Properties

Label 820.2.u.a.461.5
Level $820$
Weight $2$
Character 820.461
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 461.5
Character \(\chi\) \(=\) 820.461
Dual form 820.2.u.a.201.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53712 q^{3} +(0.309017 + 0.951057i) q^{5} +(2.92498 - 2.12513i) q^{7} +3.43699 q^{9} +(0.677943 - 2.08649i) q^{11} +(-0.433091 - 0.314659i) q^{13} +(0.784014 + 2.41295i) q^{15} +(0.573486 - 1.76501i) q^{17} +(-3.44732 + 2.50462i) q^{19} +(7.42104 - 5.39170i) q^{21} +(-0.406431 - 0.295290i) q^{23} +(-0.809017 + 0.587785i) q^{25} +1.10869 q^{27} +(-1.25236 - 3.85436i) q^{29} +(-2.97174 + 9.14608i) q^{31} +(1.72002 - 5.29369i) q^{33} +(2.92498 + 2.12513i) q^{35} +(-1.08138 - 3.32814i) q^{37} +(-1.09880 - 0.798328i) q^{39} +(4.26527 + 4.77572i) q^{41} +(0.275341 + 0.200047i) q^{43} +(1.06209 + 3.26877i) q^{45} +(0.751982 + 0.546347i) q^{47} +(1.87626 - 5.77452i) q^{49} +(1.45500 - 4.47804i) q^{51} +(2.97238 + 9.14804i) q^{53} +2.19387 q^{55} +(-8.74627 + 6.35454i) q^{57} +(8.01859 + 5.82585i) q^{59} +(-3.28790 + 2.38880i) q^{61} +(10.0531 - 7.30403i) q^{63} +(0.165426 - 0.509129i) q^{65} +(-4.46312 - 13.7361i) q^{67} +(-1.03117 - 0.749186i) q^{69} +(-3.10998 + 9.57152i) q^{71} -1.59943 q^{73} +(-2.05257 + 1.49128i) q^{75} +(-2.45109 - 7.54368i) q^{77} -14.3814 q^{79} -7.49808 q^{81} +7.14716 q^{83} +1.85584 q^{85} +(-3.17738 - 9.77897i) q^{87} +(3.09025 - 2.24520i) q^{89} -1.93547 q^{91} +(-7.53967 + 23.2047i) q^{93} +(-3.44732 - 2.50462i) q^{95} +(-2.83266 - 8.71803i) q^{97} +(2.33008 - 7.17125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} + 5 q^{7} + 18 q^{9} - 7 q^{11} - 5 q^{13} + 2 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} + 20 q^{23} - 6 q^{25} + 20 q^{27} - 15 q^{29} - q^{31} - 6 q^{33} + 5 q^{35} + q^{37} + 28 q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.53712 1.46481 0.732404 0.680870i \(-0.238398\pi\)
0.732404 + 0.680870i \(0.238398\pi\)
\(4\) 0 0
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i
\(6\) 0 0
\(7\) 2.92498 2.12513i 1.10554 0.803222i 0.123585 0.992334i \(-0.460561\pi\)
0.981955 + 0.189112i \(0.0605610\pi\)
\(8\) 0 0
\(9\) 3.43699 1.14566
\(10\) 0 0
\(11\) 0.677943 2.08649i 0.204408 0.629102i −0.795330 0.606177i \(-0.792702\pi\)
0.999737 0.0229245i \(-0.00729774\pi\)
\(12\) 0 0
\(13\) −0.433091 0.314659i −0.120118 0.0872706i 0.526104 0.850420i \(-0.323652\pi\)
−0.646222 + 0.763149i \(0.723652\pi\)
\(14\) 0 0
\(15\) 0.784014 + 2.41295i 0.202431 + 0.623020i
\(16\) 0 0
\(17\) 0.573486 1.76501i 0.139091 0.428077i −0.857113 0.515128i \(-0.827744\pi\)
0.996204 + 0.0870509i \(0.0277443\pi\)
\(18\) 0 0
\(19\) −3.44732 + 2.50462i −0.790870 + 0.574600i −0.908221 0.418490i \(-0.862559\pi\)
0.117352 + 0.993090i \(0.462559\pi\)
\(20\) 0 0
\(21\) 7.42104 5.39170i 1.61940 1.17657i
\(22\) 0 0
\(23\) −0.406431 0.295290i −0.0847468 0.0615722i 0.544605 0.838693i \(-0.316680\pi\)
−0.629352 + 0.777120i \(0.716680\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) 1.10869 0.213368
\(28\) 0 0
\(29\) −1.25236 3.85436i −0.232557 0.715736i −0.997436 0.0715626i \(-0.977201\pi\)
0.764879 0.644174i \(-0.222799\pi\)
\(30\) 0 0
\(31\) −2.97174 + 9.14608i −0.533741 + 1.64268i 0.212614 + 0.977136i \(0.431802\pi\)
−0.746355 + 0.665548i \(0.768198\pi\)
\(32\) 0 0
\(33\) 1.72002 5.29369i 0.299418 0.921513i
\(34\) 0 0
\(35\) 2.92498 + 2.12513i 0.494413 + 0.359212i
\(36\) 0 0
\(37\) −1.08138 3.32814i −0.177778 0.547143i 0.821972 0.569528i \(-0.192874\pi\)
−0.999749 + 0.0223851i \(0.992874\pi\)
\(38\) 0 0
\(39\) −1.09880 0.798328i −0.175949 0.127835i
\(40\) 0 0
\(41\) 4.26527 + 4.77572i 0.666123 + 0.745842i
\(42\) 0 0
\(43\) 0.275341 + 0.200047i 0.0419891 + 0.0305069i 0.608582 0.793491i \(-0.291739\pi\)
−0.566593 + 0.823998i \(0.691739\pi\)
\(44\) 0 0
\(45\) 1.06209 + 3.26877i 0.158327 + 0.487279i
\(46\) 0 0
\(47\) 0.751982 + 0.546347i 0.109688 + 0.0796929i 0.641277 0.767309i \(-0.278405\pi\)
−0.531589 + 0.847002i \(0.678405\pi\)
\(48\) 0 0
\(49\) 1.87626 5.77452i 0.268036 0.824931i
\(50\) 0 0
\(51\) 1.45500 4.47804i 0.203741 0.627051i
\(52\) 0 0
\(53\) 2.97238 + 9.14804i 0.408287 + 1.25658i 0.918119 + 0.396305i \(0.129708\pi\)
−0.509831 + 0.860274i \(0.670292\pi\)
\(54\) 0 0
\(55\) 2.19387 0.295821
\(56\) 0 0
\(57\) −8.74627 + 6.35454i −1.15847 + 0.841679i
\(58\) 0 0
\(59\) 8.01859 + 5.82585i 1.04393 + 0.758460i 0.971049 0.238880i \(-0.0767803\pi\)
0.0728822 + 0.997341i \(0.476780\pi\)
\(60\) 0 0
\(61\) −3.28790 + 2.38880i −0.420972 + 0.305854i −0.778029 0.628228i \(-0.783780\pi\)
0.357057 + 0.934083i \(0.383780\pi\)
\(62\) 0 0
\(63\) 10.0531 7.30403i 1.26658 0.920221i
\(64\) 0 0
\(65\) 0.165426 0.509129i 0.0205186 0.0631496i
\(66\) 0 0
\(67\) −4.46312 13.7361i −0.545257 1.67813i −0.720378 0.693582i \(-0.756032\pi\)
0.175121 0.984547i \(-0.443968\pi\)
\(68\) 0 0
\(69\) −1.03117 0.749186i −0.124138 0.0901914i
\(70\) 0 0
\(71\) −3.10998 + 9.57152i −0.369086 + 1.13593i 0.578296 + 0.815827i \(0.303718\pi\)
−0.947382 + 0.320104i \(0.896282\pi\)
\(72\) 0 0
\(73\) −1.59943 −0.187199 −0.0935994 0.995610i \(-0.529837\pi\)
−0.0935994 + 0.995610i \(0.529837\pi\)
\(74\) 0 0
\(75\) −2.05257 + 1.49128i −0.237011 + 0.172199i
\(76\) 0 0
\(77\) −2.45109 7.54368i −0.279327 0.859682i
\(78\) 0 0
\(79\) −14.3814 −1.61803 −0.809016 0.587786i \(-0.800000\pi\)
−0.809016 + 0.587786i \(0.800000\pi\)
\(80\) 0 0
\(81\) −7.49808 −0.833120
\(82\) 0 0
\(83\) 7.14716 0.784502 0.392251 0.919858i \(-0.371696\pi\)
0.392251 + 0.919858i \(0.371696\pi\)
\(84\) 0 0
\(85\) 1.85584 0.201294
\(86\) 0 0
\(87\) −3.17738 9.77897i −0.340651 1.04842i
\(88\) 0 0
\(89\) 3.09025 2.24520i 0.327566 0.237990i −0.411831 0.911260i \(-0.635111\pi\)
0.739397 + 0.673270i \(0.235111\pi\)
\(90\) 0 0
\(91\) −1.93547 −0.202893
\(92\) 0 0
\(93\) −7.53967 + 23.2047i −0.781827 + 2.40622i
\(94\) 0 0
\(95\) −3.44732 2.50462i −0.353688 0.256969i
\(96\) 0 0
\(97\) −2.83266 8.71803i −0.287613 0.885182i −0.985603 0.169074i \(-0.945922\pi\)
0.697990 0.716107i \(-0.254078\pi\)
\(98\) 0 0
\(99\) 2.33008 7.17125i 0.234182 0.720738i
\(100\) 0 0
\(101\) 7.60779 5.52738i 0.757003 0.549995i −0.140986 0.990012i \(-0.545027\pi\)
0.897990 + 0.440016i \(0.145027\pi\)
\(102\) 0 0
\(103\) −5.02443 + 3.65046i −0.495072 + 0.359691i −0.807131 0.590372i \(-0.798981\pi\)
0.312060 + 0.950063i \(0.398981\pi\)
\(104\) 0 0
\(105\) 7.42104 + 5.39170i 0.724219 + 0.526176i
\(106\) 0 0
\(107\) −1.17938 + 0.856868i −0.114015 + 0.0828366i −0.643332 0.765588i \(-0.722448\pi\)
0.529317 + 0.848424i \(0.322448\pi\)
\(108\) 0 0
\(109\) 1.85738 0.177905 0.0889526 0.996036i \(-0.471648\pi\)
0.0889526 + 0.996036i \(0.471648\pi\)
\(110\) 0 0
\(111\) −2.74359 8.44390i −0.260410 0.801459i
\(112\) 0 0
\(113\) −3.88004 + 11.9415i −0.365003 + 1.12337i 0.584975 + 0.811051i \(0.301104\pi\)
−0.949979 + 0.312314i \(0.898896\pi\)
\(114\) 0 0
\(115\) 0.155243 0.477789i 0.0144765 0.0445540i
\(116\) 0 0
\(117\) −1.48853 1.08148i −0.137614 0.0999827i
\(118\) 0 0
\(119\) −2.07343 6.38135i −0.190071 0.584977i
\(120\) 0 0
\(121\) 5.00534 + 3.63659i 0.455031 + 0.330599i
\(122\) 0 0
\(123\) 10.8215 + 12.1166i 0.975742 + 1.09252i
\(124\) 0 0
\(125\) −0.809017 0.587785i −0.0723607 0.0525731i
\(126\) 0 0
\(127\) 0.328149 + 1.00994i 0.0291185 + 0.0896177i 0.964560 0.263865i \(-0.0849973\pi\)
−0.935441 + 0.353483i \(0.884997\pi\)
\(128\) 0 0
\(129\) 0.698574 + 0.507544i 0.0615060 + 0.0446867i
\(130\) 0 0
\(131\) 5.68600 17.4997i 0.496788 1.52896i −0.317363 0.948304i \(-0.602797\pi\)
0.814151 0.580653i \(-0.197203\pi\)
\(132\) 0 0
\(133\) −4.76072 + 14.6520i −0.412806 + 1.27049i
\(134\) 0 0
\(135\) 0.342604 + 1.05443i 0.0294867 + 0.0907507i
\(136\) 0 0
\(137\) 0.176433 0.0150737 0.00753686 0.999972i \(-0.497601\pi\)
0.00753686 + 0.999972i \(0.497601\pi\)
\(138\) 0 0
\(139\) −0.395098 + 0.287055i −0.0335118 + 0.0243477i −0.604415 0.796670i \(-0.706593\pi\)
0.570903 + 0.821017i \(0.306593\pi\)
\(140\) 0 0
\(141\) 1.90787 + 1.38615i 0.160672 + 0.116735i
\(142\) 0 0
\(143\) −0.950144 + 0.690320i −0.0794551 + 0.0577275i
\(144\) 0 0
\(145\) 3.27871 2.38212i 0.272282 0.197825i
\(146\) 0 0
\(147\) 4.76029 14.6507i 0.392622 1.20837i
\(148\) 0 0
\(149\) −1.71762 5.28629i −0.140713 0.433070i 0.855722 0.517436i \(-0.173113\pi\)
−0.996435 + 0.0843663i \(0.973113\pi\)
\(150\) 0 0
\(151\) −12.6654 9.20195i −1.03070 0.748844i −0.0622475 0.998061i \(-0.519827\pi\)
−0.968448 + 0.249217i \(0.919827\pi\)
\(152\) 0 0
\(153\) 1.97106 6.06631i 0.159351 0.490432i
\(154\) 0 0
\(155\) −9.61676 −0.772437
\(156\) 0 0
\(157\) −9.69086 + 7.04082i −0.773415 + 0.561919i −0.902996 0.429650i \(-0.858637\pi\)
0.129580 + 0.991569i \(0.458637\pi\)
\(158\) 0 0
\(159\) 7.54128 + 23.2097i 0.598063 + 1.84065i
\(160\) 0 0
\(161\) −1.81633 −0.143147
\(162\) 0 0
\(163\) 19.3352 1.51445 0.757227 0.653152i \(-0.226554\pi\)
0.757227 + 0.653152i \(0.226554\pi\)
\(164\) 0 0
\(165\) 5.56611 0.433321
\(166\) 0 0
\(167\) −3.92621 −0.303819 −0.151910 0.988394i \(-0.548542\pi\)
−0.151910 + 0.988394i \(0.548542\pi\)
\(168\) 0 0
\(169\) −3.92866 12.0912i −0.302205 0.930091i
\(170\) 0 0
\(171\) −11.8484 + 8.60836i −0.906070 + 0.658298i
\(172\) 0 0
\(173\) 14.8987 1.13273 0.566363 0.824156i \(-0.308350\pi\)
0.566363 + 0.824156i \(0.308350\pi\)
\(174\) 0 0
\(175\) −1.11724 + 3.43852i −0.0844557 + 0.259928i
\(176\) 0 0
\(177\) 20.3441 + 14.7809i 1.52916 + 1.11100i
\(178\) 0 0
\(179\) −2.29407 7.06041i −0.171466 0.527720i 0.827988 0.560746i \(-0.189486\pi\)
−0.999454 + 0.0330262i \(0.989486\pi\)
\(180\) 0 0
\(181\) −8.25055 + 25.3926i −0.613259 + 1.88742i −0.188629 + 0.982048i \(0.560404\pi\)
−0.424630 + 0.905367i \(0.639596\pi\)
\(182\) 0 0
\(183\) −8.34180 + 6.06067i −0.616644 + 0.448018i
\(184\) 0 0
\(185\) 2.83109 2.05690i 0.208146 0.151227i
\(186\) 0 0
\(187\) −3.29389 2.39315i −0.240873 0.175004i
\(188\) 0 0
\(189\) 3.24290 2.35611i 0.235886 0.171382i
\(190\) 0 0
\(191\) −7.60989 −0.550632 −0.275316 0.961354i \(-0.588783\pi\)
−0.275316 + 0.961354i \(0.588783\pi\)
\(192\) 0 0
\(193\) −2.76062 8.49632i −0.198714 0.611579i −0.999913 0.0131809i \(-0.995804\pi\)
0.801199 0.598398i \(-0.204196\pi\)
\(194\) 0 0
\(195\) 0.419706 1.29172i 0.0300557 0.0925021i
\(196\) 0 0
\(197\) −4.25105 + 13.0834i −0.302875 + 0.932152i 0.677587 + 0.735442i \(0.263026\pi\)
−0.980462 + 0.196710i \(0.936974\pi\)
\(198\) 0 0
\(199\) −19.4776 14.1513i −1.38073 1.00316i −0.996812 0.0797888i \(-0.974575\pi\)
−0.383915 0.923368i \(-0.625425\pi\)
\(200\) 0 0
\(201\) −11.3235 34.8501i −0.798697 2.45814i
\(202\) 0 0
\(203\) −11.8541 8.61252i −0.831996 0.604480i
\(204\) 0 0
\(205\) −3.22394 + 5.53229i −0.225170 + 0.386392i
\(206\) 0 0
\(207\) −1.39690 1.01491i −0.0970912 0.0705409i
\(208\) 0 0
\(209\) 2.88880 + 8.89081i 0.199822 + 0.614990i
\(210\) 0 0
\(211\) −2.13503 1.55119i −0.146981 0.106788i 0.511864 0.859066i \(-0.328955\pi\)
−0.658846 + 0.752278i \(0.728955\pi\)
\(212\) 0 0
\(213\) −7.89039 + 24.2841i −0.540641 + 1.66392i
\(214\) 0 0
\(215\) −0.105171 + 0.323683i −0.00717260 + 0.0220750i
\(216\) 0 0
\(217\) 10.7443 + 33.0675i 0.729369 + 2.24477i
\(218\) 0 0
\(219\) −4.05794 −0.274210
\(220\) 0 0
\(221\) −0.803747 + 0.583956i −0.0540659 + 0.0392811i
\(222\) 0 0
\(223\) −12.6550 9.19442i −0.847443 0.615704i 0.0769966 0.997031i \(-0.475467\pi\)
−0.924440 + 0.381328i \(0.875467\pi\)
\(224\) 0 0
\(225\) −2.78058 + 2.02021i −0.185372 + 0.134681i
\(226\) 0 0
\(227\) −8.98553 + 6.52837i −0.596391 + 0.433303i −0.844596 0.535404i \(-0.820159\pi\)
0.248205 + 0.968707i \(0.420159\pi\)
\(228\) 0 0
\(229\) 1.56297 4.81032i 0.103284 0.317875i −0.886040 0.463609i \(-0.846554\pi\)
0.989324 + 0.145734i \(0.0465543\pi\)
\(230\) 0 0
\(231\) −6.21871 19.1392i −0.409161 1.25927i
\(232\) 0 0
\(233\) 13.3693 + 9.71339i 0.875854 + 0.636345i 0.932151 0.362069i \(-0.117929\pi\)
−0.0562972 + 0.998414i \(0.517929\pi\)
\(234\) 0 0
\(235\) −0.287232 + 0.884008i −0.0187369 + 0.0576663i
\(236\) 0 0
\(237\) −36.4873 −2.37011
\(238\) 0 0
\(239\) −12.3319 + 8.95964i −0.797684 + 0.579551i −0.910234 0.414095i \(-0.864098\pi\)
0.112550 + 0.993646i \(0.464098\pi\)
\(240\) 0 0
\(241\) −0.751896 2.31410i −0.0484339 0.149064i 0.923915 0.382599i \(-0.124971\pi\)
−0.972349 + 0.233535i \(0.924971\pi\)
\(242\) 0 0
\(243\) −22.3496 −1.43373
\(244\) 0 0
\(245\) 6.07169 0.387906
\(246\) 0 0
\(247\) 2.28110 0.145143
\(248\) 0 0
\(249\) 18.1332 1.14915
\(250\) 0 0
\(251\) −7.80770 24.0296i −0.492818 1.51674i −0.820330 0.571890i \(-0.806210\pi\)
0.327512 0.944847i \(-0.393790\pi\)
\(252\) 0 0
\(253\) −0.891658 + 0.647827i −0.0560580 + 0.0407285i
\(254\) 0 0
\(255\) 4.70849 0.294857
\(256\) 0 0
\(257\) 5.50947 16.9564i 0.343671 1.05771i −0.618620 0.785690i \(-0.712308\pi\)
0.962291 0.272021i \(-0.0876919\pi\)
\(258\) 0 0
\(259\) −10.2357 7.43669i −0.636017 0.462094i
\(260\) 0 0
\(261\) −4.30433 13.2474i −0.266432 0.819992i
\(262\) 0 0
\(263\) 0.655038 2.01600i 0.0403914 0.124312i −0.928828 0.370512i \(-0.879182\pi\)
0.969219 + 0.246200i \(0.0791821\pi\)
\(264\) 0 0
\(265\) −7.78178 + 5.65380i −0.478031 + 0.347310i
\(266\) 0 0
\(267\) 7.84033 5.69634i 0.479821 0.348610i
\(268\) 0 0
\(269\) 1.83226 + 1.33122i 0.111715 + 0.0811658i 0.642240 0.766503i \(-0.278005\pi\)
−0.530525 + 0.847669i \(0.678005\pi\)
\(270\) 0 0
\(271\) 12.5363 9.10815i 0.761526 0.553281i −0.137852 0.990453i \(-0.544020\pi\)
0.899378 + 0.437172i \(0.144020\pi\)
\(272\) 0 0
\(273\) −4.91053 −0.297199
\(274\) 0 0
\(275\) 0.677943 + 2.08649i 0.0408815 + 0.125820i
\(276\) 0 0
\(277\) −1.19417 + 3.67529i −0.0717509 + 0.220827i −0.980501 0.196514i \(-0.937038\pi\)
0.908750 + 0.417341i \(0.137038\pi\)
\(278\) 0 0
\(279\) −10.2138 + 31.4350i −0.611487 + 1.88196i
\(280\) 0 0
\(281\) −25.3144 18.3920i −1.51013 1.09717i −0.966119 0.258098i \(-0.916904\pi\)
−0.544013 0.839077i \(-0.683096\pi\)
\(282\) 0 0
\(283\) 4.52960 + 13.9407i 0.269257 + 0.828687i 0.990682 + 0.136195i \(0.0434873\pi\)
−0.721425 + 0.692492i \(0.756513\pi\)
\(284\) 0 0
\(285\) −8.74627 6.35454i −0.518084 0.376410i
\(286\) 0 0
\(287\) 22.6248 + 4.90468i 1.33550 + 0.289514i
\(288\) 0 0
\(289\) 10.9669 + 7.96793i 0.645113 + 0.468702i
\(290\) 0 0
\(291\) −7.18680 22.1187i −0.421298 1.29662i
\(292\) 0 0
\(293\) 15.6439 + 11.3660i 0.913928 + 0.664007i 0.942005 0.335599i \(-0.108939\pi\)
−0.0280776 + 0.999606i \(0.508939\pi\)
\(294\) 0 0
\(295\) −3.06283 + 9.42642i −0.178325 + 0.548827i
\(296\) 0 0
\(297\) 0.751629 2.31328i 0.0436139 0.134230i
\(298\) 0 0
\(299\) 0.0831061 + 0.255774i 0.00480615 + 0.0147918i
\(300\) 0 0
\(301\) 1.23049 0.0709245
\(302\) 0 0
\(303\) 19.3019 14.0236i 1.10886 0.805637i
\(304\) 0 0
\(305\) −3.28790 2.38880i −0.188265 0.136782i
\(306\) 0 0
\(307\) 8.58330 6.23613i 0.489875 0.355915i −0.315261 0.949005i \(-0.602092\pi\)
0.805136 + 0.593090i \(0.202092\pi\)
\(308\) 0 0
\(309\) −12.7476 + 9.26167i −0.725185 + 0.526878i
\(310\) 0 0
\(311\) 5.06107 15.5764i 0.286987 0.883255i −0.698809 0.715308i \(-0.746286\pi\)
0.985796 0.167947i \(-0.0537136\pi\)
\(312\) 0 0
\(313\) 3.35529 + 10.3265i 0.189652 + 0.583690i 0.999997 0.00226293i \(-0.000720312\pi\)
−0.810345 + 0.585953i \(0.800720\pi\)
\(314\) 0 0
\(315\) 10.0531 + 7.30403i 0.566430 + 0.411535i
\(316\) 0 0
\(317\) −5.06558 + 15.5903i −0.284511 + 0.875636i 0.702033 + 0.712144i \(0.252276\pi\)
−0.986545 + 0.163492i \(0.947724\pi\)
\(318\) 0 0
\(319\) −8.89112 −0.497807
\(320\) 0 0
\(321\) −2.99223 + 2.17398i −0.167010 + 0.121340i
\(322\) 0 0
\(323\) 2.44369 + 7.52092i 0.135971 + 0.418475i
\(324\) 0 0
\(325\) 0.535329 0.0296947
\(326\) 0 0
\(327\) 4.71241 0.260597
\(328\) 0 0
\(329\) 3.36059 0.185275
\(330\) 0 0
\(331\) −14.8906 −0.818461 −0.409231 0.912431i \(-0.634203\pi\)
−0.409231 + 0.912431i \(0.634203\pi\)
\(332\) 0 0
\(333\) −3.71668 11.4388i −0.203673 0.626841i
\(334\) 0 0
\(335\) 11.6846 8.48936i 0.638398 0.463823i
\(336\) 0 0
\(337\) −2.13348 −0.116218 −0.0581090 0.998310i \(-0.518507\pi\)
−0.0581090 + 0.998310i \(0.518507\pi\)
\(338\) 0 0
\(339\) −9.84413 + 30.2971i −0.534660 + 1.64551i
\(340\) 0 0
\(341\) 17.0686 + 12.4010i 0.924315 + 0.671554i
\(342\) 0 0
\(343\) 1.03715 + 3.19202i 0.0560009 + 0.172353i
\(344\) 0 0
\(345\) 0.393870 1.21221i 0.0212053 0.0652631i
\(346\) 0 0
\(347\) 15.4352 11.2143i 0.828602 0.602015i −0.0905612 0.995891i \(-0.528866\pi\)
0.919164 + 0.393876i \(0.128866\pi\)
\(348\) 0 0
\(349\) 20.6733 15.0200i 1.10662 0.804004i 0.124489 0.992221i \(-0.460271\pi\)
0.982127 + 0.188217i \(0.0602709\pi\)
\(350\) 0 0
\(351\) −0.480164 0.348859i −0.0256292 0.0186207i
\(352\) 0 0
\(353\) 10.6071 7.70653i 0.564561 0.410177i −0.268565 0.963262i \(-0.586549\pi\)
0.833125 + 0.553084i \(0.186549\pi\)
\(354\) 0 0
\(355\) −10.0641 −0.534147
\(356\) 0 0
\(357\) −5.26054 16.1903i −0.278417 0.856880i
\(358\) 0 0
\(359\) 1.06195 3.26836i 0.0560478 0.172497i −0.919114 0.393992i \(-0.871094\pi\)
0.975162 + 0.221495i \(0.0710936\pi\)
\(360\) 0 0
\(361\) −0.260451 + 0.801585i −0.0137079 + 0.0421887i
\(362\) 0 0
\(363\) 12.6991 + 9.22647i 0.666532 + 0.484264i
\(364\) 0 0
\(365\) −0.494250 1.52115i −0.0258702 0.0796204i
\(366\) 0 0
\(367\) 26.0083 + 18.8962i 1.35762 + 0.986372i 0.998592 + 0.0530468i \(0.0168932\pi\)
0.359032 + 0.933325i \(0.383107\pi\)
\(368\) 0 0
\(369\) 14.6597 + 16.4141i 0.763152 + 0.854483i
\(370\) 0 0
\(371\) 28.1349 + 20.4412i 1.46069 + 1.06125i
\(372\) 0 0
\(373\) 1.37882 + 4.24358i 0.0713927 + 0.219724i 0.980386 0.197086i \(-0.0631479\pi\)
−0.908993 + 0.416810i \(0.863148\pi\)
\(374\) 0 0
\(375\) −2.05257 1.49128i −0.105995 0.0770095i
\(376\) 0 0
\(377\) −0.670423 + 2.06335i −0.0345286 + 0.106268i
\(378\) 0 0
\(379\) −1.83360 + 5.64324i −0.0941856 + 0.289874i −0.987041 0.160471i \(-0.948699\pi\)
0.892855 + 0.450344i \(0.148699\pi\)
\(380\) 0 0
\(381\) 0.832555 + 2.56234i 0.0426531 + 0.131273i
\(382\) 0 0
\(383\) 0.379598 0.0193965 0.00969827 0.999953i \(-0.496913\pi\)
0.00969827 + 0.999953i \(0.496913\pi\)
\(384\) 0 0
\(385\) 6.41703 4.66225i 0.327042 0.237610i
\(386\) 0 0
\(387\) 0.946344 + 0.687559i 0.0481054 + 0.0349506i
\(388\) 0 0
\(389\) 27.7760 20.1804i 1.40830 1.02319i 0.414732 0.909943i \(-0.363875\pi\)
0.993567 0.113246i \(-0.0361248\pi\)
\(390\) 0 0
\(391\) −0.754271 + 0.548010i −0.0381451 + 0.0277141i
\(392\) 0 0
\(393\) 14.4261 44.3989i 0.727700 2.23963i
\(394\) 0 0
\(395\) −4.44409 13.6775i −0.223607 0.688190i
\(396\) 0 0
\(397\) 5.67126 + 4.12041i 0.284633 + 0.206798i 0.720935 0.693002i \(-0.243712\pi\)
−0.436303 + 0.899800i \(0.643712\pi\)
\(398\) 0 0
\(399\) −12.0785 + 37.1738i −0.604682 + 1.86102i
\(400\) 0 0
\(401\) −11.6297 −0.580758 −0.290379 0.956912i \(-0.593781\pi\)
−0.290379 + 0.956912i \(0.593781\pi\)
\(402\) 0 0
\(403\) 4.16493 3.02600i 0.207470 0.150736i
\(404\) 0 0
\(405\) −2.31703 7.13110i −0.115134 0.354347i
\(406\) 0 0
\(407\) −7.67726 −0.380548
\(408\) 0 0
\(409\) 37.5506 1.85676 0.928380 0.371632i \(-0.121202\pi\)
0.928380 + 0.371632i \(0.121202\pi\)
\(410\) 0 0
\(411\) 0.447633 0.0220801
\(412\) 0 0
\(413\) 35.8349 1.76332
\(414\) 0 0
\(415\) 2.20859 + 6.79735i 0.108416 + 0.333669i
\(416\) 0 0
\(417\) −1.00241 + 0.728295i −0.0490883 + 0.0356647i
\(418\) 0 0
\(419\) 39.6119 1.93517 0.967583 0.252553i \(-0.0812702\pi\)
0.967583 + 0.252553i \(0.0812702\pi\)
\(420\) 0 0
\(421\) −0.408577 + 1.25747i −0.0199128 + 0.0612854i −0.960519 0.278214i \(-0.910258\pi\)
0.940606 + 0.339499i \(0.110258\pi\)
\(422\) 0 0
\(423\) 2.58455 + 1.87779i 0.125665 + 0.0913012i
\(424\) 0 0
\(425\) 0.573486 + 1.76501i 0.0278182 + 0.0856155i
\(426\) 0 0
\(427\) −4.54056 + 13.9744i −0.219733 + 0.676268i
\(428\) 0 0
\(429\) −2.41063 + 1.75143i −0.116386 + 0.0845597i
\(430\) 0 0
\(431\) 25.9679 18.8668i 1.25083 0.908782i 0.252561 0.967581i \(-0.418727\pi\)
0.998270 + 0.0587994i \(0.0187272\pi\)
\(432\) 0 0
\(433\) 6.79174 + 4.93449i 0.326390 + 0.237136i 0.738897 0.673818i \(-0.235347\pi\)
−0.412507 + 0.910954i \(0.635347\pi\)
\(434\) 0 0
\(435\) 8.31849 6.04374i 0.398841 0.289775i
\(436\) 0 0
\(437\) 2.14069 0.102403
\(438\) 0 0
\(439\) −9.92997 30.5613i −0.473932 1.45861i −0.847393 0.530966i \(-0.821829\pi\)
0.373461 0.927646i \(-0.378171\pi\)
\(440\) 0 0
\(441\) 6.44867 19.8470i 0.307079 0.945093i
\(442\) 0 0
\(443\) 10.1433 31.2179i 0.481923 1.48321i −0.354466 0.935069i \(-0.615337\pi\)
0.836389 0.548136i \(-0.184663\pi\)
\(444\) 0 0
\(445\) 3.09025 + 2.24520i 0.146492 + 0.106432i
\(446\) 0 0
\(447\) −4.35781 13.4120i −0.206117 0.634364i
\(448\) 0 0
\(449\) 3.53441 + 2.56790i 0.166799 + 0.121187i 0.668053 0.744114i \(-0.267128\pi\)
−0.501254 + 0.865300i \(0.667128\pi\)
\(450\) 0 0
\(451\) 12.8561 5.66179i 0.605371 0.266603i
\(452\) 0 0
\(453\) −32.1337 23.3465i −1.50977 1.09691i
\(454\) 0 0
\(455\) −0.598094 1.84074i −0.0280391 0.0862954i
\(456\) 0 0
\(457\) −18.6958 13.5833i −0.874554 0.635401i 0.0572512 0.998360i \(-0.481766\pi\)
−0.931805 + 0.362959i \(0.881766\pi\)
\(458\) 0 0
\(459\) 0.635818 1.95685i 0.0296775 0.0913378i
\(460\) 0 0
\(461\) −8.22882 + 25.3257i −0.383254 + 1.17954i 0.554484 + 0.832194i \(0.312916\pi\)
−0.937739 + 0.347342i \(0.887084\pi\)
\(462\) 0 0
\(463\) 8.02375 + 24.6946i 0.372895 + 1.14765i 0.944888 + 0.327395i \(0.106171\pi\)
−0.571992 + 0.820259i \(0.693829\pi\)
\(464\) 0 0
\(465\) −24.3989 −1.13147
\(466\) 0 0
\(467\) 18.9958 13.8012i 0.879019 0.638645i −0.0539726 0.998542i \(-0.517188\pi\)
0.932992 + 0.359898i \(0.117188\pi\)
\(468\) 0 0
\(469\) −42.2454 30.6931i −1.95071 1.41728i
\(470\) 0 0
\(471\) −24.5869 + 17.8634i −1.13290 + 0.823103i
\(472\) 0 0
\(473\) 0.604062 0.438877i 0.0277748 0.0201796i
\(474\) 0 0
\(475\) 1.31676 4.05257i 0.0604171 0.185945i
\(476\) 0 0
\(477\) 10.2160 + 31.4417i 0.467760 + 1.43962i
\(478\) 0 0
\(479\) −17.3871 12.6325i −0.794436 0.577192i 0.114840 0.993384i \(-0.463364\pi\)
−0.909277 + 0.416192i \(0.863364\pi\)
\(480\) 0 0
\(481\) −0.578894 + 1.78165i −0.0263953 + 0.0812363i
\(482\) 0 0
\(483\) −4.60826 −0.209683
\(484\) 0 0
\(485\) 7.41600 5.38804i 0.336743 0.244658i
\(486\) 0 0
\(487\) −10.0033 30.7871i −0.453294 1.39510i −0.873126 0.487494i \(-0.837911\pi\)
0.419832 0.907602i \(-0.362089\pi\)
\(488\) 0 0
\(489\) 49.0559 2.21838
\(490\) 0 0
\(491\) 27.8124 1.25516 0.627578 0.778554i \(-0.284046\pi\)
0.627578 + 0.778554i \(0.284046\pi\)
\(492\) 0 0
\(493\) −7.52118 −0.338737
\(494\) 0 0
\(495\) 7.54030 0.338911
\(496\) 0 0
\(497\) 11.2441 + 34.6056i 0.504365 + 1.55228i
\(498\) 0 0
\(499\) −19.1387 + 13.9051i −0.856767 + 0.622478i −0.927003 0.375053i \(-0.877625\pi\)
0.0702366 + 0.997530i \(0.477625\pi\)
\(500\) 0 0
\(501\) −9.96128 −0.445037
\(502\) 0 0
\(503\) −12.5575 + 38.6480i −0.559911 + 1.72323i 0.122698 + 0.992444i \(0.460845\pi\)
−0.682609 + 0.730784i \(0.739155\pi\)
\(504\) 0 0
\(505\) 7.60779 + 5.52738i 0.338542 + 0.245965i
\(506\) 0 0
\(507\) −9.96750 30.6768i −0.442672 1.36240i
\(508\) 0 0
\(509\) 2.79181 8.59232i 0.123745 0.380848i −0.869925 0.493183i \(-0.835833\pi\)
0.993670 + 0.112336i \(0.0358332\pi\)
\(510\) 0 0
\(511\) −4.67830 + 3.39898i −0.206956 + 0.150362i
\(512\) 0 0
\(513\) −3.82201 + 2.77685i −0.168746 + 0.122601i
\(514\) 0 0
\(515\) −5.02443 3.65046i −0.221403 0.160859i
\(516\) 0 0
\(517\) 1.64975 1.19861i 0.0725560 0.0527150i
\(518\) 0 0
\(519\) 37.7998 1.65923
\(520\) 0 0
\(521\) 2.93025 + 9.01839i 0.128377 + 0.395103i 0.994501 0.104726i \(-0.0333964\pi\)
−0.866124 + 0.499828i \(0.833396\pi\)
\(522\) 0 0
\(523\) 9.80674 30.1820i 0.428819 1.31977i −0.470471 0.882415i \(-0.655916\pi\)
0.899290 0.437353i \(-0.144084\pi\)
\(524\) 0 0
\(525\) −2.83459 + 8.72396i −0.123711 + 0.380745i
\(526\) 0 0
\(527\) 14.4387 + 10.4903i 0.628958 + 0.456965i
\(528\) 0 0
\(529\) −7.02940 21.6343i −0.305626 0.940620i
\(530\) 0 0
\(531\) 27.5598 + 20.0234i 1.19599 + 0.868940i
\(532\) 0 0
\(533\) −0.344525 3.41042i −0.0149230 0.147722i
\(534\) 0 0
\(535\) −1.17938 0.856868i −0.0509889 0.0370456i
\(536\) 0 0
\(537\) −5.82032 17.9131i −0.251165 0.773008i
\(538\) 0 0
\(539\) −10.7765 7.82959i −0.464177 0.337244i
\(540\) 0 0
\(541\) 1.01877 3.13544i 0.0438002 0.134803i −0.926765 0.375642i \(-0.877422\pi\)
0.970565 + 0.240838i \(0.0774224\pi\)
\(542\) 0 0
\(543\) −20.9326 + 64.4241i −0.898306 + 2.76470i
\(544\) 0 0
\(545\) 0.573963 + 1.76648i 0.0245859 + 0.0756676i
\(546\) 0 0
\(547\) 29.9344 1.27990 0.639952 0.768415i \(-0.278954\pi\)
0.639952 + 0.768415i \(0.278954\pi\)
\(548\) 0 0
\(549\) −11.3005 + 8.21027i −0.482292 + 0.350406i
\(550\) 0 0
\(551\) 13.9710 + 10.1505i 0.595184 + 0.432427i
\(552\) 0 0
\(553\) −42.0653 + 30.5623i −1.78880 + 1.29964i
\(554\) 0 0
\(555\) 7.18281 5.21862i 0.304893 0.221518i
\(556\) 0 0
\(557\) 1.99808 6.14945i 0.0846612 0.260560i −0.899760 0.436384i \(-0.856259\pi\)
0.984422 + 0.175824i \(0.0562589\pi\)
\(558\) 0 0
\(559\) −0.0563011 0.173277i −0.00238128 0.00732884i
\(560\) 0 0
\(561\) −8.35700 6.07171i −0.352833 0.256348i
\(562\) 0 0
\(563\) −10.1327 + 31.1853i −0.427043 + 1.31430i 0.473981 + 0.880535i \(0.342816\pi\)
−0.901024 + 0.433768i \(0.857184\pi\)
\(564\) 0 0
\(565\) −12.5561 −0.528238
\(566\) 0 0
\(567\) −21.9318 + 15.9344i −0.921047 + 0.669180i
\(568\) 0 0
\(569\) 0.197639 + 0.608270i 0.00828546 + 0.0255000i 0.955114 0.296239i \(-0.0957326\pi\)
−0.946828 + 0.321739i \(0.895733\pi\)
\(570\) 0 0
\(571\) 18.2396 0.763304 0.381652 0.924306i \(-0.375355\pi\)
0.381652 + 0.924306i \(0.375355\pi\)
\(572\) 0 0
\(573\) −19.3072 −0.806570
\(574\) 0 0
\(575\) 0.502377 0.0209506
\(576\) 0 0
\(577\) 25.2450 1.05096 0.525481 0.850806i \(-0.323886\pi\)
0.525481 + 0.850806i \(0.323886\pi\)
\(578\) 0 0
\(579\) −7.00404 21.5562i −0.291078 0.895845i
\(580\) 0 0
\(581\) 20.9053 15.1886i 0.867299 0.630129i
\(582\) 0 0
\(583\) 21.1024 0.873973
\(584\) 0 0
\(585\) 0.568567 1.74987i 0.0235073 0.0723482i
\(586\) 0 0
\(587\) −29.4109 21.3683i −1.21392 0.881963i −0.218338 0.975873i \(-0.570063\pi\)
−0.995581 + 0.0939098i \(0.970063\pi\)
\(588\) 0 0
\(589\) −12.6630 38.9726i −0.521768 1.60584i
\(590\) 0 0
\(591\) −10.7854 + 33.1941i −0.443653 + 1.36542i
\(592\) 0 0
\(593\) 0.954133 0.693218i 0.0391815 0.0284670i −0.568022 0.823013i \(-0.692291\pi\)
0.607204 + 0.794546i \(0.292291\pi\)
\(594\) 0 0
\(595\) 5.42830 3.94389i 0.222539 0.161684i
\(596\) 0 0
\(597\) −49.4169 35.9035i −2.02250 1.46943i
\(598\) 0 0
\(599\) −18.9500 + 13.7680i −0.774276 + 0.562544i −0.903256 0.429103i \(-0.858830\pi\)
0.128980 + 0.991647i \(0.458830\pi\)
\(600\) 0 0
\(601\) −33.2290 −1.35544 −0.677720 0.735321i \(-0.737032\pi\)
−0.677720 + 0.735321i \(0.737032\pi\)
\(602\) 0 0
\(603\) −15.3397 47.2107i −0.624681 1.92257i
\(604\) 0 0
\(605\) −1.91187 + 5.88413i −0.0777285 + 0.239224i
\(606\) 0 0
\(607\) −11.5963 + 35.6896i −0.470678 + 1.44860i 0.381022 + 0.924566i \(0.375572\pi\)
−0.851699 + 0.524031i \(0.824428\pi\)
\(608\) 0 0
\(609\) −30.0753 21.8510i −1.21871 0.885448i
\(610\) 0 0
\(611\) −0.153764 0.473236i −0.00622061 0.0191451i
\(612\) 0 0
\(613\) −5.44651 3.95712i −0.219982 0.159827i 0.472336 0.881418i \(-0.343411\pi\)
−0.692319 + 0.721592i \(0.743411\pi\)
\(614\) 0 0
\(615\) −8.17953 + 14.0361i −0.329830 + 0.565990i
\(616\) 0 0
\(617\) 9.97024 + 7.24381i 0.401387 + 0.291625i 0.770106 0.637916i \(-0.220203\pi\)
−0.368719 + 0.929541i \(0.620203\pi\)
\(618\) 0 0
\(619\) 11.5468 + 35.5375i 0.464106 + 1.42837i 0.860103 + 0.510120i \(0.170399\pi\)
−0.395997 + 0.918252i \(0.629601\pi\)
\(620\) 0 0
\(621\) −0.450607 0.327385i −0.0180822 0.0131375i
\(622\) 0 0
\(623\) 4.26760 13.1343i 0.170978 0.526216i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) 7.32923 + 22.5571i 0.292701 + 0.900842i
\(628\) 0 0
\(629\) −6.49435 −0.258947
\(630\) 0 0
\(631\) −7.32822 + 5.32427i −0.291732 + 0.211956i −0.724018 0.689781i \(-0.757707\pi\)
0.432286 + 0.901736i \(0.357707\pi\)
\(632\) 0 0
\(633\) −5.41683 3.93556i −0.215300 0.156424i
\(634\) 0 0
\(635\) −0.859106 + 0.624177i −0.0340926 + 0.0247697i
\(636\) 0 0
\(637\) −2.62959 + 1.91051i −0.104188 + 0.0756972i
\(638\) 0 0
\(639\) −10.6890 + 32.8972i −0.422848 + 1.30139i
\(640\) 0 0
\(641\) 4.69280 + 14.4430i 0.185355 + 0.570463i 0.999954 0.00956071i \(-0.00304332\pi\)
−0.814600 + 0.580024i \(0.803043\pi\)
\(642\) 0 0
\(643\) −25.7728 18.7250i −1.01638 0.738444i −0.0508429 0.998707i \(-0.516191\pi\)
−0.965538 + 0.260263i \(0.916191\pi\)
\(644\) 0 0
\(645\) −0.266832 + 0.821223i −0.0105065 + 0.0323356i
\(646\) 0 0
\(647\) −23.1108 −0.908581 −0.454290 0.890854i \(-0.650107\pi\)
−0.454290 + 0.890854i \(0.650107\pi\)
\(648\) 0 0
\(649\) 17.5917 12.7811i 0.690536 0.501704i
\(650\) 0 0
\(651\) 27.2595 + 83.8962i 1.06838 + 3.28815i
\(652\) 0 0
\(653\) 21.5774 0.844388 0.422194 0.906505i \(-0.361260\pi\)
0.422194 + 0.906505i \(0.361260\pi\)
\(654\) 0 0
\(655\) 18.4003 0.718959
\(656\) 0 0
\(657\) −5.49721 −0.214467
\(658\) 0 0
\(659\) 23.6901 0.922835 0.461418 0.887183i \(-0.347341\pi\)
0.461418 + 0.887183i \(0.347341\pi\)
\(660\) 0 0
\(661\) −2.28489 7.03216i −0.0888718 0.273519i 0.896736 0.442565i \(-0.145931\pi\)
−0.985608 + 0.169046i \(0.945931\pi\)
\(662\) 0 0
\(663\) −2.03920 + 1.48157i −0.0791961 + 0.0575393i
\(664\) 0 0
\(665\) −15.4060 −0.597419
\(666\) 0 0
\(667\) −0.629155 + 1.93634i −0.0243610 + 0.0749754i
\(668\) 0 0
\(669\) −32.1073 23.3274i −1.24134 0.901888i
\(670\) 0 0
\(671\) 2.75521 + 8.47965i 0.106364 + 0.327353i
\(672\) 0 0
\(673\) 7.25169 22.3184i 0.279532 0.860311i −0.708452 0.705759i \(-0.750606\pi\)
0.987985 0.154553i \(-0.0493936\pi\)
\(674\) 0 0
\(675\) −0.896950 + 0.651672i −0.0345236 + 0.0250829i
\(676\) 0 0
\(677\) 37.9434 27.5675i 1.45828 1.05950i 0.474476 0.880268i \(-0.342637\pi\)
0.983806 0.179236i \(-0.0573626\pi\)
\(678\) 0 0
\(679\) −26.8124 19.4803i −1.02896 0.747587i
\(680\) 0 0
\(681\) −22.7974 + 16.5633i −0.873598 + 0.634706i
\(682\) 0 0
\(683\) −34.9728 −1.33820 −0.669098 0.743174i \(-0.733319\pi\)
−0.669098 + 0.743174i \(0.733319\pi\)
\(684\) 0 0
\(685\) 0.0545209 + 0.167798i 0.00208314 + 0.00641124i
\(686\) 0 0
\(687\) 3.96544 12.2044i 0.151291 0.465626i
\(688\) 0 0
\(689\) 1.59120 4.89721i 0.0606199 0.186569i
\(690\) 0 0
\(691\) 36.5285 + 26.5395i 1.38961 + 1.00961i 0.995908 + 0.0903723i \(0.0288057\pi\)
0.393702 + 0.919238i \(0.371194\pi\)
\(692\) 0 0
\(693\) −8.42436 25.9275i −0.320015 0.984905i
\(694\) 0 0
\(695\) −0.395098 0.287055i −0.0149869 0.0108886i
\(696\) 0 0
\(697\) 10.8753 4.78942i 0.411930 0.181412i
\(698\) 0 0
\(699\) 33.9196 + 24.6441i 1.28296 + 0.932124i
\(700\) 0 0
\(701\) 8.89671 + 27.3813i 0.336024 + 1.03418i 0.966215 + 0.257736i \(0.0829766\pi\)
−0.630191 + 0.776440i \(0.717023\pi\)
\(702\) 0 0
\(703\) 12.0636 + 8.76472i 0.454987 + 0.330568i
\(704\) 0 0
\(705\) −0.728742 + 2.24284i −0.0274460 + 0.0844701i
\(706\) 0 0
\(707\) 10.5063 32.3350i 0.395129 1.21608i
\(708\) 0 0
\(709\) −7.52917 23.1724i −0.282764 0.870258i −0.987060 0.160352i \(-0.948737\pi\)
0.704296 0.709906i \(-0.251263\pi\)
\(710\) 0 0
\(711\) −49.4287 −1.85372
\(712\) 0 0
\(713\) 3.90855 2.83973i 0.146376 0.106349i
\(714\) 0 0
\(715\) −0.950144 0.690320i −0.0355334 0.0258165i
\(716\) 0 0
\(717\) −31.2875 + 22.7317i −1.16845 + 0.848931i
\(718\) 0 0
\(719\) −2.07294 + 1.50608i −0.0773075 + 0.0561672i −0.625768 0.780009i \(-0.715214\pi\)
0.548460 + 0.836177i \(0.315214\pi\)
\(720\) 0 0
\(721\) −6.93869 + 21.3551i −0.258410 + 0.795305i
\(722\) 0 0
\(723\) −1.90765 5.87115i −0.0709463 0.218350i
\(724\) 0 0
\(725\) 3.27871 + 2.38212i 0.121768 + 0.0884699i
\(726\) 0 0
\(727\) −7.95870 + 24.4944i −0.295172 + 0.908446i 0.687992 + 0.725718i \(0.258492\pi\)
−0.983164 + 0.182727i \(0.941508\pi\)
\(728\) 0 0
\(729\) −34.2095 −1.26702
\(730\) 0 0
\(731\) 0.510989 0.371255i 0.0188996 0.0137314i
\(732\) 0 0
\(733\) −14.8221 45.6178i −0.547468 1.68493i −0.715050 0.699074i \(-0.753596\pi\)
0.167582 0.985858i \(-0.446404\pi\)
\(734\) 0 0
\(735\) 15.4046 0.568208
\(736\) 0 0
\(737\) −31.6860 −1.16717
\(738\) 0 0
\(739\) 7.73375 0.284491 0.142245 0.989831i \(-0.454568\pi\)
0.142245 + 0.989831i \(0.454568\pi\)
\(740\) 0 0
\(741\) 5.78744 0.212607
\(742\) 0 0
\(743\) −6.59654 20.3021i −0.242003 0.744810i −0.996115 0.0880636i \(-0.971932\pi\)
0.754111 0.656747i \(-0.228068\pi\)
\(744\) 0 0
\(745\) 4.49679 3.26711i 0.164749 0.119697i
\(746\) 0 0
\(747\) 24.5647 0.898775
\(748\) 0 0
\(749\) −1.62871 + 5.01265i −0.0595117 + 0.183158i
\(750\) 0 0
\(751\) 4.33998 + 3.15318i 0.158368 + 0.115061i 0.664147 0.747602i \(-0.268795\pi\)
−0.505779 + 0.862663i \(0.668795\pi\)
\(752\) 0 0
\(753\) −19.8091 60.9661i −0.721883 2.22173i
\(754\) 0 0
\(755\) 4.83775 14.8891i 0.176064 0.541869i
\(756\) 0 0
\(757\) −29.8701 + 21.7019i −1.08565 + 0.788768i −0.978659 0.205492i \(-0.934120\pi\)
−0.106987 + 0.994260i \(0.534120\pi\)
\(758\) 0 0
\(759\) −2.26224 + 1.64362i −0.0821142 + 0.0596595i
\(760\) 0 0
\(761\) 0.0565426 + 0.0410806i 0.00204967 + 0.00148917i 0.588810 0.808272i \(-0.299597\pi\)
−0.586760 + 0.809761i \(0.699597\pi\)
\(762\) 0 0
\(763\) 5.43282 3.94718i 0.196681 0.142897i
\(764\) 0 0
\(765\) 6.37850 0.230615
\(766\) 0 0
\(767\) −1.63962 5.04624i −0.0592033 0.182209i
\(768\) 0 0
\(769\) −7.75381 + 23.8638i −0.279609 + 0.860549i 0.708353 + 0.705858i \(0.249438\pi\)
−0.987963 + 0.154691i \(0.950562\pi\)
\(770\) 0 0
\(771\) 13.9782 43.0204i 0.503412 1.54934i
\(772\) 0 0
\(773\) 7.36232 + 5.34904i 0.264804 + 0.192391i 0.712262 0.701913i \(-0.247671\pi\)
−0.447458 + 0.894305i \(0.647671\pi\)
\(774\) 0 0
\(775\) −2.97174 9.14608i −0.106748 0.328537i
\(776\) 0 0
\(777\) −25.9693 18.8678i −0.931643 0.676879i
\(778\) 0 0
\(779\) −26.6651 5.78054i −0.955377 0.207109i
\(780\) 0 0
\(781\) 17.8625 + 12.9779i 0.639172 + 0.464386i
\(782\) 0 0
\(783\) −1.38848 4.27329i −0.0496201 0.152715i
\(784\) 0 0
\(785\) −9.69086 7.04082i −0.345882 0.251298i
\(786\) 0 0
\(787\) −12.7495 + 39.2389i −0.454470 + 1.39871i 0.417286 + 0.908775i \(0.362981\pi\)
−0.871756 + 0.489940i \(0.837019\pi\)
\(788\) 0 0
\(789\) 1.66191 5.11484i 0.0591656 0.182093i
\(790\) 0 0
\(791\) 14.0282 + 43.1744i 0.498785 + 1.53510i
\(792\) 0 0
\(793\) 2.17562 0.0772584
\(794\) 0 0
\(795\) −19.7433 + 14.3444i −0.700224 + 0.508742i
\(796\) 0 0
\(797\) 0.153469 + 0.111502i 0.00543616 + 0.00394960i 0.590500 0.807038i \(-0.298931\pi\)
−0.585064 + 0.810987i \(0.698931\pi\)
\(798\) 0 0
\(799\) 1.39556 1.01393i 0.0493713 0.0358703i
\(800\) 0 0
\(801\) 10.6211 7.71671i 0.375280 0.272657i
\(802\) 0 0
\(803\) −1.08432 + 3.33720i −0.0382648 + 0.117767i
\(804\) 0 0
\(805\) −0.561278 1.72744i −0.0197824 0.0608841i
\(806\) 0 0
\(807\) 4.64868 + 3.37746i 0.163641 + 0.118892i
\(808\) 0 0
\(809\) −5.71105 + 17.5768i −0.200790 + 0.617968i 0.799070 + 0.601238i \(0.205326\pi\)
−0.999860 + 0.0167299i \(0.994674\pi\)
\(810\) 0 0
\(811\) 1.74792 0.0613777 0.0306889 0.999529i \(-0.490230\pi\)
0.0306889 + 0.999529i \(0.490230\pi\)
\(812\) 0 0
\(813\) 31.8061 23.1085i 1.11549 0.810450i
\(814\) 0 0
\(815\) 5.97492 + 18.3889i 0.209292 + 0.644135i
\(816\) 0 0
\(817\) −1.45023 −0.0507372
\(818\) 0 0
\(819\) −6.65219 −0.232446
\(820\) 0 0
\(821\) 23.8076 0.830891 0.415445 0.909618i \(-0.363626\pi\)
0.415445 + 0.909618i \(0.363626\pi\)
\(822\) 0 0
\(823\) −4.94235 −0.172280 −0.0861398 0.996283i \(-0.527453\pi\)
−0.0861398 + 0.996283i \(0.527453\pi\)
\(824\) 0 0
\(825\) 1.72002 + 5.29369i 0.0598836 + 0.184303i
\(826\) 0 0
\(827\) 14.7503 10.7167i 0.512919 0.372657i −0.301011 0.953621i \(-0.597324\pi\)
0.813930 + 0.580963i \(0.197324\pi\)
\(828\) 0 0
\(829\) 19.2878 0.669892 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(830\) 0 0
\(831\) −3.02976 + 9.32465i −0.105101 + 0.323469i
\(832\) 0 0
\(833\) −9.11607 6.62321i −0.315853 0.229481i
\(834\) 0 0
\(835\) −1.21327 3.73405i −0.0419868 0.129222i
\(836\) 0 0
\(837\) −3.29474 + 10.1402i −0.113883 + 0.350496i
\(838\) 0 0
\(839\) 5.57283 4.04890i 0.192395 0.139783i −0.487417 0.873169i \(-0.662061\pi\)
0.679813 + 0.733386i \(0.262061\pi\)
\(840\) 0 0
\(841\) 10.1738 7.39171i 0.350821 0.254887i
\(842\) 0 0
\(843\) −64.2258 46.6627i −2.21205 1.60715i
\(844\) 0 0
\(845\) 10.2854 7.47276i 0.353828 0.257071i
\(846\) 0 0
\(847\) 22.3687 0.768599
\(848\) 0 0
\(849\) 11.4921 + 35.3692i 0.394409 + 1.21387i
\(850\) 0 0
\(851\) −0.543260 + 1.67198i −0.0186227 + 0.0573148i
\(852\) 0 0
\(853\) −0.457554 + 1.40821i −0.0156663 + 0.0482160i −0.958584 0.284810i \(-0.908070\pi\)
0.942918 + 0.333026i \(0.108070\pi\)
\(854\) 0 0
\(855\) −11.8484 8.60836i −0.405207 0.294400i
\(856\) 0 0
\(857\) 10.4075 + 32.0309i 0.355513 + 1.09416i 0.955712 + 0.294305i \(0.0950880\pi\)
−0.600199 + 0.799851i \(0.704912\pi\)
\(858\) 0 0
\(859\) −41.0998 29.8607i −1.40231 1.01883i −0.994386 0.105818i \(-0.966254\pi\)
−0.407921 0.913017i \(-0.633746\pi\)
\(860\) 0 0
\(861\) 57.4020 + 12.4438i 1.95625 + 0.424082i
\(862\) 0 0
\(863\) 41.8167 + 30.3816i 1.42346 + 1.03420i 0.991189 + 0.132456i \(0.0422864\pi\)
0.432268 + 0.901745i \(0.357714\pi\)
\(864\) 0 0
\(865\) 4.60394 + 14.1695i 0.156539 + 0.481777i
\(866\) 0 0
\(867\) 27.8244 + 20.2156i 0.944967 + 0.686558i
\(868\) 0 0
\(869\) −9.74976 + 30.0067i −0.330738 + 1.01791i
\(870\) 0 0
\(871\) −2.38924 + 7.35333i −0.0809563 + 0.249158i
\(872\) 0 0
\(873\) −9.73581 29.9638i −0.329507 1.01412i
\(874\) 0 0
\(875\) −3.61548 −0.122226
\(876\) 0 0
\(877\) 36.8906 26.8026i 1.24571 0.905058i 0.247741 0.968826i \(-0.420312\pi\)
0.997965 + 0.0637680i \(0.0203118\pi\)
\(878\) 0 0
\(879\) 39.6905 + 28.8369i 1.33873 + 0.972643i
\(880\) 0 0
\(881\) −34.9651 + 25.4036i −1.17800 + 0.855869i −0.991945 0.126670i \(-0.959571\pi\)
−0.186058 + 0.982539i \(0.559571\pi\)
\(882\) 0 0
\(883\) 1.85543 1.34805i 0.0624402 0.0453655i −0.556127 0.831097i \(-0.687713\pi\)
0.618568 + 0.785732i \(0.287713\pi\)
\(884\) 0 0
\(885\) −7.77077 + 23.9160i −0.261212 + 0.803926i
\(886\) 0 0
\(887\) −16.6623 51.2814i −0.559466 1.72186i −0.683847 0.729625i \(-0.739694\pi\)
0.124381 0.992235i \(-0.460306\pi\)
\(888\) 0 0
\(889\) 3.10608 + 2.25670i 0.104175 + 0.0756873i
\(890\) 0 0
\(891\) −5.08327 + 15.6447i −0.170296 + 0.524117i
\(892\) 0 0
\(893\) −3.96072 −0.132540
\(894\) 0 0
\(895\) 6.00594 4.36357i 0.200756 0.145858i
\(896\) 0 0
\(897\) 0.210850 + 0.648931i 0.00704009 + 0.0216672i
\(898\) 0 0
\(899\) 38.9739 1.29985
\(900\) 0 0
\(901\) 17.8510 0.594702
\(902\) 0 0
\(903\) 3.12191 0.103891
\(904\) 0 0
\(905\) −26.6993 −0.887516
\(906\) 0 0
\(907\) −3.37815 10.3969i −0.112170 0.345222i 0.879177 0.476496i \(-0.158093\pi\)
−0.991346 + 0.131274i \(0.958093\pi\)
\(908\) 0 0
\(909\) 26.1479 18.9975i 0.867271 0.630109i
\(910\) 0 0
\(911\) −41.2157 −1.36554 −0.682769 0.730634i \(-0.739225\pi\)
−0.682769 + 0.730634i \(0.739225\pi\)
\(912\) 0 0
\(913\) 4.84537 14.9125i 0.160358 0.493532i
\(914\) 0 0
\(915\) −8.34180 6.06067i −0.275771 0.200360i
\(916\) 0 0
\(917\) −20.5576 63.2699i −0.678873 2.08935i
\(918\) 0 0
\(919\) 1.69649 5.22127i 0.0559621 0.172234i −0.919169 0.393864i \(-0.871138\pi\)
0.975131 + 0.221631i \(0.0711379\pi\)
\(920\) 0 0
\(921\) 21.7769 15.8218i 0.717573 0.521347i
\(922\) 0 0
\(923\) 4.35867 3.16676i 0.143467 0.104235i
\(924\) 0 0
\(925\) 2.83109 + 2.05690i 0.0930855 + 0.0676306i
\(926\) 0 0
\(927\) −17.2689 + 12.5466i −0.567185 + 0.412084i
\(928\) 0 0
\(929\) −27.4414 −0.900323 −0.450161 0.892947i \(-0.648634\pi\)
−0.450161 + 0.892947i \(0.648634\pi\)
\(930\) 0 0
\(931\) 7.99495 + 24.6059i 0.262024 + 0.806427i
\(932\) 0 0
\(933\) 12.8405 39.5191i 0.420381 1.29380i
\(934\) 0 0
\(935\) 1.25815 3.87220i 0.0411460 0.126634i
\(936\) 0 0
\(937\) 41.2232 + 29.9504i 1.34670 + 0.978438i 0.999169 + 0.0407712i \(0.0129815\pi\)
0.347536 + 0.937667i \(0.387019\pi\)
\(938\) 0 0
\(939\) 8.51279 + 26.1997i 0.277804 + 0.854994i
\(940\) 0 0
\(941\) 23.3431 + 16.9598i 0.760964 + 0.552872i 0.899206 0.437526i \(-0.144145\pi\)
−0.138242 + 0.990398i \(0.544145\pi\)
\(942\) 0 0
\(943\) −0.323318 3.20049i −0.0105287 0.104222i
\(944\) 0 0
\(945\) 3.24290 + 2.35611i 0.105492 + 0.0766442i
\(946\) 0 0
\(947\) −4.45864 13.7223i −0.144886 0.445915i 0.852110 0.523363i \(-0.175323\pi\)
−0.996996 + 0.0774482i \(0.975323\pi\)
\(948\) 0 0
\(949\) 0.692697 + 0.503274i 0.0224859 + 0.0163370i
\(950\) 0 0
\(951\) −12.8520 + 39.5544i −0.416755 + 1.28264i
\(952\) 0 0
\(953\) −13.8129 + 42.5117i −0.447443 + 1.37709i 0.432338 + 0.901711i \(0.357689\pi\)
−0.879782 + 0.475378i \(0.842311\pi\)
\(954\) 0 0
\(955\) −2.35158 7.23743i −0.0760955 0.234198i
\(956\) 0 0
\(957\) −22.5579 −0.729192
\(958\) 0 0
\(959\) 0.516065 0.374943i 0.0166646 0.0121075i
\(960\) 0 0
\(961\) −49.7400 36.1382i −1.60452 1.16575i
\(962\) 0 0
\(963\) −4.05351 + 2.94505i −0.130622 + 0.0949028i
\(964\) 0 0
\(965\) 7.22740 5.25102i 0.232658 0.169036i
\(966\) 0 0
\(967\) −0.659955 + 2.03113i −0.0212227 + 0.0653168i −0.961107 0.276176i \(-0.910933\pi\)
0.939884 + 0.341493i \(0.110933\pi\)
\(968\) 0 0
\(969\) 6.19995 + 19.0815i 0.199171 + 0.612985i
\(970\) 0 0
\(971\) −42.1793 30.6451i −1.35360 0.983447i −0.998823 0.0484958i \(-0.984557\pi\)
−0.354776 0.934951i \(-0.615443\pi\)
\(972\) 0 0
\(973\) −0.545626 + 1.67927i −0.0174920 + 0.0538348i
\(974\) 0 0
\(975\) 1.35820 0.0434971
\(976\) 0 0
\(977\) −23.0909 + 16.7766i −0.738745 + 0.536729i −0.892318 0.451408i \(-0.850922\pi\)
0.153573 + 0.988137i \(0.450922\pi\)
\(978\) 0 0
\(979\) −2.58958 7.96990i −0.0827632 0.254719i
\(980\) 0 0
\(981\) 6.38381 0.203819
\(982\) 0 0
\(983\) −55.9425 −1.78429 −0.892144 0.451751i \(-0.850799\pi\)
−0.892144 + 0.451751i \(0.850799\pi\)
\(984\) 0 0
\(985\) −13.7567 −0.438324
\(986\) 0 0
\(987\) 8.52623 0.271393
\(988\) 0 0
\(989\) −0.0528354 0.162611i −0.00168007 0.00517072i
\(990\) 0 0
\(991\) 15.6321 11.3574i 0.496569 0.360779i −0.311136 0.950365i \(-0.600709\pi\)
0.807705 + 0.589587i \(0.200709\pi\)
\(992\) 0 0
\(993\) −37.7793 −1.19889
\(994\) 0 0
\(995\) 7.43976 22.8972i 0.235856 0.725891i
\(996\) 0 0
\(997\) 34.8449 + 25.3163i 1.10355 + 0.801776i 0.981636 0.190764i \(-0.0610966\pi\)
0.121915 + 0.992541i \(0.461097\pi\)
\(998\) 0 0
\(999\) −1.19891 3.68988i −0.0379320 0.116743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.a.461.5 yes 24
41.37 even 5 inner 820.2.u.a.201.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.a.201.5 24 41.37 even 5 inner
820.2.u.a.461.5 yes 24 1.1 even 1 trivial