Properties

Label 961.2.g.l.448.1
Level $961$
Weight $2$
Character 961.448
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,12,-14,-3,-11,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 448.1
Root \(-1.14660i\) of defining polynomial
Character \(\chi\) \(=\) 961.448
Dual form 961.2.g.l.547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831304 + 2.55849i) q^{2} +(-0.949606 + 1.05464i) q^{3} +(-4.23677 - 3.07819i) q^{4} +(-0.304192 + 0.526876i) q^{5} +(-1.90889 - 3.30629i) q^{6} +(0.180508 - 1.71742i) q^{7} +(7.04481 - 5.11835i) q^{8} +(0.103062 + 0.980572i) q^{9} +(-1.09513 - 1.21627i) q^{10} +(1.22177 - 0.543967i) q^{11} +(7.26966 - 1.54521i) q^{12} +(3.59045 + 0.763174i) q^{13} +(4.24394 + 1.88952i) q^{14} +(-0.266804 - 0.821139i) q^{15} +(4.00227 + 12.3177i) q^{16} +(2.52396 + 1.12374i) q^{17} +(-2.59446 - 0.551469i) q^{18} +(2.51157 - 0.533850i) q^{19} +(2.91062 - 1.29589i) q^{20} +(1.63986 + 1.82124i) q^{21} +(0.376072 + 3.57808i) q^{22} +(-0.436271 + 0.316969i) q^{23} +(-1.29175 + 12.2902i) q^{24} +(2.31493 + 4.00958i) q^{25} +(-4.93733 + 8.55171i) q^{26} +(-4.57641 - 3.32495i) q^{27} +(-6.05132 + 6.72067i) q^{28} +(2.51258 - 7.73291i) q^{29} +2.32267 q^{30} -17.4262 q^{32} +(-0.586508 + 1.80509i) q^{33} +(-4.97326 + 5.52336i) q^{34} +(0.849957 + 0.617530i) q^{35} +(2.58174 - 4.47170i) q^{36} +(3.87249 + 6.70735i) q^{37} +(-0.722025 + 6.86961i) q^{38} +(-4.21439 + 3.06194i) q^{39} +(0.553763 + 5.26870i) q^{40} +(-0.0696243 - 0.0773256i) q^{41} +(-6.02285 + 2.68155i) q^{42} +(-2.93904 + 0.624713i) q^{43} +(-6.85079 - 1.45618i) q^{44} +(-0.547990 - 0.243981i) q^{45} +(-0.448289 - 1.37969i) q^{46} +(-2.07813 - 6.39584i) q^{47} +(-16.7914 - 7.47602i) q^{48} +(3.93009 + 0.835366i) q^{49} +(-12.1829 + 2.58955i) q^{50} +(-3.58192 + 1.59477i) q^{51} +(-12.8627 - 14.2855i) q^{52} +(0.292549 + 2.78341i) q^{53} +(12.3112 - 8.94464i) q^{54} +(-0.0850494 + 0.809191i) q^{55} +(-7.51871 - 13.0228i) q^{56} +(-1.82198 + 3.15576i) q^{57} +(17.6959 + 12.8568i) q^{58} +(0.311970 - 0.346478i) q^{59} +(-1.39724 + 4.30025i) q^{60} +5.11468 q^{61} +1.70266 q^{63} +(6.48190 - 19.9492i) q^{64} +(-1.49428 + 1.65957i) q^{65} +(-4.13073 - 3.00115i) q^{66} +(-4.14923 + 7.18668i) q^{67} +(-7.23436 - 12.5303i) q^{68} +(0.0799956 - 0.761107i) q^{69} +(-2.28652 + 1.66125i) q^{70} +(-0.497420 - 4.73264i) q^{71} +(5.74497 + 6.38043i) q^{72} +(-6.85725 + 3.05304i) q^{73} +(-20.3799 + 4.33188i) q^{74} +(-6.42696 - 1.36609i) q^{75} +(-12.2842 - 5.46929i) q^{76} +(-0.713679 - 2.19648i) q^{77} +(-4.33049 - 13.3279i) q^{78} +(8.86044 + 3.94492i) q^{79} +(-7.70738 - 1.63825i) q^{80} +(4.95915 - 1.05410i) q^{81} +(0.255716 - 0.113852i) q^{82} +(11.1642 + 12.3991i) q^{83} +(-1.34155 - 12.7640i) q^{84} +(-1.35984 + 0.987981i) q^{85} +(0.844916 - 8.03884i) q^{86} +(5.76952 + 9.99310i) q^{87} +(5.82292 - 10.0856i) q^{88} +(-12.3911 - 9.00268i) q^{89} +(1.07977 - 1.19920i) q^{90} +(1.95880 - 6.02855i) q^{91} +2.82407 q^{92} +18.0912 q^{94} +(-0.482726 + 1.48568i) q^{95} +(16.5480 - 18.3784i) q^{96} +(1.03488 + 0.751881i) q^{97} +(-5.40437 + 9.36065i) q^{98} +(0.659316 + 1.14197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 12 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} + 17 q^{8} - 10 q^{9} - 2 q^{10} + 7 q^{11} - 5 q^{12} + 7 q^{13} - 6 q^{14} - 14 q^{15} - 2 q^{16} + 6 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831304 + 2.55849i −0.587821 + 1.80913i −0.000184800 1.00000i \(0.500059\pi\)
−0.587636 + 0.809126i \(0.699941\pi\)
\(3\) −0.949606 + 1.05464i −0.548255 + 0.608899i −0.952047 0.305952i \(-0.901025\pi\)
0.403792 + 0.914851i \(0.367692\pi\)
\(4\) −4.23677 3.07819i −2.11839 1.53910i
\(5\) −0.304192 + 0.526876i −0.136039 + 0.235626i −0.925994 0.377539i \(-0.876770\pi\)
0.789955 + 0.613165i \(0.210104\pi\)
\(6\) −1.90889 3.30629i −0.779300 1.34979i
\(7\) 0.180508 1.71742i 0.0682256 0.649123i −0.905958 0.423367i \(-0.860848\pi\)
0.974184 0.225756i \(-0.0724853\pi\)
\(8\) 7.04481 5.11835i 2.49072 1.80961i
\(9\) 0.103062 + 0.980572i 0.0343541 + 0.326857i
\(10\) −1.09513 1.21627i −0.346311 0.384617i
\(11\) 1.22177 0.543967i 0.368377 0.164012i −0.214195 0.976791i \(-0.568713\pi\)
0.582572 + 0.812779i \(0.302046\pi\)
\(12\) 7.26966 1.54521i 2.09857 0.446065i
\(13\) 3.59045 + 0.763174i 0.995812 + 0.211666i 0.676866 0.736106i \(-0.263338\pi\)
0.318946 + 0.947773i \(0.396671\pi\)
\(14\) 4.24394 + 1.88952i 1.13424 + 0.504997i
\(15\) −0.266804 0.821139i −0.0688885 0.212017i
\(16\) 4.00227 + 12.3177i 1.00057 + 3.07943i
\(17\) 2.52396 + 1.12374i 0.612150 + 0.272547i 0.689304 0.724472i \(-0.257916\pi\)
−0.0771534 + 0.997019i \(0.524583\pi\)
\(18\) −2.59446 0.551469i −0.611520 0.129983i
\(19\) 2.51157 0.533850i 0.576193 0.122474i 0.0894075 0.995995i \(-0.471503\pi\)
0.486786 + 0.873522i \(0.338169\pi\)
\(20\) 2.91062 1.29589i 0.650834 0.289770i
\(21\) 1.63986 + 1.82124i 0.357846 + 0.397428i
\(22\) 0.376072 + 3.57808i 0.0801788 + 0.762850i
\(23\) −0.436271 + 0.316969i −0.0909688 + 0.0660927i −0.632340 0.774691i \(-0.717905\pi\)
0.541371 + 0.840784i \(0.317905\pi\)
\(24\) −1.29175 + 12.2902i −0.263678 + 2.50872i
\(25\) 2.31493 + 4.00958i 0.462987 + 0.801917i
\(26\) −4.93733 + 8.55171i −0.968290 + 1.67713i
\(27\) −4.57641 3.32495i −0.880730 0.639888i
\(28\) −6.05132 + 6.72067i −1.14359 + 1.27009i
\(29\) 2.51258 7.73291i 0.466574 1.43597i −0.390419 0.920637i \(-0.627670\pi\)
0.856993 0.515329i \(-0.172330\pi\)
\(30\) 2.32267 0.424060
\(31\) 0 0
\(32\) −17.4262 −3.08054
\(33\) −0.586508 + 1.80509i −0.102098 + 0.314225i
\(34\) −4.97326 + 5.52336i −0.852906 + 0.947248i
\(35\) 0.849957 + 0.617530i 0.143669 + 0.104382i
\(36\) 2.58174 4.47170i 0.430290 0.745284i
\(37\) 3.87249 + 6.70735i 0.636633 + 1.10268i 0.986167 + 0.165757i \(0.0530068\pi\)
−0.349533 + 0.936924i \(0.613660\pi\)
\(38\) −0.722025 + 6.86961i −0.117128 + 1.11440i
\(39\) −4.21439 + 3.06194i −0.674843 + 0.490302i
\(40\) 0.553763 + 5.26870i 0.0875576 + 0.833055i
\(41\) −0.0696243 0.0773256i −0.0108735 0.0120762i 0.737684 0.675147i \(-0.235920\pi\)
−0.748557 + 0.663070i \(0.769253\pi\)
\(42\) −6.02285 + 2.68155i −0.929346 + 0.413772i
\(43\) −2.93904 + 0.624713i −0.448200 + 0.0952678i −0.426481 0.904496i \(-0.640247\pi\)
−0.0217184 + 0.999764i \(0.506914\pi\)
\(44\) −6.85079 1.45618i −1.03280 0.219527i
\(45\) −0.547990 0.243981i −0.0816895 0.0363705i
\(46\) −0.448289 1.37969i −0.0660967 0.203425i
\(47\) −2.07813 6.39584i −0.303127 0.932929i −0.980370 0.197169i \(-0.936825\pi\)
0.677243 0.735760i \(-0.263175\pi\)
\(48\) −16.7914 7.47602i −2.42363 1.07907i
\(49\) 3.93009 + 0.835366i 0.561441 + 0.119338i
\(50\) −12.1829 + 2.58955i −1.72292 + 0.366218i
\(51\) −3.58192 + 1.59477i −0.501568 + 0.223313i
\(52\) −12.8627 14.2855i −1.78374 1.98104i
\(53\) 0.292549 + 2.78341i 0.0401846 + 0.382331i 0.996068 + 0.0885864i \(0.0282349\pi\)
−0.955884 + 0.293745i \(0.905098\pi\)
\(54\) 12.3112 8.94464i 1.67535 1.21721i
\(55\) −0.0850494 + 0.809191i −0.0114681 + 0.109111i
\(56\) −7.51871 13.0228i −1.00473 1.74024i
\(57\) −1.82198 + 3.15576i −0.241327 + 0.417990i
\(58\) 17.6959 + 12.8568i 2.32358 + 1.68818i
\(59\) 0.311970 0.346478i 0.0406151 0.0451076i −0.722495 0.691376i \(-0.757005\pi\)
0.763110 + 0.646269i \(0.223671\pi\)
\(60\) −1.39724 + 4.30025i −0.180382 + 0.555160i
\(61\) 5.11468 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(62\) 0 0
\(63\) 1.70266 0.214514
\(64\) 6.48190 19.9492i 0.810238 2.49365i
\(65\) −1.49428 + 1.65957i −0.185343 + 0.205844i
\(66\) −4.13073 3.00115i −0.508457 0.369416i
\(67\) −4.14923 + 7.18668i −0.506910 + 0.877993i 0.493058 + 0.869996i \(0.335879\pi\)
−0.999968 + 0.00799701i \(0.997454\pi\)
\(68\) −7.23436 12.5303i −0.877294 1.51952i
\(69\) 0.0799956 0.761107i 0.00963034 0.0916265i
\(70\) −2.28652 + 1.66125i −0.273291 + 0.198558i
\(71\) −0.497420 4.73264i −0.0590329 0.561661i −0.983565 0.180556i \(-0.942210\pi\)
0.924532 0.381105i \(-0.124456\pi\)
\(72\) 5.74497 + 6.38043i 0.677051 + 0.751941i
\(73\) −6.85725 + 3.05304i −0.802580 + 0.357332i −0.766685 0.642024i \(-0.778095\pi\)
−0.0358953 + 0.999356i \(0.511428\pi\)
\(74\) −20.3799 + 4.33188i −2.36911 + 0.503571i
\(75\) −6.42696 1.36609i −0.742122 0.157743i
\(76\) −12.2842 5.46929i −1.40910 0.627371i
\(77\) −0.713679 2.19648i −0.0813313 0.250312i
\(78\) −4.33049 13.3279i −0.490332 1.50909i
\(79\) 8.86044 + 3.94492i 0.996877 + 0.443838i 0.839300 0.543668i \(-0.182965\pi\)
0.157577 + 0.987507i \(0.449632\pi\)
\(80\) −7.70738 1.63825i −0.861711 0.183162i
\(81\) 4.95915 1.05410i 0.551017 0.117122i
\(82\) 0.255716 0.113852i 0.0282391 0.0125728i
\(83\) 11.1642 + 12.3991i 1.22543 + 1.36097i 0.911380 + 0.411567i \(0.135018\pi\)
0.314047 + 0.949407i \(0.398315\pi\)
\(84\) −1.34155 12.7640i −0.146375 1.39266i
\(85\) −1.35984 + 0.987981i −0.147495 + 0.107162i
\(86\) 0.844916 8.03884i 0.0911096 0.866850i
\(87\) 5.76952 + 9.99310i 0.618557 + 1.07137i
\(88\) 5.82292 10.0856i 0.620725 1.07513i
\(89\) −12.3911 9.00268i −1.31346 0.954282i −0.999989 0.00468333i \(-0.998509\pi\)
−0.313468 0.949599i \(-0.601491\pi\)
\(90\) 1.07977 1.19920i 0.113818 0.126407i
\(91\) 1.95880 6.02855i 0.205338 0.631964i
\(92\) 2.82407 0.294430
\(93\) 0 0
\(94\) 18.0912 1.86597
\(95\) −0.482726 + 1.48568i −0.0495266 + 0.152427i
\(96\) 16.5480 18.3784i 1.68892 1.87574i
\(97\) 1.03488 + 0.751881i 0.105076 + 0.0763420i 0.639082 0.769138i \(-0.279314\pi\)
−0.534007 + 0.845480i \(0.679314\pi\)
\(98\) −5.40437 + 9.36065i −0.545924 + 0.945568i
\(99\) 0.659316 + 1.14197i 0.0662638 + 0.114772i
\(100\) 2.53443 24.1135i 0.253443 2.41135i
\(101\) −6.56941 + 4.77296i −0.653681 + 0.474927i −0.864523 0.502593i \(-0.832379\pi\)
0.210842 + 0.977520i \(0.432379\pi\)
\(102\) −1.10255 10.4900i −0.109168 1.03867i
\(103\) 10.1390 + 11.2605i 0.999026 + 1.10953i 0.993982 + 0.109544i \(0.0349389\pi\)
0.00504416 + 0.999987i \(0.498394\pi\)
\(104\) 29.2002 13.0008i 2.86332 1.27483i
\(105\) −1.45840 + 0.309992i −0.142325 + 0.0302522i
\(106\) −7.36453 1.56538i −0.715307 0.152043i
\(107\) −11.3057 5.03362i −1.09296 0.486618i −0.220543 0.975377i \(-0.570783\pi\)
−0.872419 + 0.488759i \(0.837450\pi\)
\(108\) 9.15433 + 28.1741i 0.880876 + 2.71106i
\(109\) 2.22788 + 6.85672i 0.213392 + 0.656755i 0.999264 + 0.0383645i \(0.0122148\pi\)
−0.785871 + 0.618390i \(0.787785\pi\)
\(110\) −1.99960 0.890281i −0.190655 0.0848850i
\(111\) −10.7512 2.28524i −1.02046 0.216905i
\(112\) 21.8772 4.65013i 2.06720 0.439396i
\(113\) 15.2304 6.78103i 1.43276 0.637906i 0.463984 0.885844i \(-0.346420\pi\)
0.968776 + 0.247938i \(0.0797528\pi\)
\(114\) −6.55936 7.28491i −0.614340 0.682294i
\(115\) −0.0342934 0.326280i −0.00319788 0.0304258i
\(116\) −34.4486 + 25.0284i −3.19847 + 2.32383i
\(117\) −0.378307 + 3.59935i −0.0349745 + 0.332760i
\(118\) 0.627119 + 1.08620i 0.0577310 + 0.0999930i
\(119\) 2.38553 4.13185i 0.218681 0.378767i
\(120\) −6.08246 4.41917i −0.555250 0.403413i
\(121\) −6.16362 + 6.84539i −0.560329 + 0.622308i
\(122\) −4.25185 + 13.0859i −0.384944 + 1.18474i
\(123\) 0.147667 0.0133147
\(124\) 0 0
\(125\) −5.85866 −0.524014
\(126\) −1.41542 + 4.35623i −0.126096 + 0.388084i
\(127\) 8.63810 9.59358i 0.766507 0.851293i −0.225918 0.974146i \(-0.572538\pi\)
0.992425 + 0.122854i \(0.0392046\pi\)
\(128\) 17.4553 + 12.6820i 1.54285 + 1.12095i
\(129\) 2.13208 3.69288i 0.187720 0.325140i
\(130\) −3.00379 5.20272i −0.263450 0.456309i
\(131\) 0.254818 2.42443i 0.0222635 0.211823i −0.977735 0.209846i \(-0.932704\pi\)
0.999998 0.00197767i \(-0.000629511\pi\)
\(132\) 8.04130 5.84235i 0.699906 0.508511i
\(133\) −0.463486 4.40978i −0.0401894 0.382376i
\(134\) −14.9378 16.5901i −1.29043 1.43317i
\(135\) 3.14394 1.39977i 0.270588 0.120473i
\(136\) 23.5325 5.00199i 2.01790 0.428917i
\(137\) 7.96586 + 1.69320i 0.680570 + 0.144660i 0.535210 0.844719i \(-0.320233\pi\)
0.145360 + 0.989379i \(0.453566\pi\)
\(138\) 1.88078 + 0.837379i 0.160103 + 0.0712824i
\(139\) 0.418212 + 1.28712i 0.0354723 + 0.109172i 0.967225 0.253921i \(-0.0817204\pi\)
−0.931753 + 0.363094i \(0.881720\pi\)
\(140\) −1.70020 5.23267i −0.143693 0.442241i
\(141\) 8.71874 + 3.88183i 0.734251 + 0.326909i
\(142\) 12.5219 + 2.66162i 1.05082 + 0.223358i
\(143\) 4.80184 1.02066i 0.401550 0.0853522i
\(144\) −11.6659 + 5.19401i −0.972161 + 0.432834i
\(145\) 3.30998 + 3.67611i 0.274879 + 0.305284i
\(146\) −2.11072 20.0822i −0.174685 1.66201i
\(147\) −4.61305 + 3.35158i −0.380478 + 0.276433i
\(148\) 4.23967 40.3378i 0.348499 3.31574i
\(149\) 4.50192 + 7.79756i 0.368812 + 0.638801i 0.989380 0.145351i \(-0.0464313\pi\)
−0.620568 + 0.784153i \(0.713098\pi\)
\(150\) 8.83789 15.3077i 0.721611 1.24987i
\(151\) −2.59566 1.88585i −0.211232 0.153469i 0.477139 0.878828i \(-0.341674\pi\)
−0.688371 + 0.725359i \(0.741674\pi\)
\(152\) 14.9611 16.6160i 1.21350 1.34773i
\(153\) −0.841782 + 2.59074i −0.0680541 + 0.209449i
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −1.02803 + 3.16395i −0.0820456 + 0.252510i −0.983662 0.180027i \(-0.942382\pi\)
0.901616 + 0.432537i \(0.142382\pi\)
\(158\) −17.4588 + 19.3899i −1.38894 + 1.54258i
\(159\) −3.21332 2.33461i −0.254833 0.185147i
\(160\) 5.30090 9.18143i 0.419073 0.725856i
\(161\) 0.465619 + 0.806476i 0.0366959 + 0.0635592i
\(162\) −1.42566 + 13.5642i −0.112010 + 1.06570i
\(163\) −1.40797 + 1.02295i −0.110281 + 0.0801236i −0.641559 0.767074i \(-0.721712\pi\)
0.531278 + 0.847198i \(0.321712\pi\)
\(164\) 0.0569589 + 0.541928i 0.00444774 + 0.0423175i
\(165\) −0.772645 0.858109i −0.0601503 0.0668037i
\(166\) −41.0037 + 18.2560i −3.18250 + 1.41694i
\(167\) −13.7102 + 2.91419i −1.06093 + 0.225507i −0.705145 0.709063i \(-0.749118\pi\)
−0.355780 + 0.934570i \(0.615785\pi\)
\(168\) 20.8742 + 4.43696i 1.61048 + 0.342319i
\(169\) 0.432821 + 0.192704i 0.0332939 + 0.0148234i
\(170\) −1.39730 4.30045i −0.107168 0.329829i
\(171\) 0.782326 + 2.40775i 0.0598260 + 0.184125i
\(172\) 14.3750 + 6.40018i 1.09609 + 0.488009i
\(173\) 0.0117191 + 0.00249097i 0.000890985 + 0.000189385i 0.208357 0.978053i \(-0.433188\pi\)
−0.207466 + 0.978242i \(0.566522\pi\)
\(174\) −30.3635 + 6.45395i −2.30185 + 0.489273i
\(175\) 7.30400 3.25195i 0.552131 0.245824i
\(176\) 11.5903 + 12.8723i 0.873651 + 0.970288i
\(177\) 0.0691624 + 0.658036i 0.00519856 + 0.0494610i
\(178\) 33.3341 24.2186i 2.49849 1.81526i
\(179\) −1.04299 + 9.92334i −0.0779564 + 0.741706i 0.883812 + 0.467842i \(0.154968\pi\)
−0.961769 + 0.273864i \(0.911698\pi\)
\(180\) 1.57069 + 2.72051i 0.117072 + 0.202775i
\(181\) −9.30158 + 16.1108i −0.691381 + 1.19751i 0.280004 + 0.959999i \(0.409664\pi\)
−0.971385 + 0.237509i \(0.923669\pi\)
\(182\) 13.7956 + 10.0231i 1.02260 + 0.742963i
\(183\) −4.85693 + 5.39417i −0.359035 + 0.398748i
\(184\) −1.45108 + 4.46598i −0.106975 + 0.329236i
\(185\) −4.71192 −0.346427
\(186\) 0 0
\(187\) 3.69497 0.270203
\(188\) −10.8831 + 33.4946i −0.793728 + 2.44284i
\(189\) −6.53642 + 7.25943i −0.475454 + 0.528046i
\(190\) −3.39980 2.47010i −0.246647 0.179200i
\(191\) −0.599059 + 1.03760i −0.0433464 + 0.0750782i −0.886885 0.461991i \(-0.847135\pi\)
0.843538 + 0.537069i \(0.180469\pi\)
\(192\) 14.8841 + 25.7800i 1.07417 + 1.86051i
\(193\) −1.33029 + 12.6568i −0.0957562 + 0.911059i 0.836184 + 0.548448i \(0.184781\pi\)
−0.931941 + 0.362611i \(0.881885\pi\)
\(194\) −2.78398 + 2.02268i −0.199878 + 0.145220i
\(195\) −0.331276 3.15188i −0.0237231 0.225711i
\(196\) −14.0795 15.6368i −1.00568 1.11692i
\(197\) 2.71195 1.20744i 0.193218 0.0860263i −0.307847 0.951436i \(-0.599608\pi\)
0.501065 + 0.865410i \(0.332942\pi\)
\(198\) −3.46981 + 0.737531i −0.246589 + 0.0524140i
\(199\) −12.8960 2.74112i −0.914170 0.194313i −0.273270 0.961937i \(-0.588105\pi\)
−0.640900 + 0.767625i \(0.721439\pi\)
\(200\) 36.8307 + 16.3981i 2.60433 + 1.15952i
\(201\) −3.63926 11.2005i −0.256694 0.790021i
\(202\) −6.75039 20.7755i −0.474955 1.46176i
\(203\) −12.8271 5.71100i −0.900287 0.400834i
\(204\) 20.0848 + 4.26915i 1.40622 + 0.298900i
\(205\) 0.0619201 0.0131615i 0.00432469 0.000919241i
\(206\) −37.2385 + 16.5796i −2.59453 + 1.15516i
\(207\) −0.355774 0.395127i −0.0247280 0.0274633i
\(208\) 4.96940 + 47.2807i 0.344566 + 3.27832i
\(209\) 2.77816 2.01845i 0.192169 0.139619i
\(210\) 0.419261 3.98900i 0.0289317 0.275267i
\(211\) −9.16614 15.8762i −0.631023 1.09296i −0.987343 0.158600i \(-0.949302\pi\)
0.356320 0.934364i \(-0.384031\pi\)
\(212\) 7.32843 12.6932i 0.503318 0.871773i
\(213\) 5.46361 + 3.96954i 0.374360 + 0.271989i
\(214\) 22.2769 24.7410i 1.52282 1.69126i
\(215\) 0.564887 1.73854i 0.0385250 0.118568i
\(216\) −49.2582 −3.35160
\(217\) 0 0
\(218\) −19.3949 −1.31359
\(219\) 3.29181 10.1311i 0.222440 0.684599i
\(220\) 2.85118 3.16656i 0.192227 0.213489i
\(221\) 8.20455 + 5.96096i 0.551898 + 0.400977i
\(222\) 14.7843 25.6071i 0.992256 1.71864i
\(223\) 4.69801 + 8.13718i 0.314602 + 0.544906i 0.979353 0.202159i \(-0.0647957\pi\)
−0.664751 + 0.747065i \(0.731462\pi\)
\(224\) −3.14557 + 29.9281i −0.210172 + 1.99965i
\(225\) −3.69310 + 2.68320i −0.246207 + 0.178880i
\(226\) 4.68807 + 44.6040i 0.311846 + 2.96702i
\(227\) 5.66046 + 6.28658i 0.375698 + 0.417255i 0.901108 0.433594i \(-0.142755\pi\)
−0.525410 + 0.850849i \(0.676088\pi\)
\(228\) 17.4333 7.76182i 1.15455 0.514039i
\(229\) 22.3443 4.74942i 1.47655 0.313850i 0.601887 0.798582i \(-0.294416\pi\)
0.874663 + 0.484731i \(0.161083\pi\)
\(230\) 0.863293 + 0.183499i 0.0569238 + 0.0120995i
\(231\) 2.99422 + 1.33311i 0.197005 + 0.0877123i
\(232\) −21.8792 67.3372i −1.43644 4.42090i
\(233\) 5.02260 + 15.4580i 0.329042 + 1.01269i 0.969583 + 0.244762i \(0.0787099\pi\)
−0.640542 + 0.767923i \(0.721290\pi\)
\(234\) −8.89441 3.96005i −0.581446 0.258876i
\(235\) 4.00196 + 0.850643i 0.261059 + 0.0554899i
\(236\) −2.38828 + 0.507644i −0.155463 + 0.0330448i
\(237\) −12.5744 + 5.59849i −0.816796 + 0.363661i
\(238\) 8.58821 + 9.53817i 0.556691 + 0.618268i
\(239\) 1.91005 + 18.1729i 0.123551 + 1.17551i 0.864035 + 0.503433i \(0.167930\pi\)
−0.740484 + 0.672074i \(0.765404\pi\)
\(240\) 9.04675 6.57285i 0.583965 0.424275i
\(241\) −1.89944 + 18.0720i −0.122354 + 1.16412i 0.745222 + 0.666816i \(0.232343\pi\)
−0.867576 + 0.497304i \(0.834323\pi\)
\(242\) −12.3900 21.4602i −0.796461 1.37951i
\(243\) 4.88759 8.46555i 0.313539 0.543065i
\(244\) −21.6697 15.7440i −1.38726 1.00790i
\(245\) −1.63564 + 1.81656i −0.104497 + 0.116056i
\(246\) −0.122756 + 0.377804i −0.00782663 + 0.0240879i
\(247\) 9.42508 0.599704
\(248\) 0 0
\(249\) −23.6782 −1.50054
\(250\) 4.87032 14.9893i 0.308026 0.948007i
\(251\) 15.3433 17.0405i 0.968461 1.07558i −0.0286471 0.999590i \(-0.509120\pi\)
0.997108 0.0759953i \(-0.0242134\pi\)
\(252\) −7.21376 5.24111i −0.454424 0.330159i
\(253\) −0.360602 + 0.624580i −0.0226708 + 0.0392670i
\(254\) 17.3642 + 30.0757i 1.08953 + 1.88712i
\(255\) 0.249343 2.37234i 0.0156145 0.148562i
\(256\) −13.0179 + 9.45807i −0.813620 + 0.591129i
\(257\) −0.0111002 0.105611i −0.000692411 0.00658785i 0.994170 0.107822i \(-0.0343876\pi\)
−0.994863 + 0.101234i \(0.967721\pi\)
\(258\) 7.67578 + 8.52482i 0.477873 + 0.530732i
\(259\) 12.2183 5.43996i 0.759211 0.338022i
\(260\) 11.4394 2.43152i 0.709443 0.150797i
\(261\) 7.84163 + 1.66679i 0.485385 + 0.103172i
\(262\) 5.99105 + 2.66739i 0.370128 + 0.164792i
\(263\) 2.25499 + 6.94015i 0.139049 + 0.427948i 0.996198 0.0871204i \(-0.0277665\pi\)
−0.857149 + 0.515068i \(0.827766\pi\)
\(264\) 5.10723 + 15.7184i 0.314328 + 0.967403i
\(265\) −1.55550 0.692555i −0.0955539 0.0425433i
\(266\) 11.6677 + 2.48004i 0.715391 + 0.152061i
\(267\) 21.2613 4.51923i 1.30117 0.276573i
\(268\) 39.7014 17.6762i 2.42515 1.07974i
\(269\) −10.8529 12.0533i −0.661711 0.734905i 0.315088 0.949063i \(-0.397966\pi\)
−0.976799 + 0.214158i \(0.931299\pi\)
\(270\) 0.967735 + 9.20739i 0.0588945 + 0.560344i
\(271\) −4.16291 + 3.02453i −0.252879 + 0.183727i −0.707002 0.707212i \(-0.749953\pi\)
0.454123 + 0.890939i \(0.349953\pi\)
\(272\) −3.74034 + 35.5870i −0.226792 + 2.15778i
\(273\) 4.49790 + 7.79058i 0.272225 + 0.471508i
\(274\) −10.9541 + 18.9730i −0.661760 + 1.14620i
\(275\) 5.00939 + 3.63954i 0.302078 + 0.219472i
\(276\) −2.68176 + 2.97839i −0.161423 + 0.179278i
\(277\) 5.22944 16.0946i 0.314207 0.967029i −0.661873 0.749616i \(-0.730238\pi\)
0.976080 0.217413i \(-0.0697618\pi\)
\(278\) −3.64076 −0.218358
\(279\) 0 0
\(280\) 9.14853 0.546729
\(281\) 0.589193 1.81335i 0.0351483 0.108175i −0.931943 0.362605i \(-0.881888\pi\)
0.967091 + 0.254429i \(0.0818876\pi\)
\(282\) −17.1796 + 19.0798i −1.02303 + 1.13619i
\(283\) 12.3859 + 8.99888i 0.736265 + 0.534928i 0.891539 0.452944i \(-0.149626\pi\)
−0.155274 + 0.987871i \(0.549626\pi\)
\(284\) −12.4605 + 21.5823i −0.739396 + 1.28067i
\(285\) −1.10846 1.91991i −0.0656596 0.113726i
\(286\) −1.38043 + 13.1339i −0.0816268 + 0.776627i
\(287\) −0.145368 + 0.105616i −0.00858081 + 0.00623433i
\(288\) −1.79598 17.0876i −0.105829 1.00690i
\(289\) −6.26763 6.96091i −0.368684 0.409465i
\(290\) −12.1569 + 5.41259i −0.713876 + 0.317838i
\(291\) −1.77569 + 0.377435i −0.104093 + 0.0221256i
\(292\) 38.4504 + 8.17289i 2.25014 + 0.478282i
\(293\) 24.4772 + 10.8980i 1.42998 + 0.636666i 0.968165 0.250313i \(-0.0805334\pi\)
0.461810 + 0.886979i \(0.347200\pi\)
\(294\) −4.74013 14.5886i −0.276450 0.850826i
\(295\) 0.0876522 + 0.269766i 0.00510331 + 0.0157064i
\(296\) 61.6115 + 27.4312i 3.58110 + 1.59441i
\(297\) −7.39998 1.57291i −0.429390 0.0912697i
\(298\) −23.6924 + 5.03599i −1.37247 + 0.291727i
\(299\) −1.80831 + 0.805113i −0.104577 + 0.0465609i
\(300\) 23.0245 + 25.5713i 1.32932 + 1.47636i
\(301\) 0.542373 + 5.16033i 0.0312619 + 0.297437i
\(302\) 6.98272 5.07324i 0.401810 0.291932i
\(303\) 1.20458 11.4608i 0.0692014 0.658407i
\(304\) 16.6278 + 28.8002i 0.953670 + 1.65181i
\(305\) −1.55584 + 2.69480i −0.0890873 + 0.154304i
\(306\) −5.92860 4.30738i −0.338916 0.246237i
\(307\) 5.98956 6.65208i 0.341842 0.379654i −0.547570 0.836760i \(-0.684447\pi\)
0.889413 + 0.457105i \(0.151114\pi\)
\(308\) −3.73749 + 11.5028i −0.212963 + 0.655434i
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −14.0175 + 43.1415i −0.793586 + 2.44241i
\(313\) −0.301993 + 0.335397i −0.0170696 + 0.0189577i −0.751619 0.659597i \(-0.770727\pi\)
0.734550 + 0.678555i \(0.237394\pi\)
\(314\) −7.24032 5.26040i −0.408595 0.296862i
\(315\) −0.517934 + 0.897088i −0.0291823 + 0.0505452i
\(316\) −25.3964 43.9879i −1.42866 2.47451i
\(317\) 0.583357 5.55027i 0.0327646 0.311734i −0.965849 0.259104i \(-0.916573\pi\)
0.998614 0.0526304i \(-0.0167605\pi\)
\(318\) 8.64432 6.28047i 0.484750 0.352191i
\(319\) −1.13666 10.8146i −0.0636407 0.605501i
\(320\) 8.53903 + 9.48355i 0.477346 + 0.530147i
\(321\) 16.0446 7.14353i 0.895524 0.398713i
\(322\) −2.45043 + 0.520855i −0.136557 + 0.0290261i
\(323\) 6.93901 + 1.47493i 0.386097 + 0.0820674i
\(324\) −24.2555 10.7992i −1.34753 0.599958i
\(325\) 5.25165 + 16.1629i 0.291309 + 0.896557i
\(326\) −1.44676 4.45266i −0.0801284 0.246610i
\(327\) −9.34701 4.16156i −0.516891 0.230135i
\(328\) −0.886270 0.188382i −0.0489360 0.0104017i
\(329\) −11.3595 + 2.41453i −0.626267 + 0.133117i
\(330\) 2.83777 1.26346i 0.156214 0.0695509i
\(331\) −16.1966 17.9882i −0.890246 0.988719i 0.109740 0.993960i \(-0.464998\pi\)
−0.999986 + 0.00524168i \(0.998332\pi\)
\(332\) −9.13329 86.8975i −0.501255 4.76912i
\(333\) −6.17793 + 4.48853i −0.338548 + 0.245970i
\(334\) 3.94140 37.4999i 0.215664 2.05191i
\(335\) −2.52433 4.37226i −0.137919 0.238882i
\(336\) −15.8704 + 27.4884i −0.865804 + 1.49962i
\(337\) 8.92830 + 6.48679i 0.486355 + 0.353358i 0.803781 0.594925i \(-0.202818\pi\)
−0.317426 + 0.948283i \(0.602818\pi\)
\(338\) −0.852838 + 0.947173i −0.0463883 + 0.0515194i
\(339\) −7.31135 + 22.5020i −0.397098 + 1.22214i
\(340\) 8.80253 0.477384
\(341\) 0 0
\(342\) −6.81056 −0.368273
\(343\) 5.87953 18.0953i 0.317465 0.977056i
\(344\) −17.5075 + 19.4440i −0.943941 + 1.04835i
\(345\) 0.376675 + 0.273670i 0.0202795 + 0.0147339i
\(346\) −0.0161152 + 0.0279124i −0.000866360 + 0.00150058i
\(347\) −9.28369 16.0798i −0.498375 0.863210i 0.501624 0.865086i \(-0.332736\pi\)
−0.999998 + 0.00187589i \(0.999403\pi\)
\(348\) 6.31657 60.0982i 0.338604 3.22160i
\(349\) 26.0298 18.9118i 1.39334 1.01232i 0.397855 0.917448i \(-0.369755\pi\)
0.995489 0.0948756i \(-0.0302453\pi\)
\(350\) 2.24824 + 21.3906i 0.120173 + 1.14337i
\(351\) −13.8939 15.4307i −0.741599 0.823629i
\(352\) −21.2908 + 9.47926i −1.13480 + 0.505246i
\(353\) 31.5094 6.69754i 1.67708 0.356474i 0.731493 0.681849i \(-0.238824\pi\)
0.945585 + 0.325375i \(0.105490\pi\)
\(354\) −1.74107 0.370077i −0.0925370 0.0196693i
\(355\) 2.64482 + 1.17755i 0.140373 + 0.0624980i
\(356\) 24.7864 + 76.2846i 1.31367 + 4.04307i
\(357\) 2.09233 + 6.43952i 0.110738 + 0.340815i
\(358\) −24.5217 10.9178i −1.29601 0.577023i
\(359\) −20.6998 4.39988i −1.09249 0.232217i −0.373777 0.927519i \(-0.621937\pi\)
−0.718718 + 0.695302i \(0.755271\pi\)
\(360\) −5.10927 + 1.08601i −0.269282 + 0.0572377i
\(361\) −11.3344 + 5.04639i −0.596547 + 0.265600i
\(362\) −33.4869 37.1910i −1.76003 1.95472i
\(363\) −1.36644 13.0009i −0.0717197 0.682368i
\(364\) −26.8560 + 19.5120i −1.40764 + 1.02271i
\(365\) 0.477344 4.54163i 0.0249853 0.237720i
\(366\) −9.76334 16.9106i −0.510338 0.883931i
\(367\) 6.49822 11.2552i 0.339204 0.587519i −0.645079 0.764116i \(-0.723176\pi\)
0.984283 + 0.176597i \(0.0565089\pi\)
\(368\) −5.65042 4.10527i −0.294549 0.214002i
\(369\) 0.0686477 0.0762409i 0.00357365 0.00396894i
\(370\) 3.91704 12.0554i 0.203637 0.626730i
\(371\) 4.83309 0.250922
\(372\) 0 0
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −3.07165 + 9.45355i −0.158831 + 0.488832i
\(375\) 5.56342 6.17880i 0.287294 0.319072i
\(376\) −47.3762 34.4208i −2.44324 1.77512i
\(377\) 14.9228 25.8471i 0.768566 1.33119i
\(378\) −13.1394 22.7581i −0.675819 1.17055i
\(379\) 1.56330 14.8738i 0.0803013 0.764016i −0.878078 0.478518i \(-0.841174\pi\)
0.958379 0.285498i \(-0.0921591\pi\)
\(380\) 6.61840 4.80855i 0.339517 0.246673i
\(381\) 1.91503 + 18.2202i 0.0981097 + 0.933452i
\(382\) −2.15669 2.39525i −0.110346 0.122552i
\(383\) 10.6431 4.73862i 0.543838 0.242132i −0.116382 0.993205i \(-0.537130\pi\)
0.660220 + 0.751072i \(0.270463\pi\)
\(384\) −29.9508 + 6.36623i −1.52842 + 0.324875i
\(385\) 1.37437 + 0.292131i 0.0700442 + 0.0148884i
\(386\) −31.2765 13.9252i −1.59193 0.708774i
\(387\) −0.915480 2.81756i −0.0465365 0.143225i
\(388\) −2.07009 6.37110i −0.105093 0.323443i
\(389\) −13.1568 5.85779i −0.667077 0.297002i 0.0451198 0.998982i \(-0.485633\pi\)
−0.712197 + 0.701980i \(0.752300\pi\)
\(390\) 8.33944 + 1.77260i 0.422284 + 0.0897592i
\(391\) −1.45732 + 0.309763i −0.0737000 + 0.0156654i
\(392\) 31.9624 14.2306i 1.61435 0.718753i
\(393\) 2.31493 + 2.57100i 0.116773 + 0.129690i
\(394\) 0.834763 + 7.94224i 0.0420547 + 0.400124i
\(395\) −4.77376 + 3.46834i −0.240194 + 0.174511i
\(396\) 0.721831 6.86777i 0.0362734 0.345118i
\(397\) −7.89506 13.6746i −0.396242 0.686311i 0.597017 0.802229i \(-0.296352\pi\)
−0.993259 + 0.115918i \(0.963019\pi\)
\(398\) 17.7336 30.7155i 0.888904 1.53963i
\(399\) 5.09088 + 3.69874i 0.254863 + 0.185169i
\(400\) −40.1240 + 44.5622i −2.00620 + 2.22811i
\(401\) −9.58670 + 29.5048i −0.478737 + 1.47340i 0.362114 + 0.932134i \(0.382055\pi\)
−0.840851 + 0.541267i \(0.817945\pi\)
\(402\) 31.6817 1.58014
\(403\) 0 0
\(404\) 42.5252 2.11571
\(405\) −0.953153 + 2.93350i −0.0473626 + 0.145767i
\(406\) 25.2748 28.0705i 1.25437 1.39311i
\(407\) 8.37986 + 6.08832i 0.415374 + 0.301787i
\(408\) −17.0713 + 29.5684i −0.845156 + 1.46385i
\(409\) 3.29291 + 5.70349i 0.162824 + 0.282019i 0.935880 0.352318i \(-0.114606\pi\)
−0.773056 + 0.634337i \(0.781273\pi\)
\(410\) −0.0178008 + 0.169363i −0.000879119 + 0.00836425i
\(411\) −9.35015 + 6.79328i −0.461209 + 0.335088i
\(412\) −8.29462 78.9180i −0.408647 3.88801i
\(413\) −0.538735 0.598326i −0.0265094 0.0294417i
\(414\) 1.30669 0.581774i 0.0642201 0.0285926i
\(415\) −9.92882 + 2.11043i −0.487386 + 0.103597i
\(416\) −62.5679 13.2992i −3.06764 0.652047i
\(417\) −1.75460 0.781196i −0.0859229 0.0382554i
\(418\) 2.85469 + 8.78583i 0.139627 + 0.429729i
\(419\) −4.53389 13.9539i −0.221495 0.681692i −0.998628 0.0523559i \(-0.983327\pi\)
0.777133 0.629336i \(-0.216673\pi\)
\(420\) 7.13312 + 3.17587i 0.348061 + 0.154967i
\(421\) 26.1321 + 5.55454i 1.27360 + 0.270712i 0.794616 0.607112i \(-0.207672\pi\)
0.478983 + 0.877824i \(0.341006\pi\)
\(422\) 48.2390 10.2535i 2.34824 0.499133i
\(423\) 6.05740 2.69693i 0.294521 0.131129i
\(424\) 16.3074 + 18.1113i 0.791959 + 0.879560i
\(425\) 1.33708 + 12.7214i 0.0648577 + 0.617079i
\(426\) −14.6980 + 10.6787i −0.712118 + 0.517384i
\(427\) 0.923240 8.78404i 0.0446787 0.425090i
\(428\) 32.4052 + 56.1274i 1.56636 + 2.71302i
\(429\) −3.48342 + 6.03347i −0.168181 + 0.291299i
\(430\) 3.97845 + 2.89052i 0.191858 + 0.139393i
\(431\) 2.66850 2.96367i 0.128537 0.142755i −0.675441 0.737414i \(-0.736046\pi\)
0.803978 + 0.594660i \(0.202713\pi\)
\(432\) 22.6399 69.6783i 1.08926 3.35240i
\(433\) −18.0766 −0.868704 −0.434352 0.900743i \(-0.643023\pi\)
−0.434352 + 0.900743i \(0.643023\pi\)
\(434\) 0 0
\(435\) −7.02016 −0.336591
\(436\) 11.6673 35.9082i 0.558762 1.71969i
\(437\) −0.926510 + 1.02899i −0.0443210 + 0.0492234i
\(438\) 23.1839 + 16.8441i 1.10777 + 0.804843i
\(439\) −11.4543 + 19.8394i −0.546684 + 0.946884i 0.451815 + 0.892112i \(0.350777\pi\)
−0.998499 + 0.0547723i \(0.982557\pi\)
\(440\) 3.54257 + 6.13591i 0.168885 + 0.292518i
\(441\) −0.414093 + 3.93983i −0.0197187 + 0.187611i
\(442\) −22.0715 + 16.0359i −1.04984 + 0.762750i
\(443\) 2.24645 + 21.3736i 0.106732 + 1.01549i 0.908509 + 0.417866i \(0.137222\pi\)
−0.801777 + 0.597624i \(0.796112\pi\)
\(444\) 38.5160 + 42.7763i 1.82789 + 2.03008i
\(445\) 8.51257 3.79004i 0.403535 0.179665i
\(446\) −24.7244 + 5.25533i −1.17073 + 0.248847i
\(447\) −12.4987 2.65668i −0.591169 0.125657i
\(448\) −33.0912 14.7331i −1.56341 0.696075i
\(449\) −5.80940 17.8795i −0.274163 0.843786i −0.989440 0.144945i \(-0.953700\pi\)
0.715277 0.698841i \(-0.246300\pi\)
\(450\) −3.79484 11.6793i −0.178890 0.550568i
\(451\) −0.127127 0.0566007i −0.00598619 0.00266522i
\(452\) −85.4012 18.1526i −4.01694 0.853826i
\(453\) 4.45376 0.946676i 0.209256 0.0444787i
\(454\) −20.7897 + 9.25617i −0.975709 + 0.434414i
\(455\) 2.58045 + 2.86588i 0.120973 + 0.134354i
\(456\) 3.31680 + 31.5572i 0.155323 + 1.47780i
\(457\) 3.32182 2.41344i 0.155388 0.112896i −0.507374 0.861726i \(-0.669384\pi\)
0.662763 + 0.748830i \(0.269384\pi\)
\(458\) −6.42352 + 61.1158i −0.300152 + 2.85575i
\(459\) −7.81429 13.5347i −0.364740 0.631748i
\(460\) −0.859060 + 1.48794i −0.0400539 + 0.0693754i
\(461\) −18.5063 13.4456i −0.861924 0.626225i 0.0664836 0.997788i \(-0.478822\pi\)
−0.928408 + 0.371563i \(0.878822\pi\)
\(462\) −5.89986 + 6.55246i −0.274486 + 0.304848i
\(463\) 5.11947 15.7561i 0.237922 0.732249i −0.758798 0.651326i \(-0.774213\pi\)
0.996720 0.0809233i \(-0.0257869\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 11.7878 36.2792i 0.545476 1.67880i −0.174379 0.984679i \(-0.555792\pi\)
0.719855 0.694124i \(-0.244208\pi\)
\(468\) 12.6823 14.0851i 0.586239 0.651085i
\(469\) 11.5936 + 8.42323i 0.535342 + 0.388949i
\(470\) −5.50321 + 9.53184i −0.253844 + 0.439671i
\(471\) −2.36062 4.08871i −0.108771 0.188398i
\(472\) 0.424374 4.03765i 0.0195334 0.185848i
\(473\) −3.25101 + 2.36200i −0.149482 + 0.108605i
\(474\) −3.87052 36.8256i −0.177779 1.69145i
\(475\) 7.95463 + 8.83451i 0.364984 + 0.405355i
\(476\) −22.8256 + 10.1626i −1.04621 + 0.465802i
\(477\) −2.69919 + 0.573730i −0.123587 + 0.0262693i
\(478\) −48.0830 10.2204i −2.19926 0.467468i
\(479\) −30.7726 13.7008i −1.40603 0.626007i −0.443279 0.896383i \(-0.646185\pi\)
−0.962755 + 0.270377i \(0.912852\pi\)
\(480\) 4.64938 + 14.3093i 0.212214 + 0.653128i
\(481\) 8.78511 + 27.0378i 0.400567 + 1.23282i
\(482\) −44.6580 19.8830i −2.03412 0.905647i
\(483\) −1.29270 0.274772i −0.0588199 0.0125026i
\(484\) 47.1853 10.0295i 2.14479 0.455888i
\(485\) −0.710949 + 0.316535i −0.0322825 + 0.0143731i
\(486\) 17.5960 + 19.5423i 0.798169 + 0.886456i
\(487\) −2.16130 20.5634i −0.0979379 0.931817i −0.927606 0.373560i \(-0.878137\pi\)
0.829668 0.558257i \(-0.188530\pi\)
\(488\) 36.0319 26.1787i 1.63109 1.18506i
\(489\) 0.258168 2.45631i 0.0116748 0.111078i
\(490\) −3.28793 5.69487i −0.148534 0.257268i
\(491\) 12.3664 21.4192i 0.558087 0.966634i −0.439570 0.898209i \(-0.644869\pi\)
0.997656 0.0684258i \(-0.0217976\pi\)
\(492\) −0.625630 0.454547i −0.0282056 0.0204925i
\(493\) 15.0314 16.6941i 0.676982 0.751864i
\(494\) −7.83511 + 24.1140i −0.352518 + 1.08494i
\(495\) −0.802235 −0.0360578
\(496\) 0 0
\(497\) −8.21771 −0.368615
\(498\) 19.6838 60.5804i 0.882050 2.71467i
\(499\) 16.4340 18.2518i 0.735685 0.817061i −0.252937 0.967483i \(-0.581396\pi\)
0.988622 + 0.150422i \(0.0480631\pi\)
\(500\) 24.8218 + 18.0341i 1.11006 + 0.806509i
\(501\) 9.94584 17.2267i 0.444347 0.769632i
\(502\) 30.8429 + 53.4215i 1.37659 + 2.38432i
\(503\) −1.54066 + 14.6584i −0.0686946 + 0.653585i 0.904951 + 0.425517i \(0.139908\pi\)
−0.973645 + 0.228068i \(0.926759\pi\)
\(504\) 11.9949 8.71479i 0.534295 0.388188i
\(505\) −0.516394 4.91316i −0.0229792 0.218633i
\(506\) −1.29821 1.44181i −0.0577126 0.0640963i
\(507\) −0.614244 + 0.273479i −0.0272795 + 0.0121456i
\(508\) −66.1285 + 14.0561i −2.93398 + 0.623637i
\(509\) 15.1674 + 3.22394i 0.672285 + 0.142899i 0.531392 0.847126i \(-0.321669\pi\)
0.140893 + 0.990025i \(0.455003\pi\)
\(510\) 5.86233 + 2.61008i 0.259588 + 0.115576i
\(511\) 4.00557 + 12.3279i 0.177196 + 0.545353i
\(512\) −0.0418393 0.128768i −0.00184905 0.00569080i
\(513\) −13.2690 5.90773i −0.585840 0.260833i
\(514\) 0.279433 + 0.0593953i 0.0123253 + 0.00261982i
\(515\) −9.01709 + 1.91664i −0.397341 + 0.0844574i
\(516\) −20.4005 + 9.08291i −0.898084 + 0.399853i
\(517\) −6.01812 6.68380i −0.264677 0.293953i
\(518\) 3.76092 + 35.7828i 0.165245 + 1.57220i
\(519\) −0.0137556 + 0.00999402i −0.000603803 + 0.000438689i
\(520\) −2.03268 + 19.3396i −0.0891388 + 0.848099i
\(521\) −14.7073 25.4738i −0.644337 1.11603i −0.984454 0.175642i \(-0.943800\pi\)
0.340117 0.940383i \(-0.389533\pi\)
\(522\) −10.7832 + 18.6771i −0.471970 + 0.817475i
\(523\) 36.4268 + 26.4656i 1.59283 + 1.15726i 0.899754 + 0.436397i \(0.143746\pi\)
0.693078 + 0.720863i \(0.256254\pi\)
\(524\) −8.54247 + 9.48737i −0.373180 + 0.414458i
\(525\) −3.50627 + 10.7912i −0.153026 + 0.470966i
\(526\) −19.6309 −0.855947
\(527\) 0 0
\(528\) −24.5819 −1.06979
\(529\) −7.01753 + 21.5977i −0.305110 + 0.939032i
\(530\) 3.06499 3.40402i 0.133135 0.147861i
\(531\) 0.371899 + 0.270201i 0.0161391 + 0.0117257i
\(532\) −11.6105 + 20.1099i −0.503378 + 0.871876i
\(533\) −0.190970 0.330769i −0.00827182 0.0143272i
\(534\) −6.11220 + 58.1537i −0.264501 + 2.51656i
\(535\) 6.09119 4.42551i 0.263345 0.191331i
\(536\) 7.55343 + 71.8661i 0.326258 + 3.10414i
\(537\) −9.47518 10.5232i −0.408884 0.454112i
\(538\) 39.8604 17.7470i 1.71850 0.765127i
\(539\) 5.25607 1.11721i 0.226395 0.0481217i
\(540\) −17.6289 3.74715i −0.758629 0.161252i
\(541\) 34.5126 + 15.3660i 1.48381 + 0.660635i 0.979234 0.202731i \(-0.0649818\pi\)
0.504577 + 0.863367i \(0.331648\pi\)
\(542\) −4.27759 13.1651i −0.183738 0.565488i
\(543\) −8.15834 25.1088i −0.350108 1.07752i
\(544\) −43.9830 19.5825i −1.88576 0.839593i
\(545\) −4.29034 0.911941i −0.183778 0.0390632i
\(546\) −23.6712 + 5.03148i −1.01304 + 0.215327i
\(547\) −16.6345 + 7.40617i −0.711241 + 0.316665i −0.730274 0.683154i \(-0.760608\pi\)
0.0190333 + 0.999819i \(0.493941\pi\)
\(548\) −28.5375 31.6942i −1.21906 1.35391i
\(549\) 0.527130 + 5.01531i 0.0224974 + 0.214048i
\(550\) −13.4761 + 9.79092i −0.574621 + 0.417486i
\(551\) 2.18229 20.7631i 0.0929686 0.884537i
\(552\) −3.33206 5.77130i −0.141822 0.245643i
\(553\) 8.37446 14.5050i 0.356118 0.616815i
\(554\) 36.8305 + 26.7590i 1.56478 + 1.13688i
\(555\) 4.47447 4.96940i 0.189931 0.210939i
\(556\) 2.19015 6.74059i 0.0928831 0.285865i
\(557\) 9.19760 0.389715 0.194857 0.980832i \(-0.437576\pi\)
0.194857 + 0.980832i \(0.437576\pi\)
\(558\) 0 0
\(559\) −11.0293 −0.466488
\(560\) −4.20481 + 12.9411i −0.177686 + 0.546860i
\(561\) −3.50877 + 3.89688i −0.148140 + 0.164527i
\(562\) 4.14964 + 3.01489i 0.175042 + 0.127175i
\(563\) 18.0809 31.3170i 0.762019 1.31986i −0.179790 0.983705i \(-0.557542\pi\)
0.941808 0.336150i \(-0.109125\pi\)
\(564\) −24.9903 43.2844i −1.05228 1.82260i
\(565\) −1.06022 + 10.0873i −0.0446037 + 0.424375i
\(566\) −33.3200 + 24.2084i −1.40054 + 1.01755i
\(567\) −0.915165 8.70721i −0.0384333 0.365668i
\(568\) −27.7276 30.7946i −1.16342 1.29211i
\(569\) −37.9119 + 16.8795i −1.58935 + 0.707624i −0.995303 0.0968056i \(-0.969137\pi\)
−0.594047 + 0.804430i \(0.702471\pi\)
\(570\) 5.83354 1.23996i 0.244340 0.0519361i
\(571\) −31.6853 6.73491i −1.32599 0.281847i −0.510128 0.860099i \(-0.670402\pi\)
−0.815859 + 0.578251i \(0.803735\pi\)
\(572\) −23.4861 10.4567i −0.982004 0.437216i
\(573\) −0.525430 1.61711i −0.0219501 0.0675556i
\(574\) −0.149373 0.459722i −0.00623470 0.0191884i
\(575\) −2.28085 1.01550i −0.0951182 0.0423494i
\(576\) 20.2297 + 4.29995i 0.842904 + 0.179165i
\(577\) −40.0870 + 8.52075i −1.66884 + 0.354723i −0.942911 0.333044i \(-0.891924\pi\)
−0.725931 + 0.687768i \(0.758591\pi\)
\(578\) 23.0197 10.2490i 0.957494 0.426304i
\(579\) −12.0852 13.4220i −0.502245 0.557799i
\(580\) −2.70786 25.7636i −0.112438 1.06977i
\(581\) 23.3096 16.9354i 0.967046 0.702600i
\(582\) 0.510476 4.85685i 0.0211599 0.201323i
\(583\) 1.87151 + 3.24155i 0.0775100 + 0.134251i
\(584\) −32.6814 + 56.6059i −1.35237 + 2.34237i
\(585\) −1.78133 1.29421i −0.0736490 0.0535092i
\(586\) −48.2304 + 53.5652i −1.99238 + 2.21276i
\(587\) −7.88963 + 24.2818i −0.325640 + 1.00222i 0.645511 + 0.763751i \(0.276644\pi\)
−0.971151 + 0.238466i \(0.923356\pi\)
\(588\) 29.8612 1.23146
\(589\) 0 0
\(590\) −0.763058 −0.0314146
\(591\) −1.30187 + 4.00673i −0.0535516 + 0.164815i
\(592\) −67.1206 + 74.5449i −2.75864 + 3.06378i
\(593\) −36.0269 26.1751i −1.47945 1.07488i −0.977734 0.209850i \(-0.932702\pi\)
−0.501716 0.865033i \(-0.667298\pi\)
\(594\) 10.1759 17.6252i 0.417523 0.723170i
\(595\) 1.45132 + 2.51375i 0.0594982 + 0.103054i
\(596\) 4.92879 46.8943i 0.201891 1.92086i
\(597\) 15.1370 10.9977i 0.619515 0.450104i
\(598\) −0.556616 5.29584i −0.0227617 0.216563i
\(599\) 12.7001 + 14.1049i 0.518911 + 0.576309i 0.944460 0.328627i \(-0.106586\pi\)
−0.425549 + 0.904935i \(0.639919\pi\)
\(600\) −52.2689 + 23.2716i −2.13387 + 0.950059i
\(601\) −12.5592 + 2.66955i −0.512301 + 0.108893i −0.456807 0.889566i \(-0.651007\pi\)
−0.0554947 + 0.998459i \(0.517674\pi\)
\(602\) −13.6535 2.90215i −0.556477 0.118283i
\(603\) −7.47469 3.32795i −0.304393 0.135524i
\(604\) 5.19217 + 15.9799i 0.211267 + 0.650212i
\(605\) −1.73175 5.32977i −0.0704056 0.216686i
\(606\) 28.3210 + 12.6093i 1.15046 + 0.512219i
\(607\) 37.3059 + 7.92960i 1.51420 + 0.321853i 0.888742 0.458407i \(-0.151580\pi\)
0.625456 + 0.780260i \(0.284913\pi\)
\(608\) −43.7670 + 9.30297i −1.77499 + 0.377285i
\(609\) 18.2038 8.10485i 0.737654 0.328425i
\(610\) −5.60124 6.22081i −0.226788 0.251873i
\(611\) −2.58030 24.5499i −0.104388 0.993184i
\(612\) 11.5412 8.38520i 0.466527 0.338952i
\(613\) −1.93821 + 18.4408i −0.0782834 + 0.744817i 0.883022 + 0.469332i \(0.155505\pi\)
−0.961305 + 0.275485i \(0.911162\pi\)
\(614\) 12.0401 + 20.8541i 0.485901 + 0.841605i
\(615\) −0.0449190 + 0.0778020i −0.00181131 + 0.00313728i
\(616\) −16.2701 11.8209i −0.655541 0.476278i
\(617\) 5.44374 6.04589i 0.219157 0.243398i −0.623534 0.781796i \(-0.714304\pi\)
0.842691 + 0.538398i \(0.180970\pi\)
\(618\) 17.8763 55.0175i 0.719089 2.21313i
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −17.1711 + 52.8472i −0.688499 + 2.11898i
\(623\) −17.6981 + 19.6557i −0.709058 + 0.787489i
\(624\) −54.5833 39.6571i −2.18508 1.58755i
\(625\) −9.79252 + 16.9611i −0.391701 + 0.678446i
\(626\) −0.607062 1.05146i −0.0242631 0.0420249i
\(627\) −0.509409 + 4.84670i −0.0203438 + 0.193559i
\(628\) 14.0948 10.2404i 0.562442 0.408638i
\(629\) 2.23670 + 21.2808i 0.0891830 + 0.848519i
\(630\) −1.86463 2.07088i −0.0742887 0.0825059i
\(631\) −26.5358 + 11.8145i −1.05637 + 0.470327i −0.860049 0.510212i \(-0.829567\pi\)
−0.196324 + 0.980539i \(0.562900\pi\)
\(632\) 82.6116 17.5596i 3.28611 0.698485i
\(633\) 25.4480 + 5.40914i 1.01147 + 0.214994i
\(634\) 13.7154 + 6.10647i 0.544707 + 0.242519i
\(635\) 2.42699 + 7.46949i 0.0963120 + 0.296418i
\(636\) 6.42770 + 19.7824i 0.254875 + 0.784424i
\(637\) 13.4733 + 5.99868i 0.533830 + 0.237677i
\(638\) 28.6139 + 6.08208i 1.13284 + 0.240792i
\(639\) 4.58943 0.975513i 0.181555 0.0385907i
\(640\) −11.9916 + 5.33902i −0.474011 + 0.211043i
\(641\) 18.4717 + 20.5149i 0.729589 + 0.810290i 0.987788 0.155801i \(-0.0497959\pi\)
−0.258200 + 0.966092i \(0.583129\pi\)
\(642\) 4.93868 + 46.9884i 0.194914 + 1.85449i
\(643\) −3.42136 + 2.48577i −0.134925 + 0.0980291i −0.653201 0.757185i \(-0.726574\pi\)
0.518275 + 0.855214i \(0.326574\pi\)
\(644\) 0.509768 4.85012i 0.0200877 0.191121i
\(645\) 1.29713 + 2.24669i 0.0510742 + 0.0884632i
\(646\) −9.54202 + 16.5273i −0.375426 + 0.650257i
\(647\) −21.2617 15.4475i −0.835883 0.607304i 0.0853349 0.996352i \(-0.472804\pi\)
−0.921217 + 0.389048i \(0.872804\pi\)
\(648\) 29.5410 32.8086i 1.16048 1.28884i
\(649\) 0.192683 0.593018i 0.00756348 0.0232780i
\(650\) −45.7184 −1.79322
\(651\) 0 0
\(652\) 9.11408 0.356935
\(653\) −4.12592 + 12.6983i −0.161460 + 0.496922i −0.998758 0.0498246i \(-0.984134\pi\)
0.837298 + 0.546746i \(0.184134\pi\)
\(654\) 18.4175 20.4547i 0.720182 0.799843i
\(655\) 1.19986 + 0.871749i 0.0468824 + 0.0340621i
\(656\) 0.673821 1.16709i 0.0263083 0.0455673i
\(657\) −3.70045 6.40937i −0.144368 0.250053i
\(658\) 3.26561 31.0702i 0.127307 1.21124i
\(659\) 12.4717 9.06119i 0.485827 0.352974i −0.317750 0.948174i \(-0.602927\pi\)
0.803577 + 0.595200i \(0.202927\pi\)
\(660\) 0.632093 + 6.01396i 0.0246042 + 0.234093i
\(661\) −3.16035 3.50992i −0.122923 0.136520i 0.678542 0.734562i \(-0.262612\pi\)
−0.801465 + 0.598042i \(0.795946\pi\)
\(662\) 59.4868 26.4852i 2.31202 1.02938i
\(663\) −14.0778 + 2.99233i −0.546736 + 0.116212i
\(664\) 142.112 + 30.2069i 5.51502 + 1.17225i
\(665\) 2.46439 + 1.09722i 0.0955651 + 0.0425483i
\(666\) −6.34812 19.5375i −0.245984 0.757062i
\(667\) 1.35493 + 4.17006i 0.0524632 + 0.161465i
\(668\) 67.0573 + 29.8558i 2.59453 + 1.15516i
\(669\) −13.0431 2.77239i −0.504275 0.107187i
\(670\) 13.2849 2.82379i 0.513239 0.109092i
\(671\) 6.24895 2.78221i 0.241238 0.107406i
\(672\) −28.5764 31.7373i −1.10236 1.22429i
\(673\) −3.24801 30.9028i −0.125202 1.19121i −0.859046 0.511898i \(-0.828943\pi\)
0.733845 0.679317i \(-0.237724\pi\)
\(674\) −24.0185 + 17.4505i −0.925158 + 0.672167i
\(675\) 2.73760 26.0465i 0.105370 1.00253i
\(676\) −1.24058 2.14875i −0.0477147 0.0826443i
\(677\) −4.51998 + 7.82883i −0.173717 + 0.300886i −0.939716 0.341955i \(-0.888911\pi\)
0.766000 + 0.642841i \(0.222244\pi\)
\(678\) −51.4932 37.4120i −1.97759 1.43680i
\(679\) 1.47810 1.64159i 0.0567242 0.0629986i
\(680\) −4.52297 + 13.9203i −0.173448 + 0.533818i
\(681\) −12.0053 −0.460044
\(682\) 0 0
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 4.09699 12.6092i 0.156652 0.482127i
\(685\) −3.31525 + 3.68196i −0.126669 + 0.140681i
\(686\) 41.4091 + 30.0854i 1.58101 + 1.14867i
\(687\) −16.2093 + 28.0753i −0.618423 + 1.07114i
\(688\) −19.4579 33.7021i −0.741826 1.28488i
\(689\) −1.07385 + 10.2170i −0.0409103 + 0.389236i
\(690\) −1.01331 + 0.736216i −0.0385762 + 0.0280273i
\(691\) −3.81272 36.2756i −0.145043 1.37999i −0.788749 0.614716i \(-0.789271\pi\)
0.643706 0.765273i \(-0.277396\pi\)
\(692\) −0.0419833 0.0466272i −0.00159597 0.00177250i
\(693\) 2.08025 0.926188i 0.0790222 0.0351830i
\(694\) 48.8576 10.3850i 1.85461 0.394210i
\(695\) −0.805371 0.171187i −0.0305495 0.00649349i
\(696\) 91.7934 + 40.8690i 3.47942 + 1.54914i
\(697\) −0.0888351 0.273406i −0.00336487 0.0103560i
\(698\) 26.7469 + 82.3185i 1.01238 + 3.11580i
\(699\) −21.0722 9.38193i −0.797022 0.354857i
\(700\) −40.9555 8.70536i −1.54797 0.329032i
\(701\) 1.57916 0.335661i 0.0596441 0.0126777i −0.177993 0.984032i \(-0.556960\pi\)
0.237637 + 0.971354i \(0.423627\pi\)
\(702\) 51.0293 22.7197i 1.92598 0.857500i
\(703\) 13.3067 + 14.7786i 0.501873 + 0.557386i
\(704\) −2.93233 27.8993i −0.110516 1.05149i
\(705\) −4.69742 + 3.41287i −0.176915 + 0.128536i
\(706\) −9.05833 + 86.1843i −0.340915 + 3.24359i
\(707\) 7.01134 + 12.1440i 0.263688 + 0.456722i
\(708\) 1.73254 3.00084i 0.0651127 0.112779i
\(709\) 9.29395 + 6.75245i 0.349042 + 0.253594i 0.748467 0.663172i \(-0.230790\pi\)
−0.399425 + 0.916766i \(0.630790\pi\)
\(710\) −5.21141 + 5.78785i −0.195581 + 0.217214i
\(711\) −2.95510 + 9.09487i −0.110825 + 0.341084i
\(712\) −133.372 −4.99833
\(713\) 0 0
\(714\) −18.2148 −0.681672
\(715\) −0.922919 + 2.84045i −0.0345152 + 0.106227i
\(716\) 34.9649 38.8324i 1.30670 1.45124i
\(717\) −20.9797 15.2427i −0.783503 0.569248i
\(718\) 28.4649 49.3026i 1.06230 1.83996i
\(719\) −7.08549 12.2724i −0.264244 0.457685i 0.703121 0.711070i \(-0.251789\pi\)
−0.967365 + 0.253386i \(0.918456\pi\)
\(720\) 0.812085 7.72648i 0.0302646 0.287949i
\(721\) 21.1692 15.3803i 0.788382 0.572793i
\(722\) −3.48883 33.1940i −0.129841 1.23535i
\(723\) −17.2558 19.1645i −0.641751 0.712736i
\(724\) 89.0009 39.6258i 3.30769 1.47268i
\(725\) 36.8222 7.82681i 1.36754 0.290680i
\(726\) 34.3985 + 7.31162i 1.27665 + 0.271360i
\(727\) −24.6180 10.9606i −0.913030 0.406507i −0.104205 0.994556i \(-0.533230\pi\)
−0.808826 + 0.588049i \(0.799896\pi\)
\(728\) −17.0569 52.4958i −0.632172 1.94562i
\(729\) 8.98695 + 27.6590i 0.332850 + 1.02441i
\(730\) 11.2229 + 4.99675i 0.415378 + 0.184938i
\(731\) −8.12005 1.72597i −0.300331 0.0638373i
\(732\) 37.1820 7.90328i 1.37429 0.292113i
\(733\) −25.9662 + 11.5609i −0.959083 + 0.427011i −0.825735 0.564058i \(-0.809239\pi\)
−0.133348 + 0.991069i \(0.542573\pi\)
\(734\) 23.3944 + 25.9822i 0.863504 + 0.959019i
\(735\) −0.362612 3.45003i −0.0133752 0.127256i
\(736\) 7.60254 5.52357i 0.280233 0.203601i
\(737\) −1.16009 + 11.0375i −0.0427324 + 0.406572i
\(738\) 0.137995 + 0.239014i 0.00507965 + 0.00879822i
\(739\) −0.348653 + 0.603885i −0.0128254 + 0.0222143i −0.872367 0.488852i \(-0.837416\pi\)
0.859541 + 0.511066i \(0.170749\pi\)
\(740\) 19.9633 + 14.5042i 0.733866 + 0.533185i
\(741\) −8.95012 + 9.94011i −0.328791 + 0.365159i
\(742\) −4.01777 + 12.3654i −0.147497 + 0.453949i
\(743\) 18.1815 0.667015 0.333508 0.942747i \(-0.391768\pi\)
0.333508 + 0.942747i \(0.391768\pi\)
\(744\) 0 0
\(745\) −5.47779 −0.200691
\(746\) 3.67929 11.3237i 0.134708 0.414589i
\(747\) −11.0076 + 12.2251i −0.402746 + 0.447295i
\(748\) −15.6548 11.3738i −0.572395 0.415869i
\(749\) −10.6856 + 18.5080i −0.390443 + 0.676267i
\(750\) 11.1835 + 19.3704i 0.408364 + 0.707307i
\(751\) 3.87445 36.8629i 0.141381 1.34515i −0.661920 0.749574i \(-0.730258\pi\)
0.803301 0.595573i \(-0.203075\pi\)
\(752\) 70.4650 51.1958i 2.56959 1.86692i
\(753\) 3.40154 + 32.3635i 0.123959 + 1.17939i
\(754\) 53.7242 + 59.6668i 1.95652 + 2.17294i
\(755\) 1.78319 0.793927i 0.0648969 0.0288940i
\(756\) 50.0392 10.6362i 1.81991 0.386834i
\(757\) 6.26211 + 1.33105i 0.227600 + 0.0483779i 0.320300 0.947316i \(-0.396216\pi\)
−0.0926997 + 0.995694i \(0.529550\pi\)
\(758\) 36.7549 + 16.3643i 1.33500 + 0.594380i
\(759\) −0.316281 0.973412i −0.0114803 0.0353326i
\(760\) 4.20351 + 12.9371i 0.152477 + 0.469277i
\(761\) 19.4940 + 8.67928i 0.706657 + 0.314624i 0.728412 0.685140i \(-0.240259\pi\)
−0.0217552 + 0.999763i \(0.506925\pi\)
\(762\) −48.2083 10.2470i −1.74640 0.371209i
\(763\) 12.1780 2.58852i 0.440874 0.0937106i
\(764\) 5.73201 2.55206i 0.207377 0.0923302i
\(765\) −1.10893 1.23160i −0.0400936 0.0445285i
\(766\) 3.27605 + 31.1696i 0.118369 + 1.12620i
\(767\) 1.38454 1.00593i 0.0499928 0.0363219i
\(768\) 2.38699 22.7107i 0.0861332 0.819502i
\(769\) 6.12828 + 10.6145i 0.220991 + 0.382768i 0.955109 0.296254i \(-0.0957374\pi\)
−0.734118 + 0.679022i \(0.762404\pi\)
\(770\) −1.88993 + 3.27346i −0.0681084 + 0.117967i
\(771\) 0.121923 + 0.0885824i 0.00439096 + 0.00319022i
\(772\) 44.5963 49.5292i 1.60506 1.78260i
\(773\) 10.7240 33.0050i 0.385714 1.18711i −0.550247 0.835002i \(-0.685466\pi\)
0.935961 0.352104i \(-0.114534\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −5.86539 + 18.0518i −0.210420 + 0.647605i
\(778\) 25.9244 28.7920i 0.929435 1.03224i
\(779\) −0.216146 0.157040i −0.00774425 0.00562652i
\(780\) −8.29855 + 14.3735i −0.297136 + 0.514654i
\(781\) −3.18213 5.51161i −0.113866 0.197221i
\(782\) 0.418951 3.98605i 0.0149817 0.142541i
\(783\) −37.2102 + 27.0348i −1.32978 + 0.966144i
\(784\) 5.43948 + 51.7532i 0.194267 + 1.84833i
\(785\) −1.35429 1.50409i −0.0483366 0.0536833i
\(786\) −8.50228 + 3.78546i −0.303266 + 0.135023i
\(787\) −19.6786 + 4.18281i −0.701465 + 0.149101i −0.544819 0.838554i \(-0.683402\pi\)
−0.156646 + 0.987655i \(0.550068\pi\)
\(788\) −15.2066 3.23227i −0.541714 0.115145i
\(789\) −9.46075 4.21220i −0.336812 0.149958i
\(790\) −4.90526 15.0968i −0.174521 0.537122i
\(791\) −8.89666 27.3811i −0.316329 0.973559i
\(792\) 10.4898 + 4.67034i 0.372737 + 0.165953i
\(793\) 18.3640 + 3.90339i 0.652125 + 0.138613i
\(794\) 41.5496 8.83165i 1.47454 0.313423i
\(795\) 2.20752 0.982849i 0.0782925 0.0348581i
\(796\) 46.1995 + 51.3097i 1.63750 + 1.81863i
\(797\) 2.73885 + 26.0584i 0.0970150 + 0.923036i 0.929459 + 0.368926i \(0.120275\pi\)
−0.832444 + 0.554110i \(0.813059\pi\)
\(798\) −13.6953 + 9.95018i −0.484807 + 0.352233i
\(799\) 1.94213 18.4781i 0.0687076 0.653709i
\(800\) −40.3405 69.8717i −1.42625 2.47034i
\(801\) 7.55072 13.0782i 0.266791 0.462096i
\(802\) −67.5183 49.0549i −2.38416 1.73219i
\(803\) −6.71722 + 7.46022i −0.237045 + 0.263266i
\(804\) −19.0586 + 58.6562i −0.672144 + 2.06865i
\(805\) −0.566550 −0.0199683
\(806\) 0 0
\(807\) 23.0179 0.810270
\(808\) −21.8506 + 67.2491i −0.768700 + 2.36582i
\(809\) −24.3899 + 27.0877i −0.857504 + 0.952354i −0.999295 0.0375423i \(-0.988047\pi\)
0.141791 + 0.989897i \(0.454714\pi\)
\(810\) −6.71298 4.87727i −0.235870 0.171370i
\(811\) 9.55322 16.5467i 0.335459 0.581032i −0.648114 0.761543i \(-0.724442\pi\)
0.983573 + 0.180511i \(0.0577753\pi\)
\(812\) 36.7660 + 63.6805i 1.29023 + 2.23475i
\(813\) 0.763320 7.26250i 0.0267708 0.254707i
\(814\) −22.5431 + 16.3785i −0.790136 + 0.574067i
\(815\) −0.110675 1.05300i −0.00387676 0.0368849i
\(816\) −33.9798 37.7384i −1.18953 1.32111i
\(817\) −7.04810 + 3.13802i −0.246582 + 0.109785i
\(818\) −17.3297 + 3.68355i −0.605920 + 0.128792i
\(819\) 6.11330 + 1.29942i 0.213616 + 0.0454055i
\(820\) −0.302855 0.134840i −0.0105762 0.00470881i
\(821\) −12.1937 37.5285i −0.425565 1.30975i −0.902453 0.430789i \(-0.858235\pi\)
0.476888 0.878964i \(-0.341765\pi\)
\(822\) −9.60773 29.5696i −0.335108 1.03136i
\(823\) 28.8571 + 12.8480i 1.00589 + 0.447853i 0.842493 0.538707i \(-0.181087\pi\)
0.163401 + 0.986560i \(0.447754\pi\)
\(824\) 129.063 + 27.4331i 4.49611 + 0.955678i
\(825\) −8.59537 + 1.82700i −0.299252 + 0.0636081i
\(826\) 1.97866 0.880958i 0.0688465 0.0306525i
\(827\) −13.2688 14.7364i −0.461400 0.512436i 0.466879 0.884321i \(-0.345378\pi\)
−0.928279 + 0.371885i \(0.878712\pi\)
\(828\) 0.291055 + 2.76921i 0.0101149 + 0.0962366i
\(829\) 7.28104 5.28999i 0.252881 0.183729i −0.454122 0.890940i \(-0.650047\pi\)
0.707003 + 0.707211i \(0.250047\pi\)
\(830\) 2.85434 27.1572i 0.0990754 0.942640i
\(831\) 12.0081 + 20.7987i 0.416558 + 0.721499i
\(832\) 38.4977 66.6800i 1.33467 2.31171i
\(833\) 8.98066 + 6.52483i 0.311161 + 0.226072i
\(834\) 3.45729 3.83970i 0.119716 0.132958i
\(835\) 2.63511 8.11003i 0.0911917 0.280659i
\(836\) −17.9836 −0.621976
\(837\) 0 0
\(838\) 39.4699 1.36347
\(839\) −9.84070 + 30.2866i −0.339739 + 1.04561i 0.624602 + 0.780944i \(0.285261\pi\)
−0.964340 + 0.264665i \(0.914739\pi\)
\(840\) −8.68750 + 9.64844i −0.299747 + 0.332903i
\(841\) −30.0234 21.8133i −1.03529 0.752183i
\(842\) −35.9349 + 62.2411i −1.23840 + 2.14497i
\(843\) 1.35294 + 2.34336i 0.0465976 + 0.0807095i
\(844\) −10.0353 + 95.4791i −0.345428 + 3.28652i
\(845\) −0.233192 + 0.169424i −0.00802205 + 0.00582836i
\(846\) 1.86452 + 17.7398i 0.0641037 + 0.609906i
\(847\) 10.6438 + 11.8212i 0.365726 + 0.406180i
\(848\) −33.1145 + 14.7435i −1.13716 + 0.506295i
\(849\) −21.2523 + 4.51733i −0.729379 + 0.155034i
\(850\) −33.6591 7.15447i −1.15450 0.245396i
\(851\) −3.81548 1.69876i −0.130793 0.0582328i
\(852\) −10.9290 33.6361i −0.374422 1.15235i
\(853\) −15.1702 46.6890i −0.519417 1.59860i −0.775099 0.631839i \(-0.782300\pi\)
0.255683 0.966761i \(-0.417700\pi\)
\(854\) 21.7064 + 9.66431i 0.742778 + 0.330706i
\(855\) −1.50656 0.320230i −0.0515234 0.0109516i
\(856\) −105.410 + 22.4056i −3.60285 + 0.765809i
\(857\) 17.5770 7.82580i 0.600420 0.267324i −0.0839371 0.996471i \(-0.526749\pi\)
0.684357 + 0.729147i \(0.260083\pi\)
\(858\) −12.5408 13.9279i −0.428135 0.475492i
\(859\) 0.485236 + 4.61672i 0.0165561 + 0.157520i 0.999676 0.0254400i \(-0.00809867\pi\)
−0.983120 + 0.182960i \(0.941432\pi\)
\(860\) −7.74487 + 5.62698i −0.264098 + 0.191878i
\(861\) 0.0266550 0.253606i 0.000908401 0.00864285i
\(862\) 5.36418 + 9.29104i 0.182705 + 0.316454i
\(863\) −19.2652 + 33.3683i −0.655795 + 1.13587i 0.325899 + 0.945405i \(0.394333\pi\)
−0.981694 + 0.190466i \(0.939000\pi\)
\(864\) 79.7493 + 57.9413i 2.71313 + 1.97120i
\(865\) −0.00487728 + 0.00541676i −0.000165832 + 0.000184175i
\(866\) 15.0271 46.2487i 0.510642 1.57159i
\(867\) 13.2931 0.451456
\(868\) 0 0
\(869\) 12.9713 0.440022
\(870\) 5.83589 17.9610i 0.197855 0.608935i
\(871\) −20.3823 + 22.6369i −0.690629 + 0.767021i
\(872\) 50.7901 + 36.9012i 1.71997 + 1.24963i
\(873\) −0.630617 + 1.09226i −0.0213431 + 0.0369674i
\(874\) −1.86246 3.22587i −0.0629986 0.109117i
\(875\) −1.05753 + 10.0618i −0.0357512 + 0.340150i
\(876\) −45.1323 + 32.7905i −1.52488 + 1.10789i
\(877\) 0.967760 + 9.20763i 0.0326789 + 0.310919i 0.998636 + 0.0522162i \(0.0166285\pi\)
−0.965957 + 0.258703i \(0.916705\pi\)
\(878\) −41.2370 45.7983i −1.39168 1.54562i
\(879\) −34.7372 + 15.4660i −1.17166 + 0.521655i
\(880\) −10.3078 + 2.19099i −0.347475 + 0.0738582i
\(881\) −17.4884 3.71727i −0.589198 0.125238i −0.0963414 0.995348i \(-0.530714\pi\)
−0.492857 + 0.870110i \(0.664047\pi\)
\(882\) −9.73577 4.33465i −0.327821 0.145955i
\(883\) 14.9303 + 45.9509i 0.502446 + 1.54637i 0.805022 + 0.593244i \(0.202153\pi\)
−0.302577 + 0.953125i \(0.597847\pi\)
\(884\) −16.4118 50.5104i −0.551990 1.69885i
\(885\) −0.367742 0.163729i −0.0123615 0.00550370i
\(886\) −56.5516 12.0204i −1.89989 0.403834i
\(887\) −22.9984 + 4.88847i −0.772211 + 0.164139i −0.577134 0.816649i \(-0.695829\pi\)
−0.195077 + 0.980788i \(0.562496\pi\)
\(888\) −87.4369 + 38.9294i −2.93419 + 1.30639i
\(889\) −14.9170 16.5670i −0.500298 0.555638i
\(890\) 2.62025 + 24.9300i 0.0878310 + 0.835656i
\(891\) 5.48554 3.98548i 0.183772 0.133518i
\(892\) 5.14346 48.9368i 0.172216 1.63852i
\(893\) −8.63379 14.9542i −0.288919 0.500422i
\(894\) 17.1873 29.7693i 0.574830 0.995635i
\(895\) −4.91110 3.56812i −0.164160 0.119269i
\(896\) 24.9312 27.6889i 0.832894 0.925022i
\(897\) 0.868078 2.67167i 0.0289843 0.0892044i
\(898\) 50.5739 1.68767
\(899\) 0 0
\(900\) 23.9062 0.796874
\(901\) −2.38945 + 7.35398i −0.0796042 + 0.244996i
\(902\) 0.250494 0.278202i 0.00834053 0.00926310i
\(903\) −5.95736 4.32827i −0.198249 0.144036i
\(904\) 72.5879 125.726i 2.41424 4.18158i
\(905\) −5.65893 9.80156i −0.188109 0.325815i
\(906\) −1.28037 + 12.1819i −0.0425373 + 0.404716i
\(907\) 10.1792 7.39560i 0.337994 0.245567i −0.405821 0.913952i \(-0.633014\pi\)
0.743815 + 0.668386i \(0.233014\pi\)
\(908\) −4.63076 44.0588i −0.153677 1.46214i
\(909\) −5.35728 5.94987i −0.177690 0.197345i
\(910\) −9.47746 + 4.21964i −0.314175 + 0.139880i
\(911\) −46.2512 + 9.83100i −1.53237 + 0.325715i −0.895432 0.445199i \(-0.853133\pi\)
−0.636939 + 0.770914i \(0.719800\pi\)
\(912\) −46.1639 9.81243i −1.52864 0.324922i
\(913\) 20.3847 + 9.07586i 0.674635 + 0.300367i
\(914\) 3.41333 + 10.5051i 0.112903 + 0.347479i
\(915\) −1.36462 4.19986i −0.0451129 0.138843i
\(916\) −109.287 48.6578i −3.61095 1.60770i
\(917\) −4.11776 0.875258i −0.135981 0.0289036i
\(918\) 41.1246 8.74130i 1.35731 0.288506i
\(919\) −21.1320 + 9.40858i −0.697081 + 0.310360i −0.724511 0.689263i \(-0.757934\pi\)
0.0274300 + 0.999624i \(0.491268\pi\)
\(920\) −1.91161 2.12306i −0.0630238 0.0699951i
\(921\) 1.32786 + 12.6337i 0.0437544 + 0.416295i
\(922\) 49.7848 36.1708i 1.63958 1.19122i
\(923\) 1.82586 17.3719i 0.0600990 0.571804i
\(924\) −8.58224 14.8649i −0.282335 0.489019i
\(925\) −17.9291 + 31.0541i −0.589506 + 1.02105i
\(926\) 36.0560 + 26.1962i 1.18488 + 0.860862i
\(927\) −9.99679 + 11.1026i −0.328338 + 0.364656i
\(928\) −43.7846 + 134.755i −1.43730 + 4.42355i
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 26.3030 80.9524i 0.861585 2.65169i
\(933\) −19.6147 + 21.7844i −0.642157 + 0.713188i
\(934\) 83.0208 + 60.3181i 2.71652 + 1.97367i
\(935\) −1.12398 + 1.94679i −0.0367581 + 0.0636669i
\(936\) 15.7576 + 27.2930i 0.515055 + 0.892101i
\(937\) −2.06200 + 19.6186i −0.0673625 + 0.640911i 0.907797 + 0.419409i \(0.137763\pi\)
−0.975160 + 0.221502i \(0.928904\pi\)
\(938\) −31.1885 + 22.6598i −1.01834 + 0.739868i
\(939\) −0.0669503 0.636990i −0.00218484 0.0207874i
\(940\) −14.3370 15.9228i −0.467620 0.519344i
\(941\) 8.06045 3.58874i 0.262763 0.116990i −0.271127 0.962544i \(-0.587396\pi\)
0.533890 + 0.845554i \(0.320730\pi\)
\(942\) 12.4233 2.64066i 0.404773 0.0860372i
\(943\) 0.0548849 + 0.0116661i 0.00178730 + 0.000379902i
\(944\) 5.51642 + 2.45607i 0.179544 + 0.0799382i
\(945\) −1.83649 5.65214i −0.0597411 0.183864i
\(946\) −3.34057 10.2812i −0.108611 0.334271i
\(947\) −14.2158 6.32930i −0.461953 0.205675i 0.162545 0.986701i \(-0.448030\pi\)
−0.624498 + 0.781026i \(0.714696\pi\)
\(948\) 70.5082 + 14.9870i 2.29000 + 0.486754i
\(949\) −26.9506 + 5.72853i −0.874854 + 0.185956i
\(950\) −29.2157 + 13.0077i −0.947883 + 0.422025i
\(951\) 5.29960 + 5.88581i 0.171851 + 0.190860i
\(952\) −4.34271 41.3181i −0.140748 1.33913i
\(953\) 7.80840 5.67314i 0.252939 0.183771i −0.454089 0.890956i \(-0.650035\pi\)
0.707028 + 0.707185i \(0.250035\pi\)
\(954\) 0.775962 7.38278i 0.0251227 0.239026i
\(955\) −0.364458 0.631260i −0.0117936 0.0204271i
\(956\) 47.8473 82.8739i 1.54749 2.68033i
\(957\) 12.4849 + 9.07083i 0.403580 + 0.293218i
\(958\) 60.6348 67.3417i 1.95902 2.17571i
\(959\) 4.34583 13.3751i 0.140334 0.431904i
\(960\) −18.1105 −0.584514
\(961\) 0 0
\(962\) −76.4790 −2.46578
\(963\) 3.77063 11.6048i 0.121507 0.373960i
\(964\) 63.6766 70.7201i 2.05089 2.27774i
\(965\) −6.26392 4.55100i −0.201643 0.146502i
\(966\) 1.77763 3.07894i 0.0571942 0.0990633i
\(967\) 14.1988 + 24.5930i 0.456602 + 0.790858i 0.998779 0.0494066i \(-0.0157330\pi\)
−0.542177 + 0.840264i \(0.682400\pi\)
\(968\) −8.38438 + 79.7720i −0.269484 + 2.56397i
\(969\) −8.14485 + 5.91758i −0.261650 + 0.190100i
\(970\) −0.218837 2.08209i −0.00702642 0.0668519i
\(971\) −14.8059 16.4436i −0.475144 0.527701i 0.457156 0.889386i \(-0.348868\pi\)
−0.932300 + 0.361686i \(0.882201\pi\)
\(972\) −46.7662 + 20.8217i −1.50003 + 0.667855i
\(973\) 2.28602 0.485909i 0.0732865 0.0155775i
\(974\) 54.4080 + 11.5648i 1.74334 + 0.370559i
\(975\) −22.0331 9.80978i −0.705625 0.314165i
\(976\) 20.4703 + 63.0012i 0.655240 + 2.01662i
\(977\) −6.15324 18.9377i −0.196859 0.605871i −0.999950 0.0100140i \(-0.996812\pi\)
0.803090 0.595857i \(-0.203188\pi\)
\(978\) 6.06982 + 2.70246i 0.194091 + 0.0864151i
\(979\) −20.0362 4.25884i −0.640361 0.136113i
\(980\) 12.5215 2.66153i 0.399985 0.0850195i
\(981\) −6.49389 + 2.89127i −0.207334 + 0.0923111i
\(982\) 44.5206 + 49.4451i 1.42071 + 1.57786i
\(983\) −2.60593 24.7938i −0.0831164 0.790800i −0.954100 0.299488i \(-0.903184\pi\)
0.870984 0.491312i \(-0.163482\pi\)
\(984\) 1.04028 0.755810i 0.0331630 0.0240944i
\(985\) −0.188783 + 1.79615i −0.00601513 + 0.0572302i
\(986\) 30.2160 + 52.3356i 0.962273 + 1.66671i
\(987\) 8.24054 14.2730i 0.262299 0.454316i
\(988\) −39.9319 29.0122i −1.27040 0.923002i
\(989\) 1.08420 1.20413i 0.0344757 0.0382891i
\(990\) 0.666901 2.05251i 0.0211955 0.0652330i
\(991\) 42.0512 1.33580 0.667900 0.744251i \(-0.267193\pi\)
0.667900 + 0.744251i \(0.267193\pi\)
\(992\) 0 0
\(993\) 34.3515 1.09011
\(994\) 6.83142 21.0249i 0.216679 0.666871i
\(995\) 5.36707 5.96074i 0.170148 0.188968i
\(996\) 100.319 + 72.8860i 3.17873 + 2.30948i
\(997\) −7.23233 + 12.5268i −0.229050 + 0.396727i −0.957527 0.288344i \(-0.906895\pi\)
0.728477 + 0.685071i \(0.240229\pi\)
\(998\) 33.0353 + 57.2189i 1.04572 + 1.81123i
\(999\) 4.57954 43.5714i 0.144890 1.37854i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.l.448.1 16
31.2 even 5 961.2.c.i.521.1 16
31.3 odd 30 961.2.d.p.374.4 16
31.4 even 5 961.2.g.j.844.1 16
31.5 even 3 961.2.g.j.846.1 16
31.6 odd 6 961.2.d.o.628.1 16
31.7 even 15 961.2.d.n.531.1 16
31.8 even 5 961.2.g.n.338.2 16
31.9 even 15 961.2.g.m.235.2 16
31.10 even 15 961.2.c.i.439.1 16
31.11 odd 30 31.2.g.a.20.1 yes 16
31.12 odd 30 961.2.a.i.1.1 8
31.13 odd 30 961.2.g.t.816.2 16
31.14 even 15 961.2.d.q.388.4 16
31.15 odd 10 961.2.g.s.732.2 16
31.16 even 5 961.2.g.m.732.2 16
31.17 odd 30 961.2.d.p.388.4 16
31.18 even 15 961.2.g.n.816.2 16
31.19 even 15 961.2.a.j.1.1 8
31.20 even 15 inner 961.2.g.l.547.1 16
31.21 odd 30 961.2.c.j.439.1 16
31.22 odd 30 961.2.g.s.235.2 16
31.23 odd 10 961.2.g.t.338.2 16
31.24 odd 30 961.2.d.o.531.1 16
31.25 even 3 961.2.d.n.628.1 16
31.26 odd 6 961.2.g.k.846.1 16
31.27 odd 10 961.2.g.k.844.1 16
31.28 even 15 961.2.d.q.374.4 16
31.29 odd 10 961.2.c.j.521.1 16
31.30 odd 2 31.2.g.a.14.1 16
93.11 even 30 279.2.y.c.82.2 16
93.50 odd 30 8649.2.a.be.1.8 8
93.74 even 30 8649.2.a.bf.1.8 8
93.92 even 2 279.2.y.c.262.2 16
124.11 even 30 496.2.bg.c.113.1 16
124.123 even 2 496.2.bg.c.417.1 16
155.42 even 60 775.2.ck.a.299.4 32
155.73 even 60 775.2.ck.a.299.1 32
155.92 even 4 775.2.ck.a.324.1 32
155.104 odd 30 775.2.bl.a.51.2 16
155.123 even 4 775.2.ck.a.324.4 32
155.154 odd 2 775.2.bl.a.76.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 31.30 odd 2
31.2.g.a.20.1 yes 16 31.11 odd 30
279.2.y.c.82.2 16 93.11 even 30
279.2.y.c.262.2 16 93.92 even 2
496.2.bg.c.113.1 16 124.11 even 30
496.2.bg.c.417.1 16 124.123 even 2
775.2.bl.a.51.2 16 155.104 odd 30
775.2.bl.a.76.2 16 155.154 odd 2
775.2.ck.a.299.1 32 155.73 even 60
775.2.ck.a.299.4 32 155.42 even 60
775.2.ck.a.324.1 32 155.92 even 4
775.2.ck.a.324.4 32 155.123 even 4
961.2.a.i.1.1 8 31.12 odd 30
961.2.a.j.1.1 8 31.19 even 15
961.2.c.i.439.1 16 31.10 even 15
961.2.c.i.521.1 16 31.2 even 5
961.2.c.j.439.1 16 31.21 odd 30
961.2.c.j.521.1 16 31.29 odd 10
961.2.d.n.531.1 16 31.7 even 15
961.2.d.n.628.1 16 31.25 even 3
961.2.d.o.531.1 16 31.24 odd 30
961.2.d.o.628.1 16 31.6 odd 6
961.2.d.p.374.4 16 31.3 odd 30
961.2.d.p.388.4 16 31.17 odd 30
961.2.d.q.374.4 16 31.28 even 15
961.2.d.q.388.4 16 31.14 even 15
961.2.g.j.844.1 16 31.4 even 5
961.2.g.j.846.1 16 31.5 even 3
961.2.g.k.844.1 16 31.27 odd 10
961.2.g.k.846.1 16 31.26 odd 6
961.2.g.l.448.1 16 1.1 even 1 trivial
961.2.g.l.547.1 16 31.20 even 15 inner
961.2.g.m.235.2 16 31.9 even 15
961.2.g.m.732.2 16 31.16 even 5
961.2.g.n.338.2 16 31.8 even 5
961.2.g.n.816.2 16 31.18 even 15
961.2.g.s.235.2 16 31.22 odd 30
961.2.g.s.732.2 16 31.15 odd 10
961.2.g.t.338.2 16 31.23 odd 10
961.2.g.t.816.2 16 31.13 odd 30
8649.2.a.be.1.8 8 93.50 odd 30
8649.2.a.bf.1.8 8 93.74 even 30