Properties

Label 775.2.ck.a.299.1
Level $775$
Weight $2$
Character 775.299
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 299.1
Character \(\chi\) \(=\) 775.299
Dual form 775.2.ck.a.324.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.55849 + 0.831304i) q^{2} +(-1.05464 + 0.949606i) q^{3} +(4.23677 - 3.07819i) q^{4} +(1.90889 - 3.30629i) q^{6} +(1.71742 - 0.180508i) q^{7} +(-5.11835 + 7.04481i) q^{8} +(-0.103062 + 0.980572i) q^{9} +(-1.22177 - 0.543967i) q^{11} +(-1.54521 + 7.26966i) q^{12} +(-0.763174 - 3.59045i) q^{13} +(-4.24394 + 1.88952i) q^{14} +(4.00227 - 12.3177i) q^{16} +(1.12374 + 2.52396i) q^{17} +(-0.551469 - 2.59446i) q^{18} +(-2.51157 - 0.533850i) q^{19} +(-1.63986 + 1.82124i) q^{21} +(3.57808 + 0.376072i) q^{22} +(-0.316969 + 0.436271i) q^{23} +(-1.29175 - 12.2902i) q^{24} +(4.93733 + 8.55171i) q^{26} +(-3.32495 - 4.57641i) q^{27} +(6.72067 - 6.05132i) q^{28} +(2.51258 + 7.73291i) q^{29} +(4.75081 + 2.90341i) q^{31} +17.4262i q^{32} +(1.80509 - 0.586508i) q^{33} +(-4.97326 - 5.52336i) q^{34} +(2.58174 + 4.47170i) q^{36} +(6.70735 + 3.87249i) q^{37} +(6.86961 - 0.722025i) q^{38} +(4.21439 + 3.06194i) q^{39} +(-0.0696243 + 0.0773256i) q^{41} +(2.68155 - 6.02285i) q^{42} +(-0.624713 + 2.93904i) q^{43} +(-6.85079 + 1.45618i) q^{44} +(0.448289 - 1.37969i) q^{46} +(6.39584 + 2.07813i) q^{47} +(7.47602 + 16.7914i) q^{48} +(-3.93009 + 0.835366i) q^{49} +(-3.58192 - 1.59477i) q^{51} +(-14.2855 - 12.8627i) q^{52} +(-2.78341 - 0.292549i) q^{53} +(12.3112 + 8.94464i) q^{54} +(-7.51871 + 13.0228i) q^{56} +(3.15576 - 1.82198i) q^{57} +(-12.8568 - 17.6959i) q^{58} +(-0.311970 - 0.346478i) q^{59} -5.11468 q^{61} +(-14.5685 - 3.47898i) q^{62} +1.70266i q^{63} +(-6.48190 - 19.9492i) q^{64} +(-4.13073 + 3.00115i) q^{66} +(-7.18668 + 4.14923i) q^{67} +(12.5303 + 7.23436i) q^{68} +(-0.0799956 - 0.761107i) q^{69} +(-0.497420 + 4.73264i) q^{71} +(-6.38043 - 5.74497i) q^{72} +(-3.05304 + 6.85725i) q^{73} +(-20.3799 - 4.33188i) q^{74} +(-12.2842 + 5.46929i) q^{76} +(-2.19648 - 0.713679i) q^{77} +(-13.3279 - 4.33049i) q^{78} +(8.86044 - 3.94492i) q^{79} +(4.95915 + 1.05410i) q^{81} +(0.113852 - 0.255716i) q^{82} +(-12.3991 - 11.1642i) q^{83} +(-1.34155 + 12.7640i) q^{84} +(-0.844916 - 8.03884i) q^{86} +(-9.99310 - 5.76952i) q^{87} +(10.0856 - 5.82292i) q^{88} +(-12.3911 + 9.00268i) q^{89} +(-1.95880 - 6.02855i) q^{91} +2.82407i q^{92} +(-7.76751 + 1.44933i) q^{93} -18.0912 q^{94} +(-16.5480 - 18.3784i) q^{96} +(-0.751881 - 1.03488i) q^{97} +(9.36065 - 5.40437i) q^{98} +(0.659316 - 1.14197i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.55849 + 0.831304i −1.80913 + 0.587821i −0.809126 + 0.587636i \(0.800059\pi\)
−1.00000 0.000184800i \(0.999941\pi\)
\(3\) −1.05464 + 0.949606i −0.608899 + 0.548255i −0.914851 0.403792i \(-0.867692\pi\)
0.305952 + 0.952047i \(0.401025\pi\)
\(4\) 4.23677 3.07819i 2.11839 1.53910i
\(5\) 0 0
\(6\) 1.90889 3.30629i 0.779300 1.34979i
\(7\) 1.71742 0.180508i 0.649123 0.0682256i 0.225756 0.974184i \(-0.427515\pi\)
0.423367 + 0.905958i \(0.360848\pi\)
\(8\) −5.11835 + 7.04481i −1.80961 + 2.49072i
\(9\) −0.103062 + 0.980572i −0.0343541 + 0.326857i
\(10\) 0 0
\(11\) −1.22177 0.543967i −0.368377 0.164012i 0.214195 0.976791i \(-0.431287\pi\)
−0.582572 + 0.812779i \(0.697954\pi\)
\(12\) −1.54521 + 7.26966i −0.446065 + 2.09857i
\(13\) −0.763174 3.59045i −0.211666 0.995812i −0.947773 0.318946i \(-0.896671\pi\)
0.736106 0.676866i \(-0.236662\pi\)
\(14\) −4.24394 + 1.88952i −1.13424 + 0.504997i
\(15\) 0 0
\(16\) 4.00227 12.3177i 1.00057 3.07943i
\(17\) 1.12374 + 2.52396i 0.272547 + 0.612150i 0.997019 0.0771534i \(-0.0245831\pi\)
−0.724472 + 0.689304i \(0.757916\pi\)
\(18\) −0.551469 2.59446i −0.129983 0.611520i
\(19\) −2.51157 0.533850i −0.576193 0.122474i −0.0894075 0.995995i \(-0.528497\pi\)
−0.486786 + 0.873522i \(0.661831\pi\)
\(20\) 0 0
\(21\) −1.63986 + 1.82124i −0.357846 + 0.397428i
\(22\) 3.57808 + 0.376072i 0.762850 + 0.0801788i
\(23\) −0.316969 + 0.436271i −0.0660927 + 0.0909688i −0.840784 0.541371i \(-0.817905\pi\)
0.774691 + 0.632340i \(0.217905\pi\)
\(24\) −1.29175 12.2902i −0.263678 2.50872i
\(25\) 0 0
\(26\) 4.93733 + 8.55171i 0.968290 + 1.67713i
\(27\) −3.32495 4.57641i −0.639888 0.880730i
\(28\) 6.72067 6.05132i 1.27009 1.14359i
\(29\) 2.51258 + 7.73291i 0.466574 + 1.43597i 0.856993 + 0.515329i \(0.172330\pi\)
−0.390419 + 0.920637i \(0.627670\pi\)
\(30\) 0 0
\(31\) 4.75081 + 2.90341i 0.853271 + 0.521468i
\(32\) 17.4262i 3.08054i
\(33\) 1.80509 0.586508i 0.314225 0.102098i
\(34\) −4.97326 5.52336i −0.852906 0.947248i
\(35\) 0 0
\(36\) 2.58174 + 4.47170i 0.430290 + 0.745284i
\(37\) 6.70735 + 3.87249i 1.10268 + 0.636633i 0.936924 0.349533i \(-0.113660\pi\)
0.165757 + 0.986167i \(0.446993\pi\)
\(38\) 6.86961 0.722025i 1.11440 0.117128i
\(39\) 4.21439 + 3.06194i 0.674843 + 0.490302i
\(40\) 0 0
\(41\) −0.0696243 + 0.0773256i −0.0108735 + 0.0120762i −0.748557 0.663070i \(-0.769253\pi\)
0.737684 + 0.675147i \(0.235920\pi\)
\(42\) 2.68155 6.02285i 0.413772 0.929346i
\(43\) −0.624713 + 2.93904i −0.0952678 + 0.448200i 0.904496 + 0.426481i \(0.140247\pi\)
−0.999764 + 0.0217184i \(0.993086\pi\)
\(44\) −6.85079 + 1.45618i −1.03280 + 0.219527i
\(45\) 0 0
\(46\) 0.448289 1.37969i 0.0660967 0.203425i
\(47\) 6.39584 + 2.07813i 0.932929 + 0.303127i 0.735760 0.677243i \(-0.236825\pi\)
0.197169 + 0.980370i \(0.436825\pi\)
\(48\) 7.47602 + 16.7914i 1.07907 + 2.42363i
\(49\) −3.93009 + 0.835366i −0.561441 + 0.119338i
\(50\) 0 0
\(51\) −3.58192 1.59477i −0.501568 0.223313i
\(52\) −14.2855 12.8627i −1.98104 1.78374i
\(53\) −2.78341 0.292549i −0.382331 0.0401846i −0.0885864 0.996068i \(-0.528235\pi\)
−0.293745 + 0.955884i \(0.594902\pi\)
\(54\) 12.3112 + 8.94464i 1.67535 + 1.21721i
\(55\) 0 0
\(56\) −7.51871 + 13.0228i −1.00473 + 1.74024i
\(57\) 3.15576 1.82198i 0.417990 0.241327i
\(58\) −12.8568 17.6959i −1.68818 2.32358i
\(59\) −0.311970 0.346478i −0.0406151 0.0451076i 0.722495 0.691376i \(-0.242995\pi\)
−0.763110 + 0.646269i \(0.776329\pi\)
\(60\) 0 0
\(61\) −5.11468 −0.654867 −0.327434 0.944874i \(-0.606184\pi\)
−0.327434 + 0.944874i \(0.606184\pi\)
\(62\) −14.5685 3.47898i −1.85020 0.441831i
\(63\) 1.70266i 0.214514i
\(64\) −6.48190 19.9492i −0.810238 2.49365i
\(65\) 0 0
\(66\) −4.13073 + 3.00115i −0.508457 + 0.369416i
\(67\) −7.18668 + 4.14923i −0.877993 + 0.506910i −0.869996 0.493058i \(-0.835879\pi\)
−0.00799701 + 0.999968i \(0.502546\pi\)
\(68\) 12.5303 + 7.23436i 1.51952 + 0.877294i
\(69\) −0.0799956 0.761107i −0.00963034 0.0916265i
\(70\) 0 0
\(71\) −0.497420 + 4.73264i −0.0590329 + 0.561661i 0.924532 + 0.381105i \(0.124456\pi\)
−0.983565 + 0.180556i \(0.942210\pi\)
\(72\) −6.38043 5.74497i −0.751941 0.677051i
\(73\) −3.05304 + 6.85725i −0.357332 + 0.802580i 0.642024 + 0.766685i \(0.278095\pi\)
−0.999356 + 0.0358953i \(0.988572\pi\)
\(74\) −20.3799 4.33188i −2.36911 0.503571i
\(75\) 0 0
\(76\) −12.2842 + 5.46929i −1.40910 + 0.627371i
\(77\) −2.19648 0.713679i −0.250312 0.0813313i
\(78\) −13.3279 4.33049i −1.50909 0.490332i
\(79\) 8.86044 3.94492i 0.996877 0.443838i 0.157577 0.987507i \(-0.449632\pi\)
0.839300 + 0.543668i \(0.182965\pi\)
\(80\) 0 0
\(81\) 4.95915 + 1.05410i 0.551017 + 0.117122i
\(82\) 0.113852 0.255716i 0.0125728 0.0282391i
\(83\) −12.3991 11.1642i −1.36097 1.22543i −0.949407 0.314047i \(-0.898315\pi\)
−0.411567 0.911380i \(-0.635018\pi\)
\(84\) −1.34155 + 12.7640i −0.146375 + 1.39266i
\(85\) 0 0
\(86\) −0.844916 8.03884i −0.0911096 0.866850i
\(87\) −9.99310 5.76952i −1.07137 0.618557i
\(88\) 10.0856 5.82292i 1.07513 0.620725i
\(89\) −12.3911 + 9.00268i −1.31346 + 0.954282i −0.313468 + 0.949599i \(0.601491\pi\)
−0.999989 + 0.00468333i \(0.998509\pi\)
\(90\) 0 0
\(91\) −1.95880 6.02855i −0.205338 0.631964i
\(92\) 2.82407i 0.294430i
\(93\) −7.76751 + 1.44933i −0.805454 + 0.150289i
\(94\) −18.0912 −1.86597
\(95\) 0 0
\(96\) −16.5480 18.3784i −1.68892 1.87574i
\(97\) −0.751881 1.03488i −0.0763420 0.105076i 0.769138 0.639082i \(-0.220686\pi\)
−0.845480 + 0.534007i \(0.820686\pi\)
\(98\) 9.36065 5.40437i 0.945568 0.545924i
\(99\) 0.659316 1.14197i 0.0662638 0.114772i
\(100\) 0 0
\(101\) −6.56941 4.77296i −0.653681 0.474927i 0.210842 0.977520i \(-0.432379\pi\)
−0.864523 + 0.502593i \(0.832379\pi\)
\(102\) 10.4900 + 1.10255i 1.03867 + 0.109168i
\(103\) 11.2605 + 10.1390i 1.10953 + 0.999026i 0.999987 + 0.00504416i \(0.00160561\pi\)
0.109544 + 0.993982i \(0.465061\pi\)
\(104\) 29.2002 + 13.0008i 2.86332 + 1.27483i
\(105\) 0 0
\(106\) 7.36453 1.56538i 0.715307 0.152043i
\(107\) 5.03362 + 11.3057i 0.486618 + 1.09296i 0.975377 + 0.220543i \(0.0707830\pi\)
−0.488759 + 0.872419i \(0.662550\pi\)
\(108\) −28.1741 9.15433i −2.71106 0.880876i
\(109\) −2.22788 + 6.85672i −0.213392 + 0.656755i 0.785871 + 0.618390i \(0.212215\pi\)
−0.999264 + 0.0383645i \(0.987785\pi\)
\(110\) 0 0
\(111\) −10.7512 + 2.28524i −1.02046 + 0.216905i
\(112\) 4.65013 21.8772i 0.439396 2.06720i
\(113\) −6.78103 + 15.2304i −0.637906 + 1.43276i 0.247938 + 0.968776i \(0.420247\pi\)
−0.885844 + 0.463984i \(0.846420\pi\)
\(114\) −6.55936 + 7.28491i −0.614340 + 0.682294i
\(115\) 0 0
\(116\) 34.4486 + 25.0284i 3.19847 + 2.32383i
\(117\) 3.59935 0.378307i 0.332760 0.0349745i
\(118\) 1.08620 + 0.627119i 0.0999930 + 0.0577310i
\(119\) 2.38553 + 4.13185i 0.218681 + 0.378767i
\(120\) 0 0
\(121\) −6.16362 6.84539i −0.560329 0.622308i
\(122\) 13.0859 4.25185i 1.18474 0.384944i
\(123\) 0.147667i 0.0133147i
\(124\) 29.0654 2.32284i 2.61015 0.208597i
\(125\) 0 0
\(126\) −1.41542 4.35623i −0.126096 0.388084i
\(127\) −9.59358 + 8.63810i −0.851293 + 0.766507i −0.974146 0.225918i \(-0.927462\pi\)
0.122854 + 0.992425i \(0.460795\pi\)
\(128\) 12.6820 + 17.4553i 1.12095 + 1.54285i
\(129\) −2.13208 3.69288i −0.187720 0.325140i
\(130\) 0 0
\(131\) 0.254818 + 2.42443i 0.0222635 + 0.211823i 0.999998 + 0.00197767i \(0.000629511\pi\)
−0.977735 + 0.209846i \(0.932704\pi\)
\(132\) 5.84235 8.04130i 0.508511 0.699906i
\(133\) −4.40978 0.463486i −0.382376 0.0401894i
\(134\) 14.9378 16.5901i 1.29043 1.43317i
\(135\) 0 0
\(136\) −23.5325 5.00199i −2.01790 0.428917i
\(137\) 1.69320 + 7.96586i 0.144660 + 0.680570i 0.989379 + 0.145360i \(0.0464340\pi\)
−0.844719 + 0.535210i \(0.820233\pi\)
\(138\) 0.837379 + 1.88078i 0.0712824 + 0.160103i
\(139\) 0.418212 1.28712i 0.0354723 0.109172i −0.931753 0.363094i \(-0.881720\pi\)
0.967225 + 0.253921i \(0.0817204\pi\)
\(140\) 0 0
\(141\) −8.71874 + 3.88183i −0.734251 + 0.326909i
\(142\) −2.66162 12.5219i −0.223358 1.05082i
\(143\) −1.02066 + 4.80184i −0.0853522 + 0.401550i
\(144\) 11.6659 + 5.19401i 0.972161 + 0.432834i
\(145\) 0 0
\(146\) 2.11072 20.0822i 0.174685 1.66201i
\(147\) 3.35158 4.61305i 0.276433 0.380478i
\(148\) 40.3378 4.23967i 3.31574 0.348499i
\(149\) −4.50192 + 7.79756i −0.368812 + 0.638801i −0.989380 0.145351i \(-0.953569\pi\)
0.620568 + 0.784153i \(0.286902\pi\)
\(150\) 0 0
\(151\) 2.59566 1.88585i 0.211232 0.153469i −0.477139 0.878828i \(-0.658326\pi\)
0.688371 + 0.725359i \(0.258326\pi\)
\(152\) 16.6160 14.9611i 1.34773 1.21350i
\(153\) −2.59074 + 0.841782i −0.209449 + 0.0680541i
\(154\) 6.21295 0.500654
\(155\) 0 0
\(156\) 27.2807 2.18420
\(157\) −3.16395 + 1.02803i −0.252510 + 0.0820456i −0.432537 0.901616i \(-0.642382\pi\)
0.180027 + 0.983662i \(0.442382\pi\)
\(158\) −19.3899 + 17.4588i −1.54258 + 1.38894i
\(159\) 3.21332 2.33461i 0.254833 0.185147i
\(160\) 0 0
\(161\) −0.465619 + 0.806476i −0.0366959 + 0.0635592i
\(162\) −13.5642 + 1.42566i −1.06570 + 0.112010i
\(163\) 1.02295 1.40797i 0.0801236 0.110281i −0.767074 0.641559i \(-0.778288\pi\)
0.847198 + 0.531278i \(0.178288\pi\)
\(164\) −0.0569589 + 0.541928i −0.00444774 + 0.0423175i
\(165\) 0 0
\(166\) 41.0037 + 18.2560i 3.18250 + 1.41694i
\(167\) 2.91419 13.7102i 0.225507 1.06093i −0.709063 0.705145i \(-0.750882\pi\)
0.934570 0.355780i \(-0.115785\pi\)
\(168\) −4.43696 20.8742i −0.342319 1.61048i
\(169\) −0.432821 + 0.192704i −0.0332939 + 0.0148234i
\(170\) 0 0
\(171\) 0.782326 2.40775i 0.0598260 0.184125i
\(172\) 6.40018 + 14.3750i 0.488009 + 1.09609i
\(173\) 0.00249097 + 0.0117191i 0.000189385 + 0.000890985i 0.978242 0.207466i \(-0.0665217\pi\)
−0.978053 + 0.208357i \(0.933188\pi\)
\(174\) 30.3635 + 6.45395i 2.30185 + 0.489273i
\(175\) 0 0
\(176\) −11.5903 + 12.8723i −0.873651 + 0.970288i
\(177\) 0.658036 + 0.0691624i 0.0494610 + 0.00519856i
\(178\) 24.2186 33.3341i 1.81526 2.49849i
\(179\) −1.04299 9.92334i −0.0779564 0.741706i −0.961769 0.273864i \(-0.911698\pi\)
0.883812 0.467842i \(-0.154968\pi\)
\(180\) 0 0
\(181\) 9.30158 + 16.1108i 0.691381 + 1.19751i 0.971385 + 0.237509i \(0.0763308\pi\)
−0.280004 + 0.959999i \(0.590336\pi\)
\(182\) 10.0231 + 13.7956i 0.742963 + 1.02260i
\(183\) 5.39417 4.85693i 0.398748 0.359035i
\(184\) −1.45108 4.46598i −0.106975 0.329236i
\(185\) 0 0
\(186\) 18.6683 10.1653i 1.36882 0.745354i
\(187\) 3.69497i 0.270203i
\(188\) 33.4946 10.8831i 2.44284 0.793728i
\(189\) −6.53642 7.25943i −0.475454 0.528046i
\(190\) 0 0
\(191\) −0.599059 1.03760i −0.0433464 0.0750782i 0.843538 0.537069i \(-0.180469\pi\)
−0.886885 + 0.461991i \(0.847135\pi\)
\(192\) 25.7800 + 14.8841i 1.86051 + 1.07417i
\(193\) 12.6568 1.33029i 0.911059 0.0957562i 0.362611 0.931941i \(-0.381885\pi\)
0.548448 + 0.836184i \(0.315219\pi\)
\(194\) 2.78398 + 2.02268i 0.199878 + 0.145220i
\(195\) 0 0
\(196\) −14.0795 + 15.6368i −1.00568 + 1.11692i
\(197\) −1.20744 + 2.71195i −0.0860263 + 0.193218i −0.951436 0.307847i \(-0.900392\pi\)
0.865410 + 0.501065i \(0.167058\pi\)
\(198\) −0.737531 + 3.46981i −0.0524140 + 0.246589i
\(199\) −12.8960 + 2.74112i −0.914170 + 0.194313i −0.640900 0.767625i \(-0.721439\pi\)
−0.273270 + 0.961937i \(0.588105\pi\)
\(200\) 0 0
\(201\) 3.63926 11.2005i 0.256694 0.790021i
\(202\) 20.7755 + 6.75039i 1.46176 + 0.474955i
\(203\) 5.71100 + 12.8271i 0.400834 + 0.900287i
\(204\) −20.0848 + 4.26915i −1.40622 + 0.298900i
\(205\) 0 0
\(206\) −37.2385 16.5796i −2.59453 1.15516i
\(207\) −0.395127 0.355774i −0.0274633 0.0247280i
\(208\) −47.2807 4.96940i −3.27832 0.344566i
\(209\) 2.77816 + 2.01845i 0.192169 + 0.139619i
\(210\) 0 0
\(211\) −9.16614 + 15.8762i −0.631023 + 1.09296i 0.356320 + 0.934364i \(0.384031\pi\)
−0.987343 + 0.158600i \(0.949302\pi\)
\(212\) −12.6932 + 7.32843i −0.871773 + 0.503318i
\(213\) −3.96954 5.46361i −0.271989 0.374360i
\(214\) −22.2769 24.7410i −1.52282 1.69126i
\(215\) 0 0
\(216\) 49.2582 3.35160
\(217\) 8.68322 + 4.12881i 0.589456 + 0.280282i
\(218\) 19.3949i 1.31359i
\(219\) −3.29181 10.1311i −0.222440 0.684599i
\(220\) 0 0
\(221\) 8.20455 5.96096i 0.551898 0.400977i
\(222\) 25.6071 14.7843i 1.71864 0.992256i
\(223\) −8.13718 4.69801i −0.544906 0.314602i 0.202159 0.979353i \(-0.435204\pi\)
−0.747065 + 0.664751i \(0.768538\pi\)
\(224\) 3.14557 + 29.9281i 0.210172 + 1.99965i
\(225\) 0 0
\(226\) 4.68807 44.6040i 0.311846 2.96702i
\(227\) −6.28658 5.66046i −0.417255 0.375698i 0.433594 0.901108i \(-0.357245\pi\)
−0.850849 + 0.525410i \(0.823912\pi\)
\(228\) 7.76182 17.4333i 0.514039 1.15455i
\(229\) 22.3443 + 4.74942i 1.47655 + 0.313850i 0.874663 0.484731i \(-0.161083\pi\)
0.601887 + 0.798582i \(0.294416\pi\)
\(230\) 0 0
\(231\) 2.99422 1.33311i 0.197005 0.0877123i
\(232\) −67.3372 21.8792i −4.42090 1.43644i
\(233\) 15.4580 + 5.02260i 1.01269 + 0.329042i 0.767923 0.640542i \(-0.221290\pi\)
0.244762 + 0.969583i \(0.421290\pi\)
\(234\) −8.89441 + 3.96005i −0.581446 + 0.258876i
\(235\) 0 0
\(236\) −2.38828 0.507644i −0.155463 0.0330448i
\(237\) −5.59849 + 12.5744i −0.363661 + 0.816796i
\(238\) −9.53817 8.58821i −0.618268 0.556691i
\(239\) 1.91005 18.1729i 0.123551 1.17551i −0.740484 0.672074i \(-0.765404\pi\)
0.864035 0.503433i \(-0.167930\pi\)
\(240\) 0 0
\(241\) 1.89944 + 18.0720i 0.122354 + 1.16412i 0.867576 + 0.497304i \(0.165677\pi\)
−0.745222 + 0.666816i \(0.767657\pi\)
\(242\) 21.4602 + 12.3900i 1.37951 + 0.796461i
\(243\) 8.46555 4.88759i 0.543065 0.313539i
\(244\) −21.6697 + 15.7440i −1.38726 + 1.00790i
\(245\) 0 0
\(246\) 0.122756 + 0.377804i 0.00782663 + 0.0240879i
\(247\) 9.42508i 0.599704i
\(248\) −44.7703 + 18.6079i −2.84292 + 1.18160i
\(249\) 23.6782 1.50054
\(250\) 0 0
\(251\) −15.3433 17.0405i −0.968461 1.07558i −0.997108 0.0759953i \(-0.975787\pi\)
0.0286471 0.999590i \(-0.490880\pi\)
\(252\) 5.24111 + 7.21376i 0.330159 + 0.454424i
\(253\) 0.624580 0.360602i 0.0392670 0.0226708i
\(254\) 17.3642 30.0757i 1.08953 1.88712i
\(255\) 0 0
\(256\) −13.0179 9.45807i −0.813620 0.591129i
\(257\) 0.105611 + 0.0111002i 0.00658785 + 0.000692411i 0.107822 0.994170i \(-0.465612\pi\)
−0.101234 + 0.994863i \(0.532279\pi\)
\(258\) 8.52482 + 7.67578i 0.530732 + 0.477873i
\(259\) 12.2183 + 5.43996i 0.759211 + 0.338022i
\(260\) 0 0
\(261\) −7.84163 + 1.66679i −0.485385 + 0.103172i
\(262\) −2.66739 5.99105i −0.164792 0.370128i
\(263\) −6.94015 2.25499i −0.427948 0.139049i 0.0871204 0.996198i \(-0.472234\pi\)
−0.515068 + 0.857149i \(0.672234\pi\)
\(264\) −5.10723 + 15.7184i −0.314328 + 0.967403i
\(265\) 0 0
\(266\) 11.6677 2.48004i 0.715391 0.152061i
\(267\) 4.51923 21.2613i 0.276573 1.30117i
\(268\) −17.6762 + 39.7014i −1.07974 + 2.42515i
\(269\) −10.8529 + 12.0533i −0.661711 + 0.734905i −0.976799 0.214158i \(-0.931299\pi\)
0.315088 + 0.949063i \(0.397966\pi\)
\(270\) 0 0
\(271\) 4.16291 + 3.02453i 0.252879 + 0.183727i 0.707002 0.707212i \(-0.250047\pi\)
−0.454123 + 0.890939i \(0.650047\pi\)
\(272\) 35.5870 3.74034i 2.15778 0.226792i
\(273\) 7.79058 + 4.49790i 0.471508 + 0.272225i
\(274\) −10.9541 18.9730i −0.661760 1.14620i
\(275\) 0 0
\(276\) −2.68176 2.97839i −0.161423 0.179278i
\(277\) −16.0946 + 5.22944i −0.967029 + 0.314207i −0.749616 0.661873i \(-0.769762\pi\)
−0.217413 + 0.976080i \(0.569762\pi\)
\(278\) 3.64076i 0.218358i
\(279\) −3.33663 + 4.35928i −0.199759 + 0.260983i
\(280\) 0 0
\(281\) 0.589193 + 1.81335i 0.0351483 + 0.108175i 0.967091 0.254429i \(-0.0818876\pi\)
−0.931943 + 0.362605i \(0.881888\pi\)
\(282\) 19.0798 17.1796i 1.13619 1.02303i
\(283\) 8.99888 + 12.3859i 0.534928 + 0.736265i 0.987871 0.155274i \(-0.0496261\pi\)
−0.452944 + 0.891539i \(0.649626\pi\)
\(284\) 12.4605 + 21.5823i 0.739396 + 1.28067i
\(285\) 0 0
\(286\) −1.38043 13.1339i −0.0816268 0.776627i
\(287\) −0.105616 + 0.145368i −0.00623433 + 0.00858081i
\(288\) −17.0876 1.79598i −1.00690 0.105829i
\(289\) 6.26763 6.96091i 0.368684 0.409465i
\(290\) 0 0
\(291\) 1.77569 + 0.377435i 0.104093 + 0.0221256i
\(292\) 8.17289 + 38.4504i 0.478282 + 2.25014i
\(293\) 10.8980 + 24.4772i 0.636666 + 1.42998i 0.886979 + 0.461810i \(0.152800\pi\)
−0.250313 + 0.968165i \(0.580533\pi\)
\(294\) −4.74013 + 14.5886i −0.276450 + 0.850826i
\(295\) 0 0
\(296\) −61.6115 + 27.4312i −3.58110 + 1.59441i
\(297\) 1.57291 + 7.39998i 0.0912697 + 0.429390i
\(298\) 5.03599 23.6924i 0.291727 1.37247i
\(299\) 1.80831 + 0.805113i 0.104577 + 0.0465609i
\(300\) 0 0
\(301\) −0.542373 + 5.16033i −0.0312619 + 0.297437i
\(302\) −5.07324 + 6.98272i −0.291932 + 0.401810i
\(303\) 11.4608 1.20458i 0.658407 0.0692014i
\(304\) −16.6278 + 28.8002i −0.953670 + 1.65181i
\(305\) 0 0
\(306\) 5.92860 4.30738i 0.338916 0.246237i
\(307\) 6.65208 5.98956i 0.379654 0.341842i −0.457105 0.889413i \(-0.651114\pi\)
0.836760 + 0.547570i \(0.184447\pi\)
\(308\) −11.5028 + 3.73749i −0.655434 + 0.212963i
\(309\) −21.5039 −1.22331
\(310\) 0 0
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −43.1415 + 14.0175i −2.44241 + 0.793586i
\(313\) −0.335397 + 0.301993i −0.0189577 + 0.0170696i −0.678555 0.734550i \(-0.737394\pi\)
0.659597 + 0.751619i \(0.270727\pi\)
\(314\) 7.24032 5.26040i 0.408595 0.296862i
\(315\) 0 0
\(316\) 25.3964 43.9879i 1.42866 2.47451i
\(317\) 5.55027 0.583357i 0.311734 0.0327646i 0.0526304 0.998614i \(-0.483239\pi\)
0.259104 + 0.965849i \(0.416573\pi\)
\(318\) −6.28047 + 8.64432i −0.352191 + 0.484750i
\(319\) 1.13666 10.8146i 0.0636407 0.605501i
\(320\) 0 0
\(321\) −16.0446 7.14353i −0.895524 0.398713i
\(322\) 0.520855 2.45043i 0.0290261 0.136557i
\(323\) −1.47493 6.93901i −0.0820674 0.386097i
\(324\) 24.2555 10.7992i 1.34753 0.599958i
\(325\) 0 0
\(326\) −1.44676 + 4.45266i −0.0801284 + 0.246610i
\(327\) −4.16156 9.34701i −0.230135 0.516891i
\(328\) −0.188382 0.886270i −0.0104017 0.0489360i
\(329\) 11.3595 + 2.41453i 0.626267 + 0.133117i
\(330\) 0 0
\(331\) 16.1966 17.9882i 0.890246 0.988719i −0.109740 0.993960i \(-0.535002\pi\)
0.999986 + 0.00524168i \(0.00166849\pi\)
\(332\) −86.8975 9.13329i −4.76912 0.501255i
\(333\) −4.48853 + 6.17793i −0.245970 + 0.338548i
\(334\) 3.94140 + 37.4999i 0.215664 + 2.05191i
\(335\) 0 0
\(336\) 15.8704 + 27.4884i 0.865804 + 1.49962i
\(337\) 6.48679 + 8.92830i 0.353358 + 0.486355i 0.948283 0.317426i \(-0.102818\pi\)
−0.594925 + 0.803781i \(0.702818\pi\)
\(338\) 0.947173 0.852838i 0.0515194 0.0463883i
\(339\) −7.31135 22.5020i −0.397098 1.22214i
\(340\) 0 0
\(341\) −4.22504 6.13158i −0.228799 0.332044i
\(342\) 6.81056i 0.368273i
\(343\) −18.0953 + 5.87953i −0.977056 + 0.317465i
\(344\) −17.5075 19.4440i −0.943941 1.04835i
\(345\) 0 0
\(346\) −0.0161152 0.0279124i −0.000866360 0.00150058i
\(347\) −16.0798 9.28369i −0.863210 0.498375i 0.00187589 0.999998i \(-0.499403\pi\)
−0.865086 + 0.501624i \(0.832736\pi\)
\(348\) −60.0982 + 6.31657i −3.22160 + 0.338604i
\(349\) −26.0298 18.9118i −1.39334 1.01232i −0.995489 0.0948756i \(-0.969755\pi\)
−0.397855 0.917448i \(-0.630245\pi\)
\(350\) 0 0
\(351\) −13.8939 + 15.4307i −0.741599 + 0.823629i
\(352\) 9.47926 21.2908i 0.505246 1.13480i
\(353\) 6.69754 31.5094i 0.356474 1.67708i −0.325375 0.945585i \(-0.605490\pi\)
0.681849 0.731493i \(-0.261176\pi\)
\(354\) −1.74107 + 0.370077i −0.0925370 + 0.0196693i
\(355\) 0 0
\(356\) −24.7864 + 76.2846i −1.31367 + 4.04307i
\(357\) −6.43952 2.09233i −0.340815 0.110738i
\(358\) 10.9178 + 24.5217i 0.577023 + 1.29601i
\(359\) 20.6998 4.39988i 1.09249 0.232217i 0.373777 0.927519i \(-0.378063\pi\)
0.718718 + 0.695302i \(0.244729\pi\)
\(360\) 0 0
\(361\) −11.3344 5.04639i −0.596547 0.265600i
\(362\) −37.1910 33.4869i −1.95472 1.76003i
\(363\) 13.0009 + 1.36644i 0.682368 + 0.0717197i
\(364\) −26.8560 19.5120i −1.40764 1.02271i
\(365\) 0 0
\(366\) −9.76334 + 16.9106i −0.510338 + 0.883931i
\(367\) −11.2552 + 6.49822i −0.587519 + 0.339204i −0.764116 0.645079i \(-0.776824\pi\)
0.176597 + 0.984283i \(0.443491\pi\)
\(368\) 4.10527 + 5.65042i 0.214002 + 0.294549i
\(369\) −0.0686477 0.0762409i −0.00357365 0.00396894i
\(370\) 0 0
\(371\) −4.83309 −0.250922
\(372\) −28.4478 + 30.0504i −1.47495 + 1.55804i
\(373\) 4.42592i 0.229166i −0.993414 0.114583i \(-0.963447\pi\)
0.993414 0.114583i \(-0.0365531\pi\)
\(374\) 3.07165 + 9.45355i 0.158831 + 0.488832i
\(375\) 0 0
\(376\) −47.3762 + 34.4208i −2.44324 + 1.77512i
\(377\) 25.8471 14.9228i 1.33119 0.768566i
\(378\) 22.7581 + 13.1394i 1.17055 + 0.675819i
\(379\) −1.56330 14.8738i −0.0803013 0.764016i −0.958379 0.285498i \(-0.907841\pi\)
0.878078 0.478518i \(-0.158826\pi\)
\(380\) 0 0
\(381\) 1.91503 18.2202i 0.0981097 0.933452i
\(382\) 2.39525 + 2.15669i 0.122552 + 0.110346i
\(383\) 4.73862 10.6431i 0.242132 0.543838i −0.751072 0.660220i \(-0.770463\pi\)
0.993205 + 0.116382i \(0.0371297\pi\)
\(384\) −29.9508 6.36623i −1.52842 0.324875i
\(385\) 0 0
\(386\) −31.2765 + 13.9252i −1.59193 + 0.708774i
\(387\) −2.81756 0.915480i −0.143225 0.0465365i
\(388\) −6.37110 2.07009i −0.323443 0.105093i
\(389\) −13.1568 + 5.85779i −0.667077 + 0.297002i −0.712197 0.701980i \(-0.752300\pi\)
0.0451198 + 0.998982i \(0.485633\pi\)
\(390\) 0 0
\(391\) −1.45732 0.309763i −0.0737000 0.0156654i
\(392\) 14.2306 31.9624i 0.718753 1.61435i
\(393\) −2.57100 2.31493i −0.129690 0.116773i
\(394\) 0.834763 7.94224i 0.0420547 0.400124i
\(395\) 0 0
\(396\) −0.721831 6.86777i −0.0362734 0.345118i
\(397\) 13.6746 + 7.89506i 0.686311 + 0.396242i 0.802229 0.597017i \(-0.203648\pi\)
−0.115918 + 0.993259i \(0.536981\pi\)
\(398\) 30.7155 17.7336i 1.53963 0.888904i
\(399\) 5.09088 3.69874i 0.254863 0.185169i
\(400\) 0 0
\(401\) 9.58670 + 29.5048i 0.478737 + 1.47340i 0.840851 + 0.541267i \(0.182055\pi\)
−0.362114 + 0.932134i \(0.617945\pi\)
\(402\) 31.6817i 1.58014i
\(403\) 6.79886 19.2734i 0.338675 0.960075i
\(404\) −42.5252 −2.11571
\(405\) 0 0
\(406\) −25.2748 28.0705i −1.25437 1.39311i
\(407\) −6.08832 8.37986i −0.301787 0.415374i
\(408\) 29.5684 17.0713i 1.46385 0.845156i
\(409\) 3.29291 5.70349i 0.162824 0.282019i −0.773056 0.634337i \(-0.781273\pi\)
0.935880 + 0.352318i \(0.114606\pi\)
\(410\) 0 0
\(411\) −9.35015 6.79328i −0.461209 0.335088i
\(412\) 78.9180 + 8.29462i 3.88801 + 0.408647i
\(413\) −0.598326 0.538735i −0.0294417 0.0265094i
\(414\) 1.30669 + 0.581774i 0.0642201 + 0.0285926i
\(415\) 0 0
\(416\) 62.5679 13.2992i 3.06764 0.652047i
\(417\) 0.781196 + 1.75460i 0.0382554 + 0.0859229i
\(418\) −8.78583 2.85469i −0.429729 0.139627i
\(419\) 4.53389 13.9539i 0.221495 0.681692i −0.777133 0.629336i \(-0.783327\pi\)
0.998628 0.0523559i \(-0.0166730\pi\)
\(420\) 0 0
\(421\) 26.1321 5.55454i 1.27360 0.270712i 0.478983 0.877824i \(-0.341006\pi\)
0.794616 + 0.607112i \(0.207672\pi\)
\(422\) 10.2535 48.2390i 0.499133 2.34824i
\(423\) −2.69693 + 6.05740i −0.131129 + 0.294521i
\(424\) 16.3074 18.1113i 0.791959 0.879560i
\(425\) 0 0
\(426\) 14.6980 + 10.6787i 0.712118 + 0.517384i
\(427\) −8.78404 + 0.923240i −0.425090 + 0.0446787i
\(428\) 56.1274 + 32.4052i 2.71302 + 1.56636i
\(429\) −3.48342 6.03347i −0.168181 0.291299i
\(430\) 0 0
\(431\) 2.66850 + 2.96367i 0.128537 + 0.142755i 0.803978 0.594660i \(-0.202713\pi\)
−0.675441 + 0.737414i \(0.736046\pi\)
\(432\) −69.6783 + 22.6399i −3.35240 + 1.08926i
\(433\) 18.0766i 0.868704i 0.900743 + 0.434352i \(0.143023\pi\)
−0.900743 + 0.434352i \(0.856977\pi\)
\(434\) −25.6482 3.34513i −1.23115 0.160571i
\(435\) 0 0
\(436\) 11.6673 + 35.9082i 0.558762 + 1.71969i
\(437\) 1.02899 0.926510i 0.0492234 0.0443210i
\(438\) 16.8441 + 23.1839i 0.804843 + 1.10777i
\(439\) 11.4543 + 19.8394i 0.546684 + 0.946884i 0.998499 + 0.0547723i \(0.0174433\pi\)
−0.451815 + 0.892112i \(0.649223\pi\)
\(440\) 0 0
\(441\) −0.414093 3.93983i −0.0197187 0.187611i
\(442\) −16.0359 + 22.0715i −0.762750 + 1.04984i
\(443\) 21.3736 + 2.24645i 1.01549 + 0.106732i 0.597624 0.801777i \(-0.296112\pi\)
0.417866 + 0.908509i \(0.362778\pi\)
\(444\) −38.5160 + 42.7763i −1.82789 + 2.03008i
\(445\) 0 0
\(446\) 24.7244 + 5.25533i 1.17073 + 0.248847i
\(447\) −2.65668 12.4987i −0.125657 0.591169i
\(448\) −14.7331 33.0912i −0.696075 1.56341i
\(449\) −5.80940 + 17.8795i −0.274163 + 0.843786i 0.715277 + 0.698841i \(0.246300\pi\)
−0.989440 + 0.144945i \(0.953700\pi\)
\(450\) 0 0
\(451\) 0.127127 0.0566007i 0.00598619 0.00266522i
\(452\) 18.1526 + 85.4012i 0.853826 + 4.01694i
\(453\) −0.946676 + 4.45376i −0.0444787 + 0.209256i
\(454\) 20.7897 + 9.25617i 0.975709 + 0.434414i
\(455\) 0 0
\(456\) −3.31680 + 31.5572i −0.155323 + 1.47780i
\(457\) −2.41344 + 3.32182i −0.112896 + 0.155388i −0.861726 0.507374i \(-0.830616\pi\)
0.748830 + 0.662763i \(0.230616\pi\)
\(458\) −61.1158 + 6.42352i −2.85575 + 0.300152i
\(459\) 7.81429 13.5347i 0.364740 0.631748i
\(460\) 0 0
\(461\) 18.5063 13.4456i 0.861924 0.626225i −0.0664836 0.997788i \(-0.521178\pi\)
0.928408 + 0.371563i \(0.121178\pi\)
\(462\) −6.55246 + 5.89986i −0.304848 + 0.274486i
\(463\) 15.7561 5.11947i 0.732249 0.237922i 0.0809233 0.996720i \(-0.474213\pi\)
0.651326 + 0.758798i \(0.274213\pi\)
\(464\) 105.308 4.88880
\(465\) 0 0
\(466\) −43.7244 −2.02549
\(467\) 36.2792 11.7878i 1.67880 0.545476i 0.694124 0.719855i \(-0.255792\pi\)
0.984679 + 0.174379i \(0.0557918\pi\)
\(468\) 14.0851 12.6823i 0.651085 0.586239i
\(469\) −11.5936 + 8.42323i −0.535342 + 0.388949i
\(470\) 0 0
\(471\) 2.36062 4.08871i 0.108771 0.188398i
\(472\) 4.03765 0.424374i 0.185848 0.0195334i
\(473\) 2.36200 3.25101i 0.108605 0.149482i
\(474\) 3.87052 36.8256i 0.177779 1.69145i
\(475\) 0 0
\(476\) 22.8256 + 10.1626i 1.04621 + 0.465802i
\(477\) 0.573730 2.69919i 0.0262693 0.123587i
\(478\) 10.2204 + 48.0830i 0.467468 + 2.19926i
\(479\) 30.7726 13.7008i 1.40603 0.626007i 0.443279 0.896383i \(-0.353815\pi\)
0.962755 + 0.270377i \(0.0871483\pi\)
\(480\) 0 0
\(481\) 8.78511 27.0378i 0.400567 1.23282i
\(482\) −19.8830 44.6580i −0.905647 2.03412i
\(483\) −0.274772 1.29270i −0.0125026 0.0588199i
\(484\) −47.1853 10.0295i −2.14479 0.455888i
\(485\) 0 0
\(486\) −17.5960 + 19.5423i −0.798169 + 0.886456i
\(487\) −20.5634 2.16130i −0.931817 0.0979379i −0.373560 0.927606i \(-0.621863\pi\)
−0.558257 + 0.829668i \(0.688530\pi\)
\(488\) 26.1787 36.0319i 1.18506 1.63109i
\(489\) 0.258168 + 2.45631i 0.0116748 + 0.111078i
\(490\) 0 0
\(491\) −12.3664 21.4192i −0.558087 0.966634i −0.997656 0.0684258i \(-0.978202\pi\)
0.439570 0.898209i \(-0.355131\pi\)
\(492\) −0.454547 0.625630i −0.0204925 0.0282056i
\(493\) −16.6941 + 15.0314i −0.751864 + 0.676982i
\(494\) −7.83511 24.1140i −0.352518 1.08494i
\(495\) 0 0
\(496\) 54.7775 46.8990i 2.45958 2.10583i
\(497\) 8.21771i 0.368615i
\(498\) −60.5804 + 19.6838i −2.71467 + 0.882050i
\(499\) 16.4340 + 18.2518i 0.735685 + 0.817061i 0.988622 0.150422i \(-0.0480631\pi\)
−0.252937 + 0.967483i \(0.581396\pi\)
\(500\) 0 0
\(501\) 9.94584 + 17.2267i 0.444347 + 0.769632i
\(502\) 53.4215 + 30.8429i 2.38432 + 1.37659i
\(503\) 14.6584 1.54066i 0.653585 0.0686946i 0.228068 0.973645i \(-0.426759\pi\)
0.425517 + 0.904951i \(0.360092\pi\)
\(504\) −11.9949 8.71479i −0.534295 0.388188i
\(505\) 0 0
\(506\) −1.29821 + 1.44181i −0.0577126 + 0.0640963i
\(507\) 0.273479 0.614244i 0.0121456 0.0272795i
\(508\) −14.0561 + 66.1285i −0.623637 + 2.93398i
\(509\) 15.1674 3.22394i 0.672285 0.142899i 0.140893 0.990025i \(-0.455003\pi\)
0.531392 + 0.847126i \(0.321669\pi\)
\(510\) 0 0
\(511\) −4.00557 + 12.3279i −0.177196 + 0.545353i
\(512\) 0.128768 + 0.0418393i 0.00569080 + 0.00184905i
\(513\) 5.90773 + 13.2690i 0.260833 + 0.585840i
\(514\) −0.279433 + 0.0593953i −0.0123253 + 0.00261982i
\(515\) 0 0
\(516\) −20.4005 9.08291i −0.898084 0.399853i
\(517\) −6.68380 6.01812i −0.293953 0.264677i
\(518\) −35.7828 3.76092i −1.57220 0.165245i
\(519\) −0.0137556 0.00999402i −0.000603803 0.000438689i
\(520\) 0 0
\(521\) −14.7073 + 25.4738i −0.644337 + 1.11603i 0.340117 + 0.940383i \(0.389533\pi\)
−0.984454 + 0.175642i \(0.943800\pi\)
\(522\) 18.6771 10.7832i 0.817475 0.471970i
\(523\) −26.4656 36.4268i −1.15726 1.59283i −0.720863 0.693078i \(-0.756254\pi\)
−0.436397 0.899754i \(-0.643746\pi\)
\(524\) 8.54247 + 9.48737i 0.373180 + 0.414458i
\(525\) 0 0
\(526\) 19.6309 0.855947
\(527\) −1.98942 + 15.2535i −0.0866604 + 0.664455i
\(528\) 24.5819i 1.06979i
\(529\) 7.01753 + 21.5977i 0.305110 + 0.939032i
\(530\) 0 0
\(531\) 0.371899 0.270201i 0.0161391 0.0117257i
\(532\) −20.1099 + 11.6105i −0.871876 + 0.503378i
\(533\) 0.330769 + 0.190970i 0.0143272 + 0.00827182i
\(534\) 6.11220 + 58.1537i 0.264501 + 2.51656i
\(535\) 0 0
\(536\) 7.55343 71.8661i 0.326258 3.10414i
\(537\) 10.5232 + 9.47518i 0.454112 + 0.408884i
\(538\) 17.7470 39.8604i 0.765127 1.71850i
\(539\) 5.25607 + 1.11721i 0.226395 + 0.0481217i
\(540\) 0 0
\(541\) 34.5126 15.3660i 1.48381 0.660635i 0.504577 0.863367i \(-0.331648\pi\)
0.979234 + 0.202731i \(0.0649818\pi\)
\(542\) −13.1651 4.27759i −0.565488 0.183738i
\(543\) −25.1088 8.15834i −1.07752 0.350108i
\(544\) −43.9830 + 19.5825i −1.88576 + 0.839593i
\(545\) 0 0
\(546\) −23.6712 5.03148i −1.01304 0.215327i
\(547\) −7.40617 + 16.6345i −0.316665 + 0.711241i −0.999819 0.0190333i \(-0.993941\pi\)
0.683154 + 0.730274i \(0.260608\pi\)
\(548\) 31.6942 + 28.5375i 1.35391 + 1.21906i
\(549\) 0.527130 5.01531i 0.0224974 0.214048i
\(550\) 0 0
\(551\) −2.18229 20.7631i −0.0929686 0.884537i
\(552\) 5.77130 + 3.33206i 0.245643 + 0.141822i
\(553\) 14.5050 8.37446i 0.616815 0.356118i
\(554\) 36.8305 26.7590i 1.56478 1.13688i
\(555\) 0 0
\(556\) −2.19015 6.74059i −0.0928831 0.285865i
\(557\) 9.19760i 0.389715i 0.980832 + 0.194857i \(0.0624244\pi\)
−0.980832 + 0.194857i \(0.937576\pi\)
\(558\) 4.91285 13.9269i 0.207978 0.589574i
\(559\) 11.0293 0.466488
\(560\) 0 0
\(561\) 3.50877 + 3.89688i 0.148140 + 0.164527i
\(562\) −3.01489 4.14964i −0.127175 0.175042i
\(563\) −31.3170 + 18.0809i −1.31986 + 0.762019i −0.983705 0.179790i \(-0.942458\pi\)
−0.336150 + 0.941808i \(0.609125\pi\)
\(564\) −24.9903 + 43.2844i −1.05228 + 1.82260i
\(565\) 0 0
\(566\) −33.3200 24.2084i −1.40054 1.01755i
\(567\) 8.70721 + 0.915165i 0.365668 + 0.0384333i
\(568\) −30.7946 27.7276i −1.29211 1.16342i
\(569\) −37.9119 16.8795i −1.58935 0.707624i −0.594047 0.804430i \(-0.702471\pi\)
−0.995303 + 0.0968056i \(0.969137\pi\)
\(570\) 0 0
\(571\) 31.6853 6.73491i 1.32599 0.281847i 0.510128 0.860099i \(-0.329598\pi\)
0.815859 + 0.578251i \(0.196265\pi\)
\(572\) 10.4567 + 23.4861i 0.437216 + 0.982004i
\(573\) 1.61711 + 0.525430i 0.0675556 + 0.0219501i
\(574\) 0.149373 0.459722i 0.00623470 0.0191884i
\(575\) 0 0
\(576\) 20.2297 4.29995i 0.842904 0.179165i
\(577\) −8.52075 + 40.0870i −0.354723 + 1.66884i 0.333044 + 0.942911i \(0.391924\pi\)
−0.687768 + 0.725931i \(0.741409\pi\)
\(578\) −10.2490 + 23.0197i −0.426304 + 0.957494i
\(579\) −12.0852 + 13.4220i −0.502245 + 0.557799i
\(580\) 0 0
\(581\) −23.3096 16.9354i −0.967046 0.702600i
\(582\) −4.85685 + 0.510476i −0.201323 + 0.0211599i
\(583\) 3.24155 + 1.87151i 0.134251 + 0.0775100i
\(584\) −32.6814 56.6059i −1.35237 2.34237i
\(585\) 0 0
\(586\) −48.2304 53.5652i −1.99238 2.21276i
\(587\) 24.2818 7.88963i 1.00222 0.325640i 0.238466 0.971151i \(-0.423356\pi\)
0.763751 + 0.645511i \(0.223356\pi\)
\(588\) 29.8612i 1.23146i
\(589\) −10.3820 9.82833i −0.427783 0.404969i
\(590\) 0 0
\(591\) −1.30187 4.00673i −0.0535516 0.164815i
\(592\) 74.5449 67.1206i 3.06378 2.75864i
\(593\) −26.1751 36.0269i −1.07488 1.47945i −0.865033 0.501716i \(-0.832702\pi\)
−0.209850 0.977734i \(-0.567298\pi\)
\(594\) −10.1759 17.6252i −0.417523 0.723170i
\(595\) 0 0
\(596\) 4.92879 + 46.8943i 0.201891 + 1.92086i
\(597\) 10.9977 15.1370i 0.450104 0.619515i
\(598\) −5.29584 0.556616i −0.216563 0.0227617i
\(599\) −12.7001 + 14.1049i −0.518911 + 0.576309i −0.944460 0.328627i \(-0.893414\pi\)
0.425549 + 0.904935i \(0.360081\pi\)
\(600\) 0 0
\(601\) 12.5592 + 2.66955i 0.512301 + 0.108893i 0.456807 0.889566i \(-0.348993\pi\)
0.0554947 + 0.998459i \(0.482326\pi\)
\(602\) −2.90215 13.6535i −0.118283 0.556477i
\(603\) −3.32795 7.47469i −0.135524 0.304393i
\(604\) 5.19217 15.9799i 0.211267 0.650212i
\(605\) 0 0
\(606\) −28.3210 + 12.6093i −1.15046 + 0.512219i
\(607\) −7.92960 37.3059i −0.321853 1.51420i −0.780260 0.625456i \(-0.784913\pi\)
0.458407 0.888742i \(-0.348420\pi\)
\(608\) 9.30297 43.7670i 0.377285 1.77499i
\(609\) −18.2038 8.10485i −0.737654 0.328425i
\(610\) 0 0
\(611\) 2.58030 24.5499i 0.104388 0.993184i
\(612\) −8.38520 + 11.5412i −0.338952 + 0.466527i
\(613\) −18.4408 + 1.93821i −0.744817 + 0.0782834i −0.469332 0.883022i \(-0.655505\pi\)
−0.275485 + 0.961305i \(0.588838\pi\)
\(614\) −12.0401 + 20.8541i −0.485901 + 0.841605i
\(615\) 0 0
\(616\) 16.2701 11.8209i 0.655541 0.476278i
\(617\) 6.04589 5.44374i 0.243398 0.219157i −0.538398 0.842691i \(-0.680970\pi\)
0.781796 + 0.623534i \(0.214304\pi\)
\(618\) 55.0175 17.8763i 2.21313 0.719089i
\(619\) 5.36063 0.215462 0.107731 0.994180i \(-0.465641\pi\)
0.107731 + 0.994180i \(0.465641\pi\)
\(620\) 0 0
\(621\) 3.05046 0.122411
\(622\) −52.8472 + 17.1711i −2.11898 + 0.688499i
\(623\) −19.6557 + 17.6981i −0.787489 + 0.709058i
\(624\) 54.5833 39.6571i 2.18508 1.58755i
\(625\) 0 0
\(626\) 0.607062 1.05146i 0.0242631 0.0420249i
\(627\) −4.84670 + 0.509409i −0.193559 + 0.0203438i
\(628\) −10.2404 + 14.0948i −0.408638 + 0.562442i
\(629\) −2.23670 + 21.2808i −0.0891830 + 0.848519i
\(630\) 0 0
\(631\) 26.5358 + 11.8145i 1.05637 + 0.470327i 0.860049 0.510212i \(-0.170433\pi\)
0.196324 + 0.980539i \(0.437100\pi\)
\(632\) −17.5596 + 82.6116i −0.698485 + 3.28611i
\(633\) −5.40914 25.4480i −0.214994 1.01147i
\(634\) −13.7154 + 6.10647i −0.544707 + 0.242519i
\(635\) 0 0
\(636\) 6.42770 19.7824i 0.254875 0.784424i
\(637\) 5.99868 + 13.4733i 0.237677 + 0.533830i
\(638\) 6.08208 + 28.6139i 0.240792 + 1.13284i
\(639\) −4.58943 0.975513i −0.181555 0.0385907i
\(640\) 0 0
\(641\) −18.4717 + 20.5149i −0.729589 + 0.810290i −0.987788 0.155801i \(-0.950204\pi\)
0.258200 + 0.966092i \(0.416871\pi\)
\(642\) 46.9884 + 4.93868i 1.85449 + 0.194914i
\(643\) −2.48577 + 3.42136i −0.0980291 + 0.134925i −0.855214 0.518275i \(-0.826574\pi\)
0.757185 + 0.653201i \(0.226574\pi\)
\(644\) 0.509768 + 4.85012i 0.0200877 + 0.191121i
\(645\) 0 0
\(646\) 9.54202 + 16.5273i 0.375426 + 0.650257i
\(647\) −15.4475 21.2617i −0.607304 0.835883i 0.389048 0.921217i \(-0.372804\pi\)
−0.996352 + 0.0853349i \(0.972804\pi\)
\(648\) −32.8086 + 29.5410i −1.28884 + 1.16048i
\(649\) 0.192683 + 0.593018i 0.00756348 + 0.0232780i
\(650\) 0 0
\(651\) −13.0785 + 3.89121i −0.512585 + 0.152509i
\(652\) 9.11408i 0.356935i
\(653\) 12.6983 4.12592i 0.496922 0.161460i −0.0498246 0.998758i \(-0.515866\pi\)
0.546746 + 0.837298i \(0.315866\pi\)
\(654\) 18.4175 + 20.4547i 0.720182 + 0.799843i
\(655\) 0 0
\(656\) 0.673821 + 1.16709i 0.0263083 + 0.0455673i
\(657\) −6.40937 3.70045i −0.250053 0.144368i
\(658\) −31.0702 + 3.26561i −1.21124 + 0.127307i
\(659\) −12.4717 9.06119i −0.485827 0.352974i 0.317750 0.948174i \(-0.397073\pi\)
−0.803577 + 0.595200i \(0.797073\pi\)
\(660\) 0 0
\(661\) −3.16035 + 3.50992i −0.122923 + 0.136520i −0.801465 0.598042i \(-0.795946\pi\)
0.678542 + 0.734562i \(0.262612\pi\)
\(662\) −26.4852 + 59.4868i −1.02938 + 2.31202i
\(663\) −2.99233 + 14.0778i −0.116212 + 0.546736i
\(664\) 142.112 30.2069i 5.51502 1.17225i
\(665\) 0 0
\(666\) 6.34812 19.5375i 0.245984 0.757062i
\(667\) −4.17006 1.35493i −0.161465 0.0524632i
\(668\) −29.8558 67.0573i −1.15516 2.59453i
\(669\) 13.0431 2.77239i 0.504275 0.107187i
\(670\) 0 0
\(671\) 6.24895 + 2.78221i 0.241238 + 0.107406i
\(672\) −31.7373 28.5764i −1.22429 1.10236i
\(673\) 30.9028 + 3.24801i 1.19121 + 0.125202i 0.679317 0.733845i \(-0.262276\pi\)
0.511898 + 0.859046i \(0.328943\pi\)
\(674\) −24.0185 17.4505i −0.925158 0.672167i
\(675\) 0 0
\(676\) −1.24058 + 2.14875i −0.0477147 + 0.0826443i
\(677\) 7.82883 4.51998i 0.300886 0.173717i −0.341955 0.939716i \(-0.611089\pi\)
0.642841 + 0.766000i \(0.277756\pi\)
\(678\) 37.4120 + 51.4932i 1.43680 + 1.97759i
\(679\) −1.47810 1.64159i −0.0567242 0.0629986i
\(680\) 0 0
\(681\) 12.0053 0.460044
\(682\) 15.9069 + 12.1753i 0.609107 + 0.466216i
\(683\) 7.13535i 0.273027i 0.990638 + 0.136513i \(0.0435897\pi\)
−0.990638 + 0.136513i \(0.956410\pi\)
\(684\) −4.09699 12.6092i −0.156652 0.482127i
\(685\) 0 0
\(686\) 41.4091 30.0854i 1.58101 1.14867i
\(687\) −28.0753 + 16.2093i −1.07114 + 0.618423i
\(688\) 33.7021 + 19.4579i 1.28488 + 0.741826i
\(689\) 1.07385 + 10.2170i 0.0409103 + 0.389236i
\(690\) 0 0
\(691\) −3.81272 + 36.2756i −0.145043 + 1.37999i 0.643706 + 0.765273i \(0.277396\pi\)
−0.788749 + 0.614716i \(0.789271\pi\)
\(692\) 0.0466272 + 0.0419833i 0.00177250 + 0.00159597i
\(693\) 0.926188 2.08025i 0.0351830 0.0790222i
\(694\) 48.8576 + 10.3850i 1.85461 + 0.394210i
\(695\) 0 0
\(696\) 91.7934 40.8690i 3.47942 1.54914i
\(697\) −0.273406 0.0888351i −0.0103560 0.00336487i
\(698\) 82.3185 + 26.7469i 3.11580 + 1.01238i
\(699\) −21.0722 + 9.38193i −0.797022 + 0.354857i
\(700\) 0 0
\(701\) 1.57916 + 0.335661i 0.0596441 + 0.0126777i 0.237637 0.971354i \(-0.423627\pi\)
−0.177993 + 0.984032i \(0.556960\pi\)
\(702\) 22.7197 51.0293i 0.857500 1.92598i
\(703\) −14.7786 13.3067i −0.557386 0.501873i
\(704\) −2.93233 + 27.8993i −0.110516 + 1.05149i
\(705\) 0 0
\(706\) 9.05833 + 86.1843i 0.340915 + 3.24359i
\(707\) −12.1440 7.01134i −0.456722 0.263688i
\(708\) 3.00084 1.73254i 0.112779 0.0651127i
\(709\) 9.29395 6.75245i 0.349042 0.253594i −0.399425 0.916766i \(-0.630790\pi\)
0.748467 + 0.663172i \(0.230790\pi\)
\(710\) 0 0
\(711\) 2.95510 + 9.09487i 0.110825 + 0.341084i
\(712\) 133.372i 4.99833i
\(713\) −2.77254 + 1.15235i −0.103832 + 0.0431558i
\(714\) 18.2148 0.681672
\(715\) 0 0
\(716\) −34.9649 38.8324i −1.30670 1.45124i
\(717\) 15.2427 + 20.9797i 0.569248 + 0.783503i
\(718\) −49.3026 + 28.4649i −1.83996 + 1.06230i
\(719\) −7.08549 + 12.2724i −0.264244 + 0.457685i −0.967365 0.253386i \(-0.918456\pi\)
0.703121 + 0.711070i \(0.251789\pi\)
\(720\) 0 0
\(721\) 21.1692 + 15.3803i 0.788382 + 0.572793i
\(722\) 33.1940 + 3.48883i 1.23535 + 0.129841i
\(723\) −19.1645 17.2558i −0.712736 0.641751i
\(724\) 89.0009 + 39.6258i 3.30769 + 1.47268i
\(725\) 0 0
\(726\) −34.3985 + 7.31162i −1.27665 + 0.271360i
\(727\) 10.9606 + 24.6180i 0.406507 + 0.913030i 0.994556 + 0.104205i \(0.0332297\pi\)
−0.588049 + 0.808826i \(0.700104\pi\)
\(728\) 52.4958 + 17.0569i 1.94562 + 0.632172i
\(729\) −8.98695 + 27.6590i −0.332850 + 1.02441i
\(730\) 0 0
\(731\) −8.12005 + 1.72597i −0.300331 + 0.0638373i
\(732\) 7.90328 37.1820i 0.292113 1.37429i
\(733\) 11.5609 25.9662i 0.427011 0.959083i −0.564058 0.825735i \(-0.690761\pi\)
0.991069 0.133348i \(-0.0425728\pi\)
\(734\) 23.3944 25.9822i 0.863504 0.959019i
\(735\) 0 0
\(736\) −7.60254 5.52357i −0.280233 0.203601i
\(737\) 11.0375 1.16009i 0.406572 0.0427324i
\(738\) 0.239014 + 0.137995i 0.00879822 + 0.00507965i
\(739\) −0.348653 0.603885i −0.0128254 0.0222143i 0.859541 0.511066i \(-0.170749\pi\)
−0.872367 + 0.488852i \(0.837416\pi\)
\(740\) 0 0
\(741\) −8.95012 9.94011i −0.328791 0.365159i
\(742\) 12.3654 4.01777i 0.453949 0.147497i
\(743\) 18.1815i 0.667015i −0.942747 0.333508i \(-0.891768\pi\)
0.942747 0.333508i \(-0.108232\pi\)
\(744\) 29.5466 62.1389i 1.08323 2.27812i
\(745\) 0 0
\(746\) 3.67929 + 11.3237i 0.134708 + 0.414589i
\(747\) 12.2251 11.0076i 0.447295 0.402746i
\(748\) −11.3738 15.6548i −0.415869 0.572395i
\(749\) 10.6856 + 18.5080i 0.390443 + 0.676267i
\(750\) 0 0
\(751\) 3.87445 + 36.8629i 0.141381 + 1.34515i 0.803301 + 0.595573i \(0.203075\pi\)
−0.661920 + 0.749574i \(0.730258\pi\)
\(752\) 51.1958 70.4650i 1.86692 2.56959i
\(753\) 32.3635 + 3.40154i 1.17939 + 0.123959i
\(754\) −53.7242 + 59.6668i −1.95652 + 2.17294i
\(755\) 0 0
\(756\) −50.0392 10.6362i −1.81991 0.386834i
\(757\) 1.33105 + 6.26211i 0.0483779 + 0.227600i 0.995694 0.0926997i \(-0.0295497\pi\)
−0.947316 + 0.320300i \(0.896216\pi\)
\(758\) 16.3643 + 36.7549i 0.594380 + 1.33500i
\(759\) −0.316281 + 0.973412i −0.0114803 + 0.0353326i
\(760\) 0 0
\(761\) −19.4940 + 8.67928i −0.706657 + 0.314624i −0.728412 0.685140i \(-0.759741\pi\)
0.0217552 + 0.999763i \(0.493075\pi\)
\(762\) 10.2470 + 48.2083i 0.371209 + 1.74640i
\(763\) −2.58852 + 12.1780i −0.0937106 + 0.440874i
\(764\) −5.73201 2.55206i −0.207377 0.0923302i
\(765\) 0 0
\(766\) −3.27605 + 31.1696i −0.118369 + 1.12620i
\(767\) −1.00593 + 1.38454i −0.0363219 + 0.0499928i
\(768\) 22.7107 2.38699i 0.819502 0.0861332i
\(769\) −6.12828 + 10.6145i −0.220991 + 0.382768i −0.955109 0.296254i \(-0.904263\pi\)
0.734118 + 0.679022i \(0.237596\pi\)
\(770\) 0 0
\(771\) −0.121923 + 0.0885824i −0.00439096 + 0.00319022i
\(772\) 49.5292 44.5963i 1.78260 1.60506i
\(773\) 33.0050 10.7240i 1.18711 0.385714i 0.352104 0.935961i \(-0.385466\pi\)
0.835002 + 0.550247i \(0.185466\pi\)
\(774\) 7.96974 0.286466
\(775\) 0 0
\(776\) 11.1389 0.399863
\(777\) −18.0518 + 5.86539i −0.647605 + 0.210420i
\(778\) 28.7920 25.9244i 1.03224 0.929435i
\(779\) 0.216146 0.157040i 0.00774425 0.00562652i
\(780\) 0 0
\(781\) 3.18213 5.51161i 0.113866 0.197221i
\(782\) 3.98605 0.418951i 0.142541 0.0149817i
\(783\) 27.0348 37.2102i 0.966144 1.32978i
\(784\) −5.43948 + 51.7532i −0.194267 + 1.84833i
\(785\) 0 0
\(786\) 8.50228 + 3.78546i 0.303266 + 0.135023i
\(787\) 4.18281 19.6786i 0.149101 0.701465i −0.838554 0.544819i \(-0.816598\pi\)
0.987655 0.156646i \(-0.0500682\pi\)
\(788\) 3.23227 + 15.2066i 0.115145 + 0.541714i
\(789\) 9.46075 4.21220i 0.336812 0.149958i
\(790\) 0 0
\(791\) −8.89666 + 27.3811i −0.316329 + 0.973559i
\(792\) 4.67034 + 10.4898i 0.165953 + 0.372737i
\(793\) 3.90339 + 18.3640i 0.138613 + 0.652125i
\(794\) −41.5496 8.83165i −1.47454 0.313423i
\(795\) 0 0
\(796\) −46.1995 + 51.3097i −1.63750 + 1.81863i
\(797\) 26.0584 + 2.73885i 0.923036 + 0.0970150i 0.554110 0.832444i \(-0.313059\pi\)
0.368926 + 0.929459i \(0.379725\pi\)
\(798\) −9.95018 + 13.6953i −0.352233 + 0.484807i
\(799\) 1.94213 + 18.4781i 0.0687076 + 0.653709i
\(800\) 0 0
\(801\) −7.55072 13.0782i −0.266791 0.462096i
\(802\) −49.0549 67.5183i −1.73219 2.38416i
\(803\) 7.46022 6.71722i 0.263266 0.237045i
\(804\) −19.0586 58.6562i −0.672144 2.06865i
\(805\) 0 0
\(806\) −1.37278 + 54.9626i −0.0483543 + 1.93598i
\(807\) 23.0179i 0.810270i
\(808\) 67.2491 21.8506i 2.36582 0.768700i
\(809\) −24.3899 27.0877i −0.857504 0.952354i 0.141791 0.989897i \(-0.454714\pi\)
−0.999295 + 0.0375423i \(0.988047\pi\)
\(810\) 0 0
\(811\) 9.55322 + 16.5467i 0.335459 + 0.581032i 0.983573 0.180511i \(-0.0577753\pi\)
−0.648114 + 0.761543i \(0.724442\pi\)
\(812\) 63.6805 + 36.7660i 2.23475 + 1.29023i
\(813\) −7.26250 + 0.763320i −0.254707 + 0.0267708i
\(814\) 22.5431 + 16.3785i 0.790136 + 0.574067i
\(815\) 0 0
\(816\) −33.9798 + 37.7384i −1.18953 + 1.32111i
\(817\) 3.13802 7.04810i 0.109785 0.246582i
\(818\) −3.68355 + 17.3297i −0.128792 + 0.605920i
\(819\) 6.11330 1.29942i 0.213616 0.0454055i
\(820\) 0 0
\(821\) 12.1937 37.5285i 0.425565 1.30975i −0.476888 0.878964i \(-0.658235\pi\)
0.902453 0.430789i \(-0.141765\pi\)
\(822\) 29.5696 + 9.60773i 1.03136 + 0.335108i
\(823\) −12.8480 28.8571i −0.447853 1.00589i −0.986560 0.163401i \(-0.947754\pi\)
0.538707 0.842493i \(-0.318913\pi\)
\(824\) −129.063 + 27.4331i −4.49611 + 0.955678i
\(825\) 0 0
\(826\) 1.97866 + 0.880958i 0.0688465 + 0.0306525i
\(827\) −14.7364 13.2688i −0.512436 0.461400i 0.371885 0.928279i \(-0.378712\pi\)
−0.884321 + 0.466879i \(0.845378\pi\)
\(828\) −2.76921 0.291055i −0.0962366 0.0101149i
\(829\) 7.28104 + 5.28999i 0.252881 + 0.183729i 0.707003 0.707211i \(-0.250047\pi\)
−0.454122 + 0.890940i \(0.650047\pi\)
\(830\) 0 0
\(831\) 12.0081 20.7987i 0.416558 0.721499i
\(832\) −66.6800 + 38.4977i −2.31171 + 1.33467i
\(833\) −6.52483 8.98066i −0.226072 0.311161i
\(834\) −3.45729 3.83970i −0.119716 0.132958i
\(835\) 0 0
\(836\) 17.9836 0.621976
\(837\) −2.50905 31.3954i −0.0867253 1.08518i
\(838\) 39.4699i 1.36347i
\(839\) 9.84070 + 30.2866i 0.339739 + 1.04561i 0.964340 + 0.264665i \(0.0852614\pi\)
−0.624602 + 0.780944i \(0.714739\pi\)
\(840\) 0 0
\(841\) −30.0234 + 21.8133i −1.03529 + 0.752183i
\(842\) −62.2411 + 35.9349i −2.14497 + 1.23840i
\(843\) −2.34336 1.35294i −0.0807095 0.0465976i
\(844\) 10.0353 + 95.4791i 0.345428 + 3.28652i
\(845\) 0 0
\(846\) 1.86452 17.7398i 0.0641037 0.609906i
\(847\) −11.8212 10.6438i −0.406180 0.365726i
\(848\) −14.7435 + 33.1145i −0.506295 + 1.13716i
\(849\) −21.2523 4.51733i −0.729379 0.155034i
\(850\) 0 0
\(851\) −3.81548 + 1.69876i −0.130793 + 0.0582328i
\(852\) −33.6361 10.9290i −1.15235 0.374422i
\(853\) −46.6890 15.1702i −1.59860 0.519417i −0.631839 0.775099i \(-0.717700\pi\)
−0.966761 + 0.255683i \(0.917700\pi\)
\(854\) 21.7064 9.66431i 0.742778 0.330706i
\(855\) 0 0
\(856\) −105.410 22.4056i −3.60285 0.765809i
\(857\) 7.82580 17.5770i 0.267324 0.600420i −0.729147 0.684357i \(-0.760083\pi\)
0.996471 + 0.0839371i \(0.0267495\pi\)
\(858\) 13.9279 + 12.5408i 0.475492 + 0.428135i
\(859\) 0.485236 4.61672i 0.0165561 0.157520i −0.983120 0.182960i \(-0.941432\pi\)
0.999676 + 0.0254400i \(0.00809867\pi\)
\(860\) 0 0
\(861\) −0.0266550 0.253606i −0.000908401 0.00864285i
\(862\) −9.29104 5.36418i −0.316454 0.182705i
\(863\) −33.3683 + 19.2652i −1.13587 + 0.655795i −0.945405 0.325899i \(-0.894333\pi\)
−0.190466 + 0.981694i \(0.561000\pi\)
\(864\) 79.7493 57.9413i 2.71313 1.97120i
\(865\) 0 0
\(866\) −15.0271 46.2487i −0.510642 1.57159i
\(867\) 13.2931i 0.451456i
\(868\) 49.4981 9.23582i 1.68008 0.313484i
\(869\) −12.9713 −0.440022
\(870\) 0 0
\(871\) 20.3823 + 22.6369i 0.690629 + 0.767021i
\(872\) −36.9012 50.7901i −1.24963 1.71997i
\(873\) 1.09226 0.630617i 0.0369674 0.0213431i
\(874\) −1.86246 + 3.22587i −0.0629986 + 0.109117i
\(875\) 0 0
\(876\) −45.1323 32.7905i −1.52488 1.10789i
\(877\) −9.20763 0.967760i −0.310919 0.0326789i −0.0522162 0.998636i \(-0.516628\pi\)
−0.258703 + 0.965957i \(0.583295\pi\)
\(878\) −45.7983 41.2370i −1.54562 1.39168i
\(879\) −34.7372 15.4660i −1.17166 0.521655i
\(880\) 0 0
\(881\) 17.4884 3.71727i 0.589198 0.125238i 0.0963414 0.995348i \(-0.469286\pi\)
0.492857 + 0.870110i \(0.335953\pi\)
\(882\) 4.33465 + 9.73577i 0.145955 + 0.327821i
\(883\) −45.9509 14.9303i −1.54637 0.502446i −0.593244 0.805022i \(-0.702153\pi\)
−0.953125 + 0.302577i \(0.902153\pi\)
\(884\) 16.4118 50.5104i 0.551990 1.69885i
\(885\) 0 0
\(886\) −56.5516 + 12.0204i −1.89989 + 0.403834i
\(887\) −4.88847 + 22.9984i −0.164139 + 0.772211i 0.816649 + 0.577134i \(0.195829\pi\)
−0.980788 + 0.195077i \(0.937504\pi\)
\(888\) 38.9294 87.4369i 1.30639 2.93419i
\(889\) −14.9170 + 16.5670i −0.500298 + 0.555638i
\(890\) 0 0
\(891\) −5.48554 3.98548i −0.183772 0.133518i
\(892\) −48.9368 + 5.14346i −1.63852 + 0.172216i
\(893\) −14.9542 8.63379i −0.500422 0.288919i
\(894\) 17.1873 + 29.7693i 0.574830 + 0.995635i
\(895\) 0 0
\(896\) 24.9312 + 27.6889i 0.832894 + 0.925022i
\(897\) −2.67167 + 0.868078i −0.0892044 + 0.0289843i
\(898\) 50.5739i 1.68767i
\(899\) −10.5150 + 44.0327i −0.350696 + 1.46857i
\(900\) 0 0
\(901\) −2.38945 7.35398i −0.0796042 0.244996i
\(902\) −0.278202 + 0.250494i −0.00926310 + 0.00834053i
\(903\) −4.32827 5.95736i −0.144036 0.198249i
\(904\) −72.5879 125.726i −2.41424 4.18158i
\(905\) 0 0
\(906\) −1.28037 12.1819i −0.0425373 0.404716i
\(907\) 7.39560 10.1792i 0.245567 0.337994i −0.668386 0.743815i \(-0.733014\pi\)
0.913952 + 0.405821i \(0.133014\pi\)
\(908\) −44.0588 4.63076i −1.46214 0.153677i
\(909\) 5.35728 5.94987i 0.177690 0.197345i
\(910\) 0 0
\(911\) 46.2512 + 9.83100i 1.53237 + 0.325715i 0.895432 0.445199i \(-0.146867\pi\)
0.636939 + 0.770914i \(0.280200\pi\)
\(912\) −9.81243 46.1639i −0.324922 1.52864i
\(913\) 9.07586 + 20.3847i 0.300367 + 0.674635i
\(914\) 3.41333 10.5051i 0.112903 0.347479i
\(915\) 0 0
\(916\) 109.287 48.6578i 3.61095 1.60770i
\(917\) 0.875258 + 4.11776i 0.0289036 + 0.135981i
\(918\) −8.74130 + 41.1246i −0.288506 + 1.35731i
\(919\) 21.1320 + 9.40858i 0.697081 + 0.310360i 0.724511 0.689263i \(-0.242066\pi\)
−0.0274300 + 0.999624i \(0.508732\pi\)
\(920\) 0 0
\(921\) −1.32786 + 12.6337i −0.0437544 + 0.416295i
\(922\) −36.1708 + 49.7848i −1.19122 + 1.63958i
\(923\) 17.3719 1.82586i 0.571804 0.0600990i
\(924\) 8.58224 14.8649i 0.282335 0.489019i
\(925\) 0 0
\(926\) −36.0560 + 26.1962i −1.18488 + 0.860862i
\(927\) −11.1026 + 9.99679i −0.364656 + 0.328338i
\(928\) −134.755 + 43.7846i −4.42355 + 1.43730i
\(929\) −1.68694 −0.0553468 −0.0276734 0.999617i \(-0.508810\pi\)
−0.0276734 + 0.999617i \(0.508810\pi\)
\(930\) 0 0
\(931\) 10.3166 0.338114
\(932\) 80.9524 26.3030i 2.65169 0.861585i
\(933\) −21.7844 + 19.6147i −0.713188 + 0.642157i
\(934\) −83.0208 + 60.3181i −2.71652 + 1.97367i
\(935\) 0 0
\(936\) −15.7576 + 27.2930i −0.515055 + 0.892101i
\(937\) −19.6186 + 2.06200i −0.640911 + 0.0673625i −0.419409 0.907797i \(-0.637763\pi\)
−0.221502 + 0.975160i \(0.571096\pi\)
\(938\) 22.6598 31.1885i 0.739868 1.01834i
\(939\) 0.0669503 0.636990i 0.00218484 0.0207874i
\(940\) 0 0
\(941\) −8.06045 3.58874i −0.262763 0.116990i 0.271127 0.962544i \(-0.412604\pi\)
−0.533890 + 0.845554i \(0.679270\pi\)
\(942\) −2.64066 + 12.4233i −0.0860372 + 0.404773i
\(943\) −0.0116661 0.0548849i −0.000379902 0.00178730i
\(944\) −5.51642 + 2.45607i −0.179544 + 0.0799382i
\(945\) 0 0
\(946\) −3.34057 + 10.2812i −0.108611 + 0.334271i
\(947\) −6.32930 14.2158i −0.205675 0.461953i 0.781026 0.624498i \(-0.214696\pi\)
−0.986701 + 0.162545i \(0.948030\pi\)
\(948\) 14.9870 + 70.5082i 0.486754 + 2.29000i
\(949\) 26.9506 + 5.72853i 0.874854 + 0.185956i
\(950\) 0 0
\(951\) −5.29960 + 5.88581i −0.171851 + 0.190860i
\(952\) −41.3181 4.34271i −1.33913 0.140748i
\(953\) 5.67314 7.80840i 0.183771 0.252939i −0.707185 0.707028i \(-0.750035\pi\)
0.890956 + 0.454089i \(0.150035\pi\)
\(954\) 0.775962 + 7.38278i 0.0251227 + 0.239026i
\(955\) 0 0
\(956\) −47.8473 82.8739i −1.54749 2.68033i
\(957\) 9.07083 + 12.4849i 0.293218 + 0.403580i
\(958\) −67.3417 + 60.6348i −2.17571 + 1.95902i
\(959\) 4.34583 + 13.3751i 0.140334 + 0.431904i
\(960\) 0 0
\(961\) 14.1404 + 27.5871i 0.456143 + 0.889907i
\(962\) 76.4790i 2.46578i
\(963\) −11.6048 + 3.77063i −0.373960 + 0.121507i
\(964\) 63.6766 + 70.7201i 2.05089 + 2.27774i
\(965\) 0 0
\(966\) 1.77763 + 3.07894i 0.0571942 + 0.0990633i
\(967\) 24.5930 + 14.1988i 0.790858 + 0.456602i 0.840264 0.542177i \(-0.182400\pi\)
−0.0494066 + 0.998779i \(0.515733\pi\)
\(968\) 79.7720 8.38438i 2.56397 0.269484i
\(969\) 8.14485 + 5.91758i 0.261650 + 0.190100i
\(970\) 0 0
\(971\) −14.8059 + 16.4436i −0.475144 + 0.527701i −0.932300 0.361686i \(-0.882201\pi\)
0.457156 + 0.889386i \(0.348868\pi\)
\(972\) 20.8217 46.7662i 0.667855 1.50003i
\(973\) 0.485909 2.28602i 0.0155775 0.0732865i
\(974\) 54.4080 11.5648i 1.74334 0.370559i
\(975\) 0 0
\(976\) −20.4703 + 63.0012i −0.655240 + 2.01662i
\(977\) 18.9377 + 6.15324i 0.605871 + 0.196859i 0.595857 0.803090i \(-0.296812\pi\)
0.0100140 + 0.999950i \(0.496812\pi\)
\(978\) −2.70246 6.06982i −0.0864151 0.194091i
\(979\) 20.0362 4.25884i 0.640361 0.136113i
\(980\) 0 0
\(981\) −6.49389 2.89127i −0.207334 0.0923111i
\(982\) 49.4451 + 44.5206i 1.57786 + 1.42071i
\(983\) 24.7938 + 2.60593i 0.790800 + 0.0831164i 0.491312 0.870984i \(-0.336518\pi\)
0.299488 + 0.954100i \(0.403184\pi\)
\(984\) 1.04028 + 0.755810i 0.0331630 + 0.0240944i
\(985\) 0 0
\(986\) 30.2160 52.3356i 0.962273 1.66671i
\(987\) −14.2730 + 8.24054i −0.454316 + 0.262299i
\(988\) 29.0122 + 39.9319i 0.923002 + 1.27040i
\(989\) −1.08420 1.20413i −0.0344757 0.0382891i
\(990\) 0 0
\(991\) −42.0512 −1.33580 −0.667900 0.744251i \(-0.732807\pi\)
−0.667900 + 0.744251i \(0.732807\pi\)
\(992\) −50.5953 + 82.7885i −1.60640 + 2.62854i
\(993\) 34.3515i 1.09011i
\(994\) −6.83142 21.0249i −0.216679 0.666871i
\(995\) 0 0
\(996\) 100.319 72.8860i 3.17873 2.30948i
\(997\) −12.5268 + 7.23233i −0.396727 + 0.229050i −0.685071 0.728477i \(-0.740229\pi\)
0.288344 + 0.957527i \(0.406895\pi\)
\(998\) −57.2189 33.0353i −1.81123 1.04572i
\(999\) −4.57954 43.5714i −0.144890 1.37854i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.299.1 32
5.2 odd 4 31.2.g.a.20.1 yes 16
5.3 odd 4 775.2.bl.a.51.2 16
5.4 even 2 inner 775.2.ck.a.299.4 32
15.2 even 4 279.2.y.c.82.2 16
20.7 even 4 496.2.bg.c.113.1 16
31.14 even 15 inner 775.2.ck.a.324.4 32
155.2 odd 20 961.2.g.s.235.2 16
155.7 odd 60 961.2.g.s.732.2 16
155.12 even 60 961.2.g.n.338.2 16
155.14 even 30 inner 775.2.ck.a.324.1 32
155.17 even 60 961.2.g.l.448.1 16
155.22 even 60 961.2.d.n.628.1 16
155.27 even 20 961.2.g.n.816.2 16
155.37 even 12 961.2.g.j.844.1 16
155.42 even 60 961.2.d.q.374.4 16
155.47 odd 20 961.2.c.j.439.1 16
155.52 even 60 961.2.d.q.388.4 16
155.57 even 12 961.2.d.n.531.1 16
155.67 odd 12 961.2.d.o.531.1 16
155.72 odd 60 961.2.d.p.388.4 16
155.77 even 20 961.2.c.i.439.1 16
155.82 odd 60 961.2.d.p.374.4 16
155.87 odd 12 961.2.g.k.844.1 16
155.92 even 4 961.2.g.l.547.1 16
155.97 odd 20 961.2.g.t.816.2 16
155.102 odd 60 961.2.d.o.628.1 16
155.107 odd 60 31.2.g.a.14.1 16
155.112 odd 60 961.2.g.t.338.2 16
155.117 even 60 961.2.g.m.732.2 16
155.122 even 20 961.2.g.m.235.2 16
155.127 even 60 961.2.c.i.521.1 16
155.132 odd 20 961.2.g.k.846.1 16
155.137 even 60 961.2.a.j.1.1 8
155.138 odd 60 775.2.bl.a.76.2 16
155.142 odd 60 961.2.a.i.1.1 8
155.147 even 20 961.2.g.j.846.1 16
155.152 odd 60 961.2.c.j.521.1 16
465.107 even 60 279.2.y.c.262.2 16
465.137 odd 60 8649.2.a.be.1.8 8
465.452 even 60 8649.2.a.bf.1.8 8
620.107 even 60 496.2.bg.c.417.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.14.1 16 155.107 odd 60
31.2.g.a.20.1 yes 16 5.2 odd 4
279.2.y.c.82.2 16 15.2 even 4
279.2.y.c.262.2 16 465.107 even 60
496.2.bg.c.113.1 16 20.7 even 4
496.2.bg.c.417.1 16 620.107 even 60
775.2.bl.a.51.2 16 5.3 odd 4
775.2.bl.a.76.2 16 155.138 odd 60
775.2.ck.a.299.1 32 1.1 even 1 trivial
775.2.ck.a.299.4 32 5.4 even 2 inner
775.2.ck.a.324.1 32 155.14 even 30 inner
775.2.ck.a.324.4 32 31.14 even 15 inner
961.2.a.i.1.1 8 155.142 odd 60
961.2.a.j.1.1 8 155.137 even 60
961.2.c.i.439.1 16 155.77 even 20
961.2.c.i.521.1 16 155.127 even 60
961.2.c.j.439.1 16 155.47 odd 20
961.2.c.j.521.1 16 155.152 odd 60
961.2.d.n.531.1 16 155.57 even 12
961.2.d.n.628.1 16 155.22 even 60
961.2.d.o.531.1 16 155.67 odd 12
961.2.d.o.628.1 16 155.102 odd 60
961.2.d.p.374.4 16 155.82 odd 60
961.2.d.p.388.4 16 155.72 odd 60
961.2.d.q.374.4 16 155.42 even 60
961.2.d.q.388.4 16 155.52 even 60
961.2.g.j.844.1 16 155.37 even 12
961.2.g.j.846.1 16 155.147 even 20
961.2.g.k.844.1 16 155.87 odd 12
961.2.g.k.846.1 16 155.132 odd 20
961.2.g.l.448.1 16 155.17 even 60
961.2.g.l.547.1 16 155.92 even 4
961.2.g.m.235.2 16 155.122 even 20
961.2.g.m.732.2 16 155.117 even 60
961.2.g.n.338.2 16 155.12 even 60
961.2.g.n.816.2 16 155.27 even 20
961.2.g.s.235.2 16 155.2 odd 20
961.2.g.s.732.2 16 155.7 odd 60
961.2.g.t.338.2 16 155.112 odd 60
961.2.g.t.816.2 16 155.97 odd 20
8649.2.a.be.1.8 8 465.137 odd 60
8649.2.a.bf.1.8 8 465.452 even 60