Properties

Label 820.2.u
Level $820$
Weight $2$
Character orbit 820.u
Rep. character $\chi_{820}(141,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $56$
Newform subspaces $2$
Sturm bound $252$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(252\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).

Total New Old
Modular forms 528 56 472
Cusp forms 480 56 424
Eisenstein series 48 0 48

Trace form

\( 56 q + 4 q^{3} + 2 q^{5} + 64 q^{9} - 6 q^{11} - 4 q^{13} + 10 q^{17} - 14 q^{19} - 4 q^{21} + 24 q^{23} - 14 q^{25} - 8 q^{27} - 12 q^{29} - 2 q^{31} + 8 q^{33} + 10 q^{35} - 24 q^{37} + 54 q^{41} + 4 q^{43}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.2.u.a 820.u 41.d $24$ $6.548$ None 820.2.u.a \(0\) \(2\) \(-6\) \(5\) $\mathrm{SU}(2)[C_{5}]$
820.2.u.b 820.u 41.d $32$ $6.548$ None 820.2.u.b \(0\) \(2\) \(8\) \(-5\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(82, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(164, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(205, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(410, [\chi])\)\(^{\oplus 2}\)