Newspace parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.u (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.54773296574\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
141.1 | 0 | −2.55771 | 0 | −0.809017 | + | 0.587785i | 0 | 0.254587 | − | 0.783539i | 0 | 3.54189 | 0 | ||||||||||||||
141.2 | 0 | −1.99261 | 0 | −0.809017 | + | 0.587785i | 0 | −0.679183 | + | 2.09031i | 0 | 0.970505 | 0 | ||||||||||||||
141.3 | 0 | −0.595477 | 0 | −0.809017 | + | 0.587785i | 0 | 0.581775 | − | 1.79052i | 0 | −2.64541 | 0 | ||||||||||||||
141.4 | 0 | 0.753937 | 0 | −0.809017 | + | 0.587785i | 0 | 0.739823 | − | 2.27694i | 0 | −2.43158 | 0 | ||||||||||||||
141.5 | 0 | 1.34396 | 0 | −0.809017 | + | 0.587785i | 0 | −1.10976 | + | 3.41550i | 0 | −1.19376 | 0 | ||||||||||||||
141.6 | 0 | 2.42987 | 0 | −0.809017 | + | 0.587785i | 0 | 0.903746 | − | 2.78144i | 0 | 2.90425 | 0 | ||||||||||||||
201.1 | 0 | −2.30973 | 0 | 0.309017 | − | 0.951057i | 0 | 0.494995 | + | 0.359635i | 0 | 2.33484 | 0 | ||||||||||||||
201.2 | 0 | −2.12100 | 0 | 0.309017 | − | 0.951057i | 0 | −0.100704 | − | 0.0731654i | 0 | 1.49863 | 0 | ||||||||||||||
201.3 | 0 | 0.124286 | 0 | 0.309017 | − | 0.951057i | 0 | 2.19178 | + | 1.59242i | 0 | −2.98455 | 0 | ||||||||||||||
201.4 | 0 | 0.309639 | 0 | 0.309017 | − | 0.951057i | 0 | −1.44940 | − | 1.05305i | 0 | −2.90412 | 0 | ||||||||||||||
201.5 | 0 | 2.53712 | 0 | 0.309017 | − | 0.951057i | 0 | 2.92498 | + | 2.12513i | 0 | 3.43699 | 0 | ||||||||||||||
201.6 | 0 | 3.07771 | 0 | 0.309017 | − | 0.951057i | 0 | −2.25264 | − | 1.63664i | 0 | 6.47232 | 0 | ||||||||||||||
221.1 | 0 | −2.55771 | 0 | −0.809017 | − | 0.587785i | 0 | 0.254587 | + | 0.783539i | 0 | 3.54189 | 0 | ||||||||||||||
221.2 | 0 | −1.99261 | 0 | −0.809017 | − | 0.587785i | 0 | −0.679183 | − | 2.09031i | 0 | 0.970505 | 0 | ||||||||||||||
221.3 | 0 | −0.595477 | 0 | −0.809017 | − | 0.587785i | 0 | 0.581775 | + | 1.79052i | 0 | −2.64541 | 0 | ||||||||||||||
221.4 | 0 | 0.753937 | 0 | −0.809017 | − | 0.587785i | 0 | 0.739823 | + | 2.27694i | 0 | −2.43158 | 0 | ||||||||||||||
221.5 | 0 | 1.34396 | 0 | −0.809017 | − | 0.587785i | 0 | −1.10976 | − | 3.41550i | 0 | −1.19376 | 0 | ||||||||||||||
221.6 | 0 | 2.42987 | 0 | −0.809017 | − | 0.587785i | 0 | 0.903746 | + | 2.78144i | 0 | 2.90425 | 0 | ||||||||||||||
461.1 | 0 | −2.30973 | 0 | 0.309017 | + | 0.951057i | 0 | 0.494995 | − | 0.359635i | 0 | 2.33484 | 0 | ||||||||||||||
461.2 | 0 | −2.12100 | 0 | 0.309017 | + | 0.951057i | 0 | −0.100704 | + | 0.0731654i | 0 | 1.49863 | 0 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 820.2.u.a | ✓ | 24 |
41.d | even | 5 | 1 | inner | 820.2.u.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
820.2.u.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
820.2.u.a | ✓ | 24 | 41.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} - T_{3}^{11} - 22 T_{3}^{10} + 17 T_{3}^{9} + 178 T_{3}^{8} - 107 T_{3}^{7} - 629 T_{3}^{6} + \cdots - 11 \)
acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\).