L(s) = 1 | + 0.309·3-s + (0.309 − 0.951i)5-s + (−1.44 − 1.05i)7-s − 2.90·9-s + (−0.302 − 0.932i)11-s + (−3.05 + 2.21i)13-s + (0.0956 − 0.294i)15-s + (−0.642 − 1.97i)17-s + (−2.16 − 1.57i)19-s + (−0.448 − 0.326i)21-s + (−5.35 + 3.89i)23-s + (−0.809 − 0.587i)25-s − 1.82·27-s + (−0.261 + 0.806i)29-s + (−0.586 − 1.80i)31-s + ⋯ |
L(s) = 1 | + 0.178·3-s + (0.138 − 0.425i)5-s + (−0.547 − 0.398i)7-s − 0.968·9-s + (−0.0913 − 0.281i)11-s + (−0.847 + 0.615i)13-s + (0.0247 − 0.0760i)15-s + (−0.155 − 0.479i)17-s + (−0.495 − 0.360i)19-s + (−0.0979 − 0.0711i)21-s + (−1.11 + 0.811i)23-s + (−0.161 − 0.117i)25-s − 0.351·27-s + (−0.0486 + 0.149i)29-s + (−0.105 − 0.323i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.982 + 0.187i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.982 + 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0319877 - 0.337525i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0319877 - 0.337525i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (4.23 - 4.80i)T \) |
good | 3 | \( 1 - 0.309T + 3T^{2} \) |
| 7 | \( 1 + (1.44 + 1.05i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (0.302 + 0.932i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (3.05 - 2.21i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.642 + 1.97i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (2.16 + 1.57i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (5.35 - 3.89i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (0.261 - 0.806i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.586 + 1.80i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.0450 + 0.138i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (-2.32 + 1.68i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (-5.91 + 4.29i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (1.81 - 5.58i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-5.41 + 3.93i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (4.61 + 3.35i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-1.04 + 3.21i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (4.32 + 13.3i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + 11.7T + 73T^{2} \) |
| 79 | \( 1 - 6.94T + 79T^{2} \) |
| 83 | \( 1 + 7.29T + 83T^{2} \) |
| 89 | \( 1 + (7.68 + 5.58i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (3.68 - 11.3i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.673850921626118214391422149827, −9.096434355385057115296376809816, −8.195880158240102805974856366588, −7.28924558074461229424858151085, −6.31351881582115623963298985579, −5.41678640861037669074405760929, −4.37326764908429879811443366216, −3.24709251842251734622261948129, −2.09754771828892022247759796860, −0.14721608651049345051468720271,
2.23301643024507336863306901771, 3.01241830511614420675838592715, 4.23228170178023353198260689517, 5.56112180040658334184558809992, 6.16319908950798713924881338903, 7.20712133378357648923234774946, 8.179158841701517841862410826052, 8.875605093286092102129084690545, 9.925193391830359066985965269316, 10.43505362407300303105005602293