L(s) = 1 | + 3.07·3-s + (0.309 + 0.951i)5-s + (−2.25 + 1.63i)7-s + 6.47·9-s + (−1.30 + 4.02i)11-s + (−0.246 − 0.178i)13-s + (0.951 + 2.92i)15-s + (−1.50 + 4.63i)17-s + (6.63 − 4.82i)19-s + (−6.93 + 5.03i)21-s + (1.47 + 1.06i)23-s + (−0.809 + 0.587i)25-s + 10.6·27-s + (−0.727 − 2.24i)29-s + (1.34 − 4.14i)31-s + ⋯ |
L(s) = 1 | + 1.77·3-s + (0.138 + 0.425i)5-s + (−0.851 + 0.618i)7-s + 2.15·9-s + (−0.394 + 1.21i)11-s + (−0.0682 − 0.0495i)13-s + (0.245 + 0.755i)15-s + (−0.365 + 1.12i)17-s + (1.52 − 1.10i)19-s + (−1.51 + 1.09i)21-s + (0.307 + 0.223i)23-s + (−0.161 + 0.117i)25-s + 2.05·27-s + (−0.135 − 0.415i)29-s + (0.241 − 0.743i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 - 0.725i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.687 - 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.43944 + 1.04904i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43944 + 1.04904i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-6.32 + 0.970i)T \) |
good | 3 | \( 1 - 3.07T + 3T^{2} \) |
| 7 | \( 1 + (2.25 - 1.63i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (1.30 - 4.02i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (0.246 + 0.178i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.50 - 4.63i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-6.63 + 4.82i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.47 - 1.06i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (0.727 + 2.24i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.34 + 4.14i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (1.44 + 4.45i)T + (-29.9 + 21.7i)T^{2} \) |
| 43 | \( 1 + (-3.39 - 2.46i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (2.72 + 1.98i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (2.92 + 9.00i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (7.93 + 5.76i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.89 + 1.37i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (2.11 + 6.49i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (-1.55 + 4.77i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + 11.5T + 73T^{2} \) |
| 79 | \( 1 + 11.1T + 79T^{2} \) |
| 83 | \( 1 - 9.74T + 83T^{2} \) |
| 89 | \( 1 + (-4.05 + 2.94i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-0.935 - 2.87i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.814604662186883634084957908168, −9.558418644318366400989895514886, −8.801542834920713927046591901464, −7.72523153987666760373456731146, −7.23273207359176632679515622253, −6.16175936194213779744640808662, −4.74785830232832800125313158163, −3.59398208950966675722159136402, −2.76847601060861898236912496360, −1.99535890122837388140602912382,
1.18386070066949823807858964983, 2.88526784044924845976136915801, 3.28866275250974482082649966536, 4.42434162325170325413598857379, 5.71731929359609159352517578325, 7.02046077948126353764776227343, 7.67408176388516746030539659122, 8.528965745215320038113509577100, 9.230002318315436452102145466831, 9.819854932840820420337124195655