Defining parameters
Level: | \( N \) | = | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 28 \) | ||
Newform subspaces: | \( 72 \) | ||
Sturm bound: | \(80640\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(820))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20960 | 10998 | 9962 |
Cusp forms | 19361 | 10534 | 8827 |
Eisenstein series | 1599 | 464 | 1135 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(820))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(820))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(820)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(41))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(82))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(164))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(205))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(410))\)\(^{\oplus 2}\)