L(s) = 1 | + 2.53·3-s + (0.309 + 0.951i)5-s + (2.92 − 2.12i)7-s + 3.43·9-s + (0.677 − 2.08i)11-s + (−0.433 − 0.314i)13-s + (0.784 + 2.41i)15-s + (0.573 − 1.76i)17-s + (−3.44 + 2.50i)19-s + (7.42 − 5.39i)21-s + (−0.406 − 0.295i)23-s + (−0.809 + 0.587i)25-s + 1.10·27-s + (−1.25 − 3.85i)29-s + (−2.97 + 9.14i)31-s + ⋯ |
L(s) = 1 | + 1.46·3-s + (0.138 + 0.425i)5-s + (1.10 − 0.803i)7-s + 1.14·9-s + (0.204 − 0.629i)11-s + (−0.120 − 0.0872i)13-s + (0.202 + 0.623i)15-s + (0.139 − 0.428i)17-s + (−0.790 + 0.574i)19-s + (1.61 − 1.17i)21-s + (−0.0847 − 0.0615i)23-s + (−0.161 + 0.117i)25-s + 0.213·27-s + (−0.232 − 0.715i)29-s + (−0.533 + 1.64i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 + 0.180i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.983 + 0.180i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.80239 - 0.255331i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.80239 - 0.255331i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-4.26 - 4.77i)T \) |
good | 3 | \( 1 - 2.53T + 3T^{2} \) |
| 7 | \( 1 + (-2.92 + 2.12i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (-0.677 + 2.08i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (0.433 + 0.314i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.573 + 1.76i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (3.44 - 2.50i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (0.406 + 0.295i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (1.25 + 3.85i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.97 - 9.14i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (1.08 + 3.32i)T + (-29.9 + 21.7i)T^{2} \) |
| 43 | \( 1 + (-0.275 - 0.200i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (-0.751 - 0.546i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.97 - 9.14i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-8.01 - 5.82i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3.28 - 2.38i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (4.46 + 13.7i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (3.10 - 9.57i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + 1.59T + 73T^{2} \) |
| 79 | \( 1 + 14.3T + 79T^{2} \) |
| 83 | \( 1 - 7.14T + 83T^{2} \) |
| 89 | \( 1 + (-3.09 + 2.24i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (2.83 + 8.71i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22593847692295471009965784365, −9.165101102743457670677976218173, −8.480988174605266116916068199559, −7.74874037886303568532832564600, −7.13368791148285138205567219552, −5.85112003028161577287351204259, −4.50891895723484647270802937876, −3.66899708660760838810807869353, −2.65040057697340473738551647492, −1.49515296306016025839455911876,
1.79696175938556410072716059327, 2.40873011142100309007978183826, 3.82352611803082983535143579128, 4.72044599695298135947719184320, 5.74604542057780168069907891764, 7.11453120622096240585108801623, 7.978208864176493120133625684056, 8.610754071300840466509177499983, 9.149016948338814128617019919805, 9.960550274217809661720099469943