L(s) = 1 | − 2.69·2-s + (0.709 − 1.22i)3-s + 5.23·4-s + (−0.304 − 0.526i)5-s + (−1.90 + 3.30i)6-s + (0.863 − 1.49i)7-s − 8.70·8-s + (0.492 + 0.853i)9-s + (0.818 + 1.41i)10-s + (−0.668 − 1.15i)11-s + (3.71 − 6.43i)12-s + (1.83 + 3.17i)13-s + (−2.32 + 4.02i)14-s − 0.863·15-s + 12.9·16-s + (−1.38 + 2.39i)17-s + ⋯ |
L(s) = 1 | − 1.90·2-s + (0.409 − 0.709i)3-s + 2.61·4-s + (−0.136 − 0.235i)5-s + (−0.779 + 1.34i)6-s + (0.326 − 0.565i)7-s − 3.07·8-s + (0.164 + 0.284i)9-s + (0.258 + 0.448i)10-s + (−0.201 − 0.349i)11-s + (1.07 − 1.85i)12-s + (0.509 + 0.881i)13-s + (−0.620 + 1.07i)14-s − 0.222·15-s + 3.23·16-s + (−0.335 + 0.580i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.430 + 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.430 + 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.692586 - 0.437148i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.692586 - 0.437148i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + 2.69T + 2T^{2} \) |
| 3 | \( 1 + (-0.709 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.304 + 0.526i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.863 + 1.49i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.668 + 1.15i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.83 - 3.17i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.38 - 2.39i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.28 + 2.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 0.539T + 23T^{2} \) |
| 29 | \( 1 - 8.13T + 29T^{2} \) |
| 37 | \( 1 + (-3.87 + 6.70i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.0520 - 0.0901i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.50 - 2.60i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6.72T + 47T^{2} \) |
| 53 | \( 1 + (-1.39 - 2.42i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.233 - 0.403i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 5.11T + 61T^{2} \) |
| 67 | \( 1 + (4.14 + 7.18i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.37 + 4.12i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.75 - 6.50i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.84 - 8.39i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.34 + 14.4i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 15.3T + 89T^{2} \) |
| 97 | \( 1 + 1.27T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.754790179608485122591711562212, −8.734267704086375852570281135413, −8.378391985405562309952420814242, −7.59787683404715692611277491228, −6.90583066293098230558801085070, −6.19242764625998943852358600930, −4.49415801025223815720873163514, −2.84941541668675047223715592198, −1.80430299730196111070196008227, −0.851275358399873211164007252412,
1.10457259585921827364760772260, 2.56500645966624268305139933430, 3.39180795650378480737942765989, 5.03569879264286407185389638362, 6.28704694125870129728469662212, 7.09832329999099975783495248443, 8.057369577985236044929429643491, 8.608384051746069202932652914833, 9.314695556763106468590291979098, 10.09594238043935084287243562306