 0
\(706\) −86.6590 −3.26145
\(707\) 14.0227 0.527377
\(708\) 0 0
\(709\) 11.4880 0.431439 0.215720 0.976455i \(-0.430790\pi\)
0.215720 + 0.976455i \(0.430790\pi\)
\(710\) 7.78833 0.292291
\(711\) 0 0
\(712\) 133.372 4.99833
\(713\) 0 0
\(714\) 0 0
\(715\) −2.98663 −0.111694
\(716\) 52.2542 1.95283
\(717\) 0 0
\(718\) −56.9298 −2.12460
\(719\) 14.1710 0.528489 0.264244 0.964456i \(-0.414877\pi\)
0.264244 + 0.964456i \(0.414877\pi\)
\(720\) 0 0
\(721\) −26.1666 −0.974493
\(722\) −33.3768 −1.24216
\(723\) 0 0
\(724\) −97.4236 −3.62072
\(725\) −37.6449 −1.39809
\(726\) 0 0
\(727\) −26.9477 −0.999436 −0.499718 0.866188i \(-0.666563\pi\)
−0.499718 + 0.866188i \(0.666563\pi\)
\(728\) −55.1974 −2.04575
\(729\) 0 0
\(730\) −12.2850 −0.454688
\(731\) −8.30145 −0.307040
\(732\) 0 0
\(733\) −28.4235 −1.04985 −0.524924 0.851149i \(-0.675906\pi\)
−0.524924 + 0.851149i \(0.675906\pi\)
\(734\) 34.9624 1.29049
\(735\) 0 0
\(736\) 9.39725 0.346387
\(737\) 11.0983 0.408811
\(738\) 0 0
\(739\) −0.697306 −0.0256508 −0.0128254 0.999918i \(-0.504083\pi\)
−0.0128254 + 0.999918i \(0.504083\pi\)
\(740\) −24.6760 −0.907108
\(741\) 0 0
\(742\) 13.0018 0.477310
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) −11.9064 −0.435925
\(747\) 0 0
\(748\) 19.3503 0.707519
\(749\) −21.3712 −0.780886
\(750\) 0 0
\(751\) −37.0660 −1.35256 −0.676279 0.736646i \(-0.736408\pi\)
−0.676279 + 0.736646i \(0.736408\pi\)
\(752\) 87.0995 3.17619
\(753\) 0 0
\(754\) 80.2895 2.92397
\(755\) 1.95194 0.0710385
\(756\) 0 0
\(757\) 6.40201 0.232685 0.116342 0.993209i \(-0.462883\pi\)
0.116342 + 0.993209i \(0.462883\pi\)
\(758\) −40.2333 −1.46134
\(759\) 0 0
\(760\) 13.6028 0.493427
\(761\) 21.3388 0.773532 0.386766 0.922178i \(-0.373592\pi\)
0.386766 + 0.922178i \(0.373592\pi\)
\(762\) 0 0
\(763\) −12.4501 −0.450723
\(764\) −6.27447 −0.227002
\(765\) 0 0
\(766\) 31.3412 1.13241
\(767\) −1.71138 −0.0617945
\(768\) 0 0
\(769\) −12.2566 −0.441983 −0.220991 0.975276i \(-0.570929\pi\)
−0.220991 + 0.975276i \(0.570929\pi\)
\(770\) 3.77986 0.136217
\(771\) 0 0
\(772\) 66.6482 2.39872
\(773\) 34.7035 1.24820 0.624098 0.781346i \(-0.285466\pi\)
0.624098 + 0.781346i \(0.285466\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −11.1389 −0.399863
\(777\) 0 0
\(778\) −38.7434 −1.38902
\(779\) −0.267172 −0.00957242
\(780\) 0 0
\(781\) −6.36426 −0.227731
\(782\) 4.00801 0.143326
\(783\) 0 0
\(784\) −52.0382 −1.85851
\(785\) 2.02395 0.0722380
\(786\) 0 0
\(787\) −20.1182 −0.717136 −0.358568 0.933504i \(-0.616735\pi\)
−0.358568 + 0.933504i \(0.616735\pi\)
\(788\) 15.5463 0.553816
\(789\) 0 0
\(790\) 15.8738 0.564763
\(791\) 28.7902 1.02366
\(792\) 0 0
\(793\) −18.7743 −0.666694
\(794\) 42.4779 1.50748
\(795\) 0 0
\(796\) −69.0441 −2.44720
\(797\) −26.2019 −0.928121 −0.464060 0.885804i \(-0.653608\pi\)
−0.464060 + 0.885804i \(0.653608\pi\)
\(798\) 0 0
\(799\) 18.5799 0.657310
\(800\) −80.6809 −2.85250
\(801\) 0 0
\(802\) −83.4573 −2.94698
\(803\) 10.0387 0.354259
\(804\) 0 0
\(805\) 0.566550 0.0199683
\(806\) 0 0
\(807\) 0 0
\(808\) −70.7099 −2.48757
\(809\) −36.4501 −1.28152 −0.640759 0.767742i \(-0.721380\pi\)
−0.640759 + 0.767742i \(0.721380\pi\)
\(810\) 0 0
\(811\) −19.1064 −0.670918 −0.335459 0.942055i \(-0.608891\pi\)
−0.335459 + 0.942055i \(0.608891\pi\)
\(812\) −73.5320 −2.58047
\(813\) 0 0
\(814\) 27.8648 0.976662
\(815\) −1.05880 −0.0370881
\(816\) 0 0
\(817\) 7.71511 0.269917
\(818\) 17.7169 0.619456
\(819\) 0 0
\(820\) −0.331516 −0.0115770
\(821\) −39.4598 −1.37716 −0.688578 0.725162i \(-0.741765\pi\)
−0.688578 + 0.725162i \(0.741765\pi\)
\(822\) 0 0
\(823\) −31.5880 −1.10109 −0.550544 0.834806i \(-0.685580\pi\)
−0.550544 + 0.834806i \(0.685580\pi\)
\(824\) 131.946 4.59656
\(825\) 0 0
\(826\) 2.16592 0.0753619
\(827\) −19.8298 −0.689551 −0.344776 0.938685i \(-0.612045\pi\)
−0.344776 + 0.938685i \(0.612045\pi\)
\(828\) 0 0
\(829\) 8.99987 0.312578 0.156289 0.987711i \(-0.450047\pi\)
0.156289 + 0.987711i \(0.450047\pi\)
\(830\) −27.3068 −0.947832
\(831\) 0 0
\(832\) 76.9954 2.66933
\(833\) −11.1007 −0.384617
\(834\) 0 0
\(835\) −8.52740 −0.295103
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) 31.8452 1.09942 0.549709 0.835356i \(-0.314739\pi\)
0.549709 + 0.835356i \(0.314739\pi\)
\(840\) 0 0
\(841\) 37.1110 1.27969
\(842\) −71.8698 −2.47680
\(843\) 0 0
\(844\) 96.0050 3.30463
\(845\) −0.288241 −0.00991579
\(846\) 0 0
\(847\) 15.9069 0.546569
\(848\) −36.2483 −1.24477
\(849\) 0 0
\(850\) −34.4111 −1.18029
\(851\) 4.17656 0.143171
\(852\) 0 0
\(853\) −49.0917 −1.68087 −0.840434 0.541914i \(-0.817700\pi\)
−0.840434 + 0.541914i \(0.817700\pi\)
\(854\) 23.7606 0.813071
\(855\) 0 0
\(856\) 107.765 3.68334
\(857\) −19.2405 −0.657242 −0.328621 0.944462i \(-0.606584\pi\)
−0.328621 + 0.944462i \(0.606584\pi\)
\(858\) 0 0
\(859\) 4.64215 0.158388 0.0791940 0.996859i \(-0.474765\pi\)
0.0791940 + 0.996859i \(0.474765\pi\)
\(860\) 9.57319 0.326443
\(861\) 0 0
\(862\) −10.7284 −0.365410
\(863\) 38.5304 1.31159 0.655795 0.754939i \(-0.272333\pi\)
0.655795 + 0.754939i \(0.272333\pi\)
\(864\) 0 0
\(865\) −0.00728897 −0.000247833 0
\(866\) 48.6287 1.65247
\(867\) 0 0
\(868\) 0 0
\(869\) −12.9713 −0.440022
\(870\) 0 0
\(871\) 30.4609 1.03213
\(872\) 62.7800 2.12600
\(873\) 0 0
\(874\) −3.72492 −0.125997
\(875\) −10.1172 −0.342023
\(876\) 0 0
\(877\) −9.25834 −0.312632 −0.156316 0.987707i \(-0.549962\pi\)
−0.156316 + 0.987707i \(0.549962\pi\)
\(878\) 61.6277 2.07983
\(879\) 0 0
\(880\) −10.5381 −0.355238
\(881\) 17.8791 0.602361 0.301181 0.953567i \(-0.402619\pi\)
0.301181 + 0.953567i \(0.402619\pi\)
\(882\) 0 0
\(883\) −48.3156 −1.62595 −0.812975 0.582299i \(-0.802153\pi\)
−0.812975 + 0.582299i \(0.802153\pi\)
\(884\) 53.1098 1.78628
\(885\) 0 0
\(886\) 57.8150 1.94233
\(887\) −23.5122 −0.789463 −0.394732 0.918797i \(-0.629162\pi\)
−0.394732 + 0.918797i \(0.629162\pi\)
\(888\) 0 0
\(889\) 22.2930 0.747684
\(890\) −25.0673 −0.840259
\(891\) 0 0
\(892\) 49.2063 1.64755
\(893\) −17.2676 −0.577838
\(894\) 0 0
\(895\) −6.07046 −0.202913
\(896\) −37.2591 −1.24474
\(897\) 0 0
\(898\) −50.5739 −1.68767
\(899\) 0 0
\(900\) 0 0
\(901\) −7.73243 −0.257605
\(902\) 0.374357 0.0124647
\(903\) 0 0
\(904\) −145.176 −4.82847
\(905\) 11.3179 0.376219
\(906\) 0 0
\(907\) −12.5821 −0.417783 −0.208892 0.977939i \(-0.566986\pi\)
−0.208892 + 0.977939i \(0.566986\pi\)
\(908\) −44.3015 −1.47020
\(909\) 0 0
\(910\) 10.3744 0.343907
\(911\) 47.2845 1.56660 0.783302 0.621641i \(-0.213534\pi\)
0.783302 + 0.621641i \(0.213534\pi\)
\(912\) 0 0
\(913\) 22.3138 0.738480
\(914\) 11.0458 0.365361
\(915\) 0 0
\(916\) 119.630 3.95267
\(917\) −4.20976 −0.139018
\(918\) 0 0
\(919\) −23.1319 −0.763050 −0.381525 0.924359i \(-0.624601\pi\)
−0.381525 + 0.924359i \(0.624601\pi\)
\(920\) −2.85685 −0.0941877
\(921\) 0 0
\(922\) 61.5374 2.02663
\(923\) −17.4676 −0.574954
\(924\) 0 0
\(925\) −35.8582 −1.17901
\(926\) −44.5677 −1.46459
\(927\) 0 0
\(928\) 141.690 4.65120
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) −85.1184 −2.78815
\(933\) 0 0
\(934\) −102.619 −3.35781
\(935\) −2.24796 −0.0735162
\(936\) 0 0
\(937\) 19.7267 0.644442 0.322221 0.946665i \(-0.395571\pi\)
0.322221 + 0.946665i \(0.395571\pi\)
\(938\) −38.5511 −1.25874
\(939\) 0 0
\(940\) −21.4262 −0.698847
\(941\) 8.82326 0.287630 0.143815 0.989605i \(-0.454063\pi\)
0.143815 + 0.989605i \(0.454063\pi\)
\(942\) 0 0
\(943\) 0.0561111 0.00182723
\(944\) −6.03847 −0.196536
\(945\) 0 0
\(946\) −10.8103 −0.351473
\(947\) −15.5612 −0.505670 −0.252835 0.967509i \(-0.581363\pi\)
−0.252835 + 0.967509i \(0.581363\pi\)
\(948\) 0 0
\(949\) 27.5527 0.894399
\(950\) 31.9806 1.03759
\(951\) 0 0
\(952\) −41.5457 −1.34650
\(953\) −9.65172 −0.312650 −0.156325 0.987706i \(-0.549965\pi\)
−0.156325 + 0.987706i \(0.549965\pi\)
\(954\) 0 0
\(955\) 0.728916 0.0235872
\(956\) −95.6945 −3.09498
\(957\) 0 0
\(958\) 90.6172 2.92771
\(959\) 14.0634 0.454131
\(960\) 0 0
\(961\) 0 0
\(962\) 76.4790 2.46578
\(963\) 0 0
\(964\) −95.1632 −3.06500
\(965\) −7.74263 −0.249244
\(966\) 0 0
\(967\) 28.3976 0.913204 0.456602 0.889671i \(-0.349066\pi\)
0.456602 + 0.889671i \(0.349066\pi\)
\(968\) −80.2114 −2.57809
\(969\) 0 0
\(970\) 2.09356 0.0672202
\(971\) 22.1271 0.710092 0.355046 0.934849i \(-0.384465\pi\)
0.355046 + 0.934849i \(0.384465\pi\)
\(972\) 0 0
\(973\) 2.33709 0.0749238
\(974\) −55.6235 −1.78229
\(975\) 0 0
\(976\) −66.2434 −2.12040
\(977\) 19.9123 0.637051 0.318525 0.947914i \(-0.396812\pi\)
0.318525 + 0.947914i \(0.396812\pi\)
\(978\) 0 0
\(979\) 20.4839 0.654667
\(980\) 12.8013 0.408921
\(981\) 0 0
\(982\) −66.5349 −2.12322
\(983\) 24.9304 0.795156 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(984\) 0 0
\(985\) −1.80605 −0.0575454
\(986\) 60.4320 1.92455
\(987\) 0 0
\(988\) −49.3586 −1.57031
\(989\) −1.62032 −0.0515231
\(990\) 0 0
\(991\) −42.0512 −1.33580 −0.667900 0.744251i \(-0.732807\pi\)
−0.667900 + 0.744251i \(0.732807\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 22.1069 0.701189
\(995\) 8.02096 0.254282
\(996\) 0 0
\(997\) 14.4647 0.458100 0.229050 0.973415i \(-0.426438\pi\)
0.229050 + 0.973415i \(0.426438\pi\)
\(998\) −66.0707 −2.09143
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bf.1.8 8
3.2 odd 2 961.2.a.i.1.1 8
31.18 even 15 279.2.y.c.262.2 16
31.19 even 15 279.2.y.c.82.2 16
31.30 odd 2 8649.2.a.be.1.8 8
93.2 odd 10 961.2.d.o.531.1 16
93.5 odd 6 961.2.c.j.521.1 16
93.8 odd 10 961.2.d.p.374.4 16
93.11 even 30 961.2.g.n.338.2 16
93.14 odd 30 961.2.g.t.816.2 16
93.17 even 30 961.2.g.n.816.2 16
93.20 odd 30 961.2.g.t.338.2 16
93.23 even 10 961.2.d.q.374.4 16
93.26 even 6 961.2.c.i.521.1 16
93.29 even 10 961.2.d.n.531.1 16
93.35 odd 10 961.2.d.p.388.4 16
93.38 odd 30 961.2.g.s.235.2 16
93.41 odd 30 961.2.g.k.844.1 16
93.44 even 30 961.2.g.l.448.1 16
93.47 odd 10 961.2.d.o.628.1 16
93.50 odd 30 31.2.g.a.20.1 yes 16
93.53 even 30 961.2.g.m.732.2 16
93.56 odd 6 961.2.c.j.439.1 16
93.59 odd 30 961.2.g.k.846.1 16
93.65 even 30 961.2.g.j.846.1 16
93.68 even 6 961.2.c.i.439.1 16
93.71 odd 30 961.2.g.s.732.2 16
93.74 even 30 961.2.g.l.547.1 16
93.77 even 10 961.2.d.n.628.1 16
93.80 odd 30 31.2.g.a.14.1 16
93.83 even 30 961.2.g.j.844.1 16
93.86 even 30 961.2.g.m.235.2 16
93.89 even 10 961.2.d.q.388.4 16
93.92 even 2 961.2.a.j.1.1 8
372.143 even 30 496.2.bg.c.113.1 16
372.359 even 30 496.2.bg.c.417.1 16
465.143 even 60 775.2.ck.a.299.1 32
465.173 even 60 775.2.ck.a.324.4 32
465.329 odd 30 775.2.bl.a.51.2 16
465.359 odd 30 775.2.bl.a.76.2 16
465.422 even 60 775.2.ck.a.299.4 32
465.452 even 60 775.2.ck.a.324.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 93.80 odd 30
31.2.g.a.20.1 yes 16 93.50 odd 30
279.2.y.c.82.2 16 31.19 even 15
279.2.y.c.262.2 16 31.18 even 15
496.2.bg.c.113.1 16 372.143 even 30
496.2.bg.c.417.1 16 372.359 even 30
775.2.bl.a.51.2 16 465.329 odd 30
775.2.bl.a.76.2 16 465.359 odd 30
775.2.ck.a.299.1 32 465.143 even 60
775.2.ck.a.299.4 32 465.422 even 60
775.2.ck.a.324.1 32 465.452 even 60
775.2.ck.a.324.4 32 465.173 even 60
961.2.a.i.1.1 8 3.2 odd 2
961.2.a.j.1.1 8 93.92 even 2
961.2.c.i.439.1 16 93.68 even 6
961.2.c.i.521.1 16 93.26 even 6
961.2.c.j.439.1 16 93.56 odd 6
961.2.c.j.521.1 16 93.5 odd 6
961.2.d.n.531.1 16 93.29 even 10
961.2.d.n.628.1 16 93.77 even 10
961.2.d.o.531.1 16 93.2 odd 10
961.2.d.o.628.1 16 93.47 odd 10
961.2.d.p.374.4 16 93.8 odd 10
961.2.d.p.388.4 16 93.35 odd 10
961.2.d.q.374.4 16 93.23 even 10
961.2.d.q.388.4 16 93.89 even 10
961.2.g.j.844.1 16 93.83 even 30
961.2.g.j.846.1 16 93.65 even 30
961.2.g.k.844.1 16 93.41 odd 30
961.2.g.k.846.1 16 93.59 odd 30
961.2.g.l.448.1 16 93.44 even 30
961.2.g.l.547.1 16 93.74 even 30
961.2.g.m.235.2 16 93.86 even 30
961.2.g.m.732.2 16 93.53 even 30
961.2.g.n.338.2 16 93.11 even 30
961.2.g.n.816.2 16 93.17 even 30
961.2.g.s.235.2 16 93.38 odd 30
961.2.g.s.732.2 16 93.71 odd 30
961.2.g.t.338.2 16 93.20 odd 30
961.2.g.t.816.2 16 93.14 odd 30
8649.2.a.be.1.8 8 31.30 odd 2
8649.2.a.bf.1.8 8 1.1 even 1 trivial