L(s) = 1 | + 3.07·3-s + (0.309 − 0.951i)5-s + (−2.25 − 1.63i)7-s + 6.47·9-s + (−1.30 − 4.02i)11-s + (−0.246 + 0.178i)13-s + (0.951 − 2.92i)15-s + (−1.50 − 4.63i)17-s + (6.63 + 4.82i)19-s + (−6.93 − 5.03i)21-s + (1.47 − 1.06i)23-s + (−0.809 − 0.587i)25-s + 10.6·27-s + (−0.727 + 2.24i)29-s + (1.34 + 4.14i)31-s + ⋯ |
L(s) = 1 | + 1.77·3-s + (0.138 − 0.425i)5-s + (−0.851 − 0.618i)7-s + 2.15·9-s + (−0.394 − 1.21i)11-s + (−0.0682 + 0.0495i)13-s + (0.245 − 0.755i)15-s + (−0.365 − 1.12i)17-s + (1.52 + 1.10i)19-s + (−1.51 − 1.09i)21-s + (0.307 − 0.223i)23-s + (−0.161 − 0.117i)25-s + 2.05·27-s + (−0.135 + 0.415i)29-s + (0.241 + 0.743i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 + 0.725i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.687 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.43944 - 1.04904i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43944 - 1.04904i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-6.32 - 0.970i)T \) |
good | 3 | \( 1 - 3.07T + 3T^{2} \) |
| 7 | \( 1 + (2.25 + 1.63i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (1.30 + 4.02i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (0.246 - 0.178i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.50 + 4.63i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-6.63 - 4.82i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.47 + 1.06i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (0.727 - 2.24i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.34 - 4.14i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (1.44 - 4.45i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (-3.39 + 2.46i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (2.72 - 1.98i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.92 - 9.00i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (7.93 - 5.76i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.89 - 1.37i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (2.11 - 6.49i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-1.55 - 4.77i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + 11.5T + 73T^{2} \) |
| 79 | \( 1 + 11.1T + 79T^{2} \) |
| 83 | \( 1 - 9.74T + 83T^{2} \) |
| 89 | \( 1 + (-4.05 - 2.94i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-0.935 + 2.87i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.819854932840820420337124195655, −9.230002318315436452102145466831, −8.528965745215320038113509577100, −7.67408176388516746030539659122, −7.02046077948126353764776227343, −5.71731929359609159352517578325, −4.42434162325170325413598857379, −3.28866275250974482082649966536, −2.88526784044924845976136915801, −1.18386070066949823807858964983,
1.99535890122837388140602912382, 2.76847601060861898236912496360, 3.59398208950966675722159136402, 4.74785830232832800125313158163, 6.16175936194213779744640808662, 7.23273207359176632679515622253, 7.72523153987666760373456731146, 8.801542834920713927046591901464, 9.558418644318366400989895514886, 9.814604662186883634084957908168