Properties

Label 820.2.u.a.201.6
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.6
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.a.461.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.07771 q^{3} +(0.309017 - 0.951057i) q^{5} +(-2.25264 - 1.63664i) q^{7} +6.47232 q^{9} +(-1.30935 - 4.02977i) q^{11} +(-0.246061 + 0.178774i) q^{13} +(0.951066 - 2.92708i) q^{15} +(-1.50621 - 4.63563i) q^{17} +(6.63495 + 4.82057i) q^{19} +(-6.93298 - 5.03710i) q^{21} +(1.47271 - 1.06999i) q^{23} +(-0.809017 - 0.587785i) q^{25} +10.6868 q^{27} +(-0.727875 + 2.24017i) q^{29} +(1.34569 + 4.14160i) q^{31} +(-4.02981 - 12.4025i) q^{33} +(-2.25264 + 1.63664i) q^{35} +(-1.44758 + 4.45520i) q^{37} +(-0.757304 + 0.550214i) q^{39} +(6.32912 + 0.970675i) q^{41} +(3.39125 - 2.46389i) q^{43} +(2.00006 - 6.15554i) q^{45} +(-2.72993 + 1.98341i) q^{47} +(0.232682 + 0.716122i) q^{49} +(-4.63567 - 14.2671i) q^{51} +(-2.92668 + 9.00740i) q^{53} -4.23715 q^{55} +(20.4205 + 14.8363i) q^{57} +(-7.93983 + 5.76862i) q^{59} +(1.89333 + 1.37558i) q^{61} +(-14.5798 - 10.5928i) q^{63} +(0.0939869 + 0.289262i) q^{65} +(-2.11143 + 6.49831i) q^{67} +(4.53258 - 3.29311i) q^{69} +(1.55188 + 4.77620i) q^{71} -11.5986 q^{73} +(-2.48992 - 1.80903i) q^{75} +(-3.64578 + 11.2206i) q^{77} -11.1197 q^{79} +13.4739 q^{81} +9.74140 q^{83} -4.87419 q^{85} +(-2.24019 + 6.89460i) q^{87} +(4.05088 + 2.94313i) q^{89} +0.846874 q^{91} +(4.14164 + 12.7466i) q^{93} +(6.63495 - 4.82057i) q^{95} +(0.935472 - 2.87909i) q^{97} +(-8.47453 - 26.0819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} + 5 q^{7} + 18 q^{9} - 7 q^{11} - 5 q^{13} + 2 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} + 20 q^{23} - 6 q^{25} + 20 q^{27} - 15 q^{29} - q^{31} - 6 q^{33} + 5 q^{35} + q^{37} + 28 q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.07771 1.77692 0.888459 0.458956i \(-0.151776\pi\)
0.888459 + 0.458956i \(0.151776\pi\)
\(4\) 0 0
\(5\) 0.309017 0.951057i 0.138197 0.425325i
\(6\) 0 0
\(7\) −2.25264 1.63664i −0.851418 0.618591i 0.0741187 0.997249i \(-0.476386\pi\)
−0.925537 + 0.378658i \(0.876386\pi\)
\(8\) 0 0
\(9\) 6.47232 2.15744
\(10\) 0 0
\(11\) −1.30935 4.02977i −0.394784 1.21502i −0.929130 0.369754i \(-0.879442\pi\)
0.534345 0.845266i \(-0.320558\pi\)
\(12\) 0 0
\(13\) −0.246061 + 0.178774i −0.0682450 + 0.0495829i −0.621385 0.783506i \(-0.713430\pi\)
0.553140 + 0.833089i \(0.313430\pi\)
\(14\) 0 0
\(15\) 0.951066 2.92708i 0.245564 0.755769i
\(16\) 0 0
\(17\) −1.50621 4.63563i −0.365309 1.12430i −0.949787 0.312896i \(-0.898701\pi\)
0.584479 0.811409i \(-0.301299\pi\)
\(18\) 0 0
\(19\) 6.63495 + 4.82057i 1.52216 + 1.10591i 0.960404 + 0.278613i \(0.0898746\pi\)
0.561757 + 0.827302i \(0.310125\pi\)
\(20\) 0 0
\(21\) −6.93298 5.03710i −1.51290 1.09919i
\(22\) 0 0
\(23\) 1.47271 1.06999i 0.307081 0.223108i −0.423562 0.905867i \(-0.639220\pi\)
0.730643 + 0.682760i \(0.239220\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) 10.6868 2.05667
\(28\) 0 0
\(29\) −0.727875 + 2.24017i −0.135163 + 0.415989i −0.995615 0.0935419i \(-0.970181\pi\)
0.860452 + 0.509531i \(0.170181\pi\)
\(30\) 0 0
\(31\) 1.34569 + 4.14160i 0.241692 + 0.743853i 0.996163 + 0.0875188i \(0.0278938\pi\)
−0.754470 + 0.656334i \(0.772106\pi\)
\(32\) 0 0
\(33\) −4.02981 12.4025i −0.701499 2.15899i
\(34\) 0 0
\(35\) −2.25264 + 1.63664i −0.380766 + 0.276642i
\(36\) 0 0
\(37\) −1.44758 + 4.45520i −0.237981 + 0.732430i 0.758731 + 0.651404i \(0.225820\pi\)
−0.996712 + 0.0810257i \(0.974180\pi\)
\(38\) 0 0
\(39\) −0.757304 + 0.550214i −0.121266 + 0.0881047i
\(40\) 0 0
\(41\) 6.32912 + 0.970675i 0.988443 + 0.151594i
\(42\) 0 0
\(43\) 3.39125 2.46389i 0.517161 0.375740i −0.298372 0.954450i \(-0.596444\pi\)
0.815533 + 0.578710i \(0.196444\pi\)
\(44\) 0 0
\(45\) 2.00006 6.15554i 0.298151 0.917614i
\(46\) 0 0
\(47\) −2.72993 + 1.98341i −0.398201 + 0.289310i −0.768808 0.639480i \(-0.779150\pi\)
0.370607 + 0.928790i \(0.379150\pi\)
\(48\) 0 0
\(49\) 0.232682 + 0.716122i 0.0332403 + 0.102303i
\(50\) 0 0
\(51\) −4.63567 14.2671i −0.649124 1.99780i
\(52\) 0 0
\(53\) −2.92668 + 9.00740i −0.402011 + 1.23726i 0.521355 + 0.853340i \(0.325427\pi\)
−0.923366 + 0.383922i \(0.874573\pi\)
\(54\) 0 0
\(55\) −4.23715 −0.571337
\(56\) 0 0
\(57\) 20.4205 + 14.8363i 2.70476 + 1.96512i
\(58\) 0 0
\(59\) −7.93983 + 5.76862i −1.03368 + 0.751011i −0.969041 0.246898i \(-0.920589\pi\)
−0.0646363 + 0.997909i \(0.520589\pi\)
\(60\) 0 0
\(61\) 1.89333 + 1.37558i 0.242416 + 0.176125i 0.702359 0.711823i \(-0.252130\pi\)
−0.459943 + 0.887948i \(0.652130\pi\)
\(62\) 0 0
\(63\) −14.5798 10.5928i −1.83688 1.33457i
\(64\) 0 0
\(65\) 0.0939869 + 0.289262i 0.0116576 + 0.0358785i
\(66\) 0 0
\(67\) −2.11143 + 6.49831i −0.257952 + 0.793895i 0.735282 + 0.677762i \(0.237050\pi\)
−0.993234 + 0.116133i \(0.962950\pi\)
\(68\) 0 0
\(69\) 4.53258 3.29311i 0.545658 0.396444i
\(70\) 0 0
\(71\) 1.55188 + 4.77620i 0.184175 + 0.566831i 0.999933 0.0115615i \(-0.00368022\pi\)
−0.815759 + 0.578393i \(0.803680\pi\)
\(72\) 0 0
\(73\) −11.5986 −1.35751 −0.678756 0.734363i \(-0.737481\pi\)
−0.678756 + 0.734363i \(0.737481\pi\)
\(74\) 0 0
\(75\) −2.48992 1.80903i −0.287511 0.208889i
\(76\) 0 0
\(77\) −3.64578 + 11.2206i −0.415475 + 1.27870i
\(78\) 0 0
\(79\) −11.1197 −1.25107 −0.625533 0.780198i \(-0.715118\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(80\) 0 0
\(81\) 13.4739 1.49710
\(82\) 0 0
\(83\) 9.74140 1.06926 0.534629 0.845087i \(-0.320452\pi\)
0.534629 + 0.845087i \(0.320452\pi\)
\(84\) 0 0
\(85\) −4.87419 −0.528680
\(86\) 0 0
\(87\) −2.24019 + 6.89460i −0.240174 + 0.739179i
\(88\) 0 0
\(89\) 4.05088 + 2.94313i 0.429392 + 0.311971i 0.781406 0.624023i \(-0.214503\pi\)
−0.352014 + 0.935995i \(0.614503\pi\)
\(90\) 0 0
\(91\) 0.846874 0.0887766
\(92\) 0 0
\(93\) 4.14164 + 12.7466i 0.429468 + 1.32177i
\(94\) 0 0
\(95\) 6.63495 4.82057i 0.680731 0.494580i
\(96\) 0 0
\(97\) 0.935472 2.87909i 0.0949828 0.292327i −0.892266 0.451509i \(-0.850886\pi\)
0.987249 + 0.159182i \(0.0508858\pi\)
\(98\) 0 0
\(99\) −8.47453 26.0819i −0.851723 2.62133i
\(100\) 0 0
\(101\) −12.0304 8.74058i −1.19707 0.869721i −0.203075 0.979163i \(-0.565093\pi\)
−0.993993 + 0.109443i \(0.965093\pi\)
\(102\) 0 0
\(103\) 3.68476 + 2.67713i 0.363070 + 0.263786i 0.754331 0.656494i \(-0.227961\pi\)
−0.391261 + 0.920280i \(0.627961\pi\)
\(104\) 0 0
\(105\) −6.93298 + 5.03710i −0.676590 + 0.491571i
\(106\) 0 0
\(107\) 7.57918 + 5.50660i 0.732707 + 0.532343i 0.890419 0.455142i \(-0.150412\pi\)
−0.157711 + 0.987485i \(0.550412\pi\)
\(108\) 0 0
\(109\) 11.1379 1.06682 0.533411 0.845856i \(-0.320910\pi\)
0.533411 + 0.845856i \(0.320910\pi\)
\(110\) 0 0
\(111\) −4.45524 + 13.7118i −0.422872 + 1.30147i
\(112\) 0 0
\(113\) −4.99658 15.3779i −0.470039 1.44663i −0.852534 0.522672i \(-0.824935\pi\)
0.382495 0.923958i \(-0.375065\pi\)
\(114\) 0 0
\(115\) −0.562525 1.73127i −0.0524558 0.161442i
\(116\) 0 0
\(117\) −1.59258 + 1.15708i −0.147234 + 0.106972i
\(118\) 0 0
\(119\) −4.19391 + 12.9075i −0.384455 + 1.18323i
\(120\) 0 0
\(121\) −5.62544 + 4.08712i −0.511403 + 0.371556i
\(122\) 0 0
\(123\) 19.4792 + 2.98746i 1.75638 + 0.269370i
\(124\) 0 0
\(125\) −0.809017 + 0.587785i −0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) 0.582735 1.79347i 0.0517093 0.159145i −0.921867 0.387506i \(-0.873337\pi\)
0.973577 + 0.228361i \(0.0733366\pi\)
\(128\) 0 0
\(129\) 10.4373 7.58315i 0.918954 0.667659i
\(130\) 0 0
\(131\) −3.24008 9.97194i −0.283087 0.871252i −0.986966 0.160932i \(-0.948550\pi\)
0.703879 0.710320i \(-0.251450\pi\)
\(132\) 0 0
\(133\) −7.05661 21.7180i −0.611886 1.88319i
\(134\) 0 0
\(135\) 3.30240 10.1637i 0.284225 0.874756i
\(136\) 0 0
\(137\) 18.9115 1.61572 0.807859 0.589376i \(-0.200626\pi\)
0.807859 + 0.589376i \(0.200626\pi\)
\(138\) 0 0
\(139\) 6.93669 + 5.03980i 0.588362 + 0.427470i 0.841729 0.539900i \(-0.181538\pi\)
−0.253367 + 0.967370i \(0.581538\pi\)
\(140\) 0 0
\(141\) −8.40194 + 6.10437i −0.707571 + 0.514081i
\(142\) 0 0
\(143\) 1.04260 + 0.757490i 0.0871863 + 0.0633445i
\(144\) 0 0
\(145\) 1.90560 + 1.38450i 0.158252 + 0.114977i
\(146\) 0 0
\(147\) 0.716129 + 2.20402i 0.0590653 + 0.181784i
\(148\) 0 0
\(149\) 6.02508 18.5433i 0.493594 1.51913i −0.325542 0.945527i \(-0.605547\pi\)
0.819136 0.573599i \(-0.194453\pi\)
\(150\) 0 0
\(151\) 12.1792 8.84873i 0.991132 0.720099i 0.0309631 0.999521i \(-0.490143\pi\)
0.960169 + 0.279421i \(0.0901426\pi\)
\(152\) 0 0
\(153\) −9.74865 30.0032i −0.788131 2.42562i
\(154\) 0 0
\(155\) 4.35473 0.349781
\(156\) 0 0
\(157\) −13.4425 9.76658i −1.07283 0.779458i −0.0964128 0.995341i \(-0.530737\pi\)
−0.976419 + 0.215883i \(0.930737\pi\)
\(158\) 0 0
\(159\) −9.00749 + 27.7222i −0.714340 + 2.19851i
\(160\) 0 0
\(161\) −5.06867 −0.399467
\(162\) 0 0
\(163\) −10.5894 −0.829426 −0.414713 0.909952i \(-0.636118\pi\)
−0.414713 + 0.909952i \(0.636118\pi\)
\(164\) 0 0
\(165\) −13.0407 −1.01522
\(166\) 0 0
\(167\) 12.0754 0.934425 0.467212 0.884145i \(-0.345258\pi\)
0.467212 + 0.884145i \(0.345258\pi\)
\(168\) 0 0
\(169\) −3.98864 + 12.2758i −0.306818 + 0.944289i
\(170\) 0 0
\(171\) 42.9435 + 31.2003i 3.28397 + 2.38594i
\(172\) 0 0
\(173\) −26.2006 −1.99199 −0.995996 0.0894004i \(-0.971505\pi\)
−0.995996 + 0.0894004i \(0.971505\pi\)
\(174\) 0 0
\(175\) 0.860432 + 2.64814i 0.0650425 + 0.200180i
\(176\) 0 0
\(177\) −24.4365 + 17.7542i −1.83676 + 1.33448i
\(178\) 0 0
\(179\) −3.40256 + 10.4720i −0.254319 + 0.782714i 0.739644 + 0.672998i \(0.234994\pi\)
−0.993963 + 0.109715i \(0.965006\pi\)
\(180\) 0 0
\(181\) 6.53226 + 20.1042i 0.485539 + 1.49434i 0.831199 + 0.555975i \(0.187655\pi\)
−0.345660 + 0.938360i \(0.612345\pi\)
\(182\) 0 0
\(183\) 5.82712 + 4.23365i 0.430753 + 0.312961i
\(184\) 0 0
\(185\) 3.78982 + 2.75346i 0.278633 + 0.202439i
\(186\) 0 0
\(187\) −16.7083 + 12.1393i −1.22184 + 0.887715i
\(188\) 0 0
\(189\) −24.0735 17.4904i −1.75109 1.27224i
\(190\) 0 0
\(191\) 9.06674 0.656047 0.328023 0.944670i \(-0.393618\pi\)
0.328023 + 0.944670i \(0.393618\pi\)
\(192\) 0 0
\(193\) −6.97160 + 21.4564i −0.501827 + 1.54446i 0.304213 + 0.952604i \(0.401607\pi\)
−0.806040 + 0.591861i \(0.798393\pi\)
\(194\) 0 0
\(195\) 0.289265 + 0.890265i 0.0207147 + 0.0637532i
\(196\) 0 0
\(197\) −7.93840 24.4319i −0.565587 1.74070i −0.666200 0.745773i \(-0.732080\pi\)
0.100612 0.994926i \(-0.467920\pi\)
\(198\) 0 0
\(199\) −17.6602 + 12.8309i −1.25190 + 0.909559i −0.998331 0.0577576i \(-0.981605\pi\)
−0.253570 + 0.967317i \(0.581605\pi\)
\(200\) 0 0
\(201\) −6.49837 + 19.9999i −0.458360 + 1.41069i
\(202\) 0 0
\(203\) 5.30599 3.85503i 0.372408 0.270570i
\(204\) 0 0
\(205\) 2.87897 5.71940i 0.201076 0.399460i
\(206\) 0 0
\(207\) 9.53185 6.92529i 0.662509 0.481341i
\(208\) 0 0
\(209\) 10.7383 33.0491i 0.742784 2.28605i
\(210\) 0 0
\(211\) −18.5913 + 13.5073i −1.27988 + 0.929884i −0.999549 0.0300212i \(-0.990443\pi\)
−0.280326 + 0.959905i \(0.590443\pi\)
\(212\) 0 0
\(213\) 4.77625 + 14.6998i 0.327263 + 1.00721i
\(214\) 0 0
\(215\) −1.29534 3.98666i −0.0883417 0.271888i
\(216\) 0 0
\(217\) 3.74695 11.5319i 0.254360 0.782839i
\(218\) 0 0
\(219\) −35.6971 −2.41219
\(220\) 0 0
\(221\) 1.19935 + 0.871376i 0.0806768 + 0.0586151i
\(222\) 0 0
\(223\) 7.70014 5.59448i 0.515640 0.374634i −0.299319 0.954153i \(-0.596760\pi\)
0.814959 + 0.579519i \(0.196760\pi\)
\(224\) 0 0
\(225\) −5.23621 3.80433i −0.349081 0.253622i
\(226\) 0 0
\(227\) 19.5957 + 14.2371i 1.30061 + 0.944952i 0.999961 0.00878170i \(-0.00279534\pi\)
0.300653 + 0.953734i \(0.402795\pi\)
\(228\) 0 0
\(229\) 8.40300 + 25.8618i 0.555286 + 1.70899i 0.695188 + 0.718828i \(0.255321\pi\)
−0.139902 + 0.990165i \(0.544679\pi\)
\(230\) 0 0
\(231\) −11.2207 + 34.5336i −0.738265 + 2.27215i
\(232\) 0 0
\(233\) 8.24485 5.99024i 0.540138 0.392434i −0.283998 0.958825i \(-0.591661\pi\)
0.824136 + 0.566391i \(0.191661\pi\)
\(234\) 0 0
\(235\) 1.04274 + 3.20923i 0.0680209 + 0.209347i
\(236\) 0 0
\(237\) −34.2233 −2.22304
\(238\) 0 0
\(239\) 7.39286 + 5.37123i 0.478204 + 0.347436i 0.800630 0.599159i \(-0.204498\pi\)
−0.322426 + 0.946595i \(0.604498\pi\)
\(240\) 0 0
\(241\) 6.37345 19.6155i 0.410550 1.26354i −0.505621 0.862756i \(-0.668737\pi\)
0.916171 0.400788i \(-0.131263\pi\)
\(242\) 0 0
\(243\) 9.40851 0.603556
\(244\) 0 0
\(245\) 0.752975 0.0481058
\(246\) 0 0
\(247\) −2.49439 −0.158714
\(248\) 0 0
\(249\) 29.9812 1.89998
\(250\) 0 0
\(251\) −4.08943 + 12.5860i −0.258122 + 0.794419i 0.735076 + 0.677985i \(0.237146\pi\)
−0.993198 + 0.116434i \(0.962854\pi\)
\(252\) 0 0
\(253\) −6.24009 4.53369i −0.392311 0.285031i
\(254\) 0 0
\(255\) −15.0013 −0.939421
\(256\) 0 0
\(257\) −5.54020 17.0510i −0.345588 1.06361i −0.961268 0.275614i \(-0.911119\pi\)
0.615680 0.787996i \(-0.288881\pi\)
\(258\) 0 0
\(259\) 10.5524 7.66679i 0.655696 0.476391i
\(260\) 0 0
\(261\) −4.71104 + 14.4991i −0.291606 + 0.897471i
\(262\) 0 0
\(263\) −6.15396 18.9399i −0.379469 1.16789i −0.940414 0.340033i \(-0.889562\pi\)
0.560944 0.827854i \(-0.310438\pi\)
\(264\) 0 0
\(265\) 7.66215 + 5.56688i 0.470682 + 0.341971i
\(266\) 0 0
\(267\) 12.4674 + 9.05812i 0.762994 + 0.554348i
\(268\) 0 0
\(269\) −4.44023 + 3.22602i −0.270726 + 0.196694i −0.714862 0.699265i \(-0.753511\pi\)
0.444136 + 0.895959i \(0.353511\pi\)
\(270\) 0 0
\(271\) 7.83496 + 5.69243i 0.475940 + 0.345790i 0.799752 0.600331i \(-0.204965\pi\)
−0.323812 + 0.946121i \(0.604965\pi\)
\(272\) 0 0
\(273\) 2.60644 0.157749
\(274\) 0 0
\(275\) −1.30935 + 4.02977i −0.0789568 + 0.243004i
\(276\) 0 0
\(277\) −4.05657 12.4848i −0.243736 0.750141i −0.995842 0.0910990i \(-0.970962\pi\)
0.752106 0.659042i \(-0.229038\pi\)
\(278\) 0 0
\(279\) 8.70971 + 26.8057i 0.521437 + 1.60482i
\(280\) 0 0
\(281\) 2.21702 1.61076i 0.132256 0.0960898i −0.519690 0.854355i \(-0.673953\pi\)
0.651947 + 0.758265i \(0.273953\pi\)
\(282\) 0 0
\(283\) −7.86200 + 24.1968i −0.467347 + 1.43835i 0.388659 + 0.921382i \(0.372939\pi\)
−0.856006 + 0.516966i \(0.827061\pi\)
\(284\) 0 0
\(285\) 20.4205 14.8363i 1.20960 0.878828i
\(286\) 0 0
\(287\) −12.6686 12.5451i −0.747803 0.740512i
\(288\) 0 0
\(289\) −5.46709 + 3.97208i −0.321594 + 0.233652i
\(290\) 0 0
\(291\) 2.87911 8.86100i 0.168777 0.519441i
\(292\) 0 0
\(293\) −8.50447 + 6.17886i −0.496836 + 0.360973i −0.807807 0.589447i \(-0.799346\pi\)
0.310971 + 0.950419i \(0.399346\pi\)
\(294\) 0 0
\(295\) 3.03274 + 9.33383i 0.176573 + 0.543437i
\(296\) 0 0
\(297\) −13.9928 43.0653i −0.811942 2.49890i
\(298\) 0 0
\(299\) −0.171091 + 0.526564i −0.00989444 + 0.0304520i
\(300\) 0 0
\(301\) −11.6718 −0.672750
\(302\) 0 0
\(303\) −37.0261 26.9010i −2.12709 1.54542i
\(304\) 0 0
\(305\) 1.89333 1.37558i 0.108412 0.0787657i
\(306\) 0 0
\(307\) −21.1203 15.3448i −1.20540 0.875772i −0.210592 0.977574i \(-0.567539\pi\)
−0.994805 + 0.101802i \(0.967539\pi\)
\(308\) 0 0
\(309\) 11.3406 + 8.23945i 0.645146 + 0.468726i
\(310\) 0 0
\(311\) 0.0561245 + 0.172733i 0.00318253 + 0.00979481i 0.952635 0.304115i \(-0.0983609\pi\)
−0.949453 + 0.313910i \(0.898361\pi\)
\(312\) 0 0
\(313\) 4.92587 15.1603i 0.278427 0.856910i −0.709866 0.704337i \(-0.751244\pi\)
0.988292 0.152572i \(-0.0487557\pi\)
\(314\) 0 0
\(315\) −14.5798 + 10.5928i −0.821479 + 0.596839i
\(316\) 0 0
\(317\) 2.49406 + 7.67592i 0.140080 + 0.431123i 0.996346 0.0854135i \(-0.0272211\pi\)
−0.856265 + 0.516536i \(0.827221\pi\)
\(318\) 0 0
\(319\) 9.98041 0.558796
\(320\) 0 0
\(321\) 23.3266 + 16.9477i 1.30196 + 0.945930i
\(322\) 0 0
\(323\) 12.3528 38.0179i 0.687326 2.11537i
\(324\) 0 0
\(325\) 0.304148 0.0168711
\(326\) 0 0
\(327\) 34.2794 1.89565
\(328\) 0 0
\(329\) 9.39568 0.518001
\(330\) 0 0
\(331\) 12.5109 0.687659 0.343829 0.939032i \(-0.388276\pi\)
0.343829 + 0.939032i \(0.388276\pi\)
\(332\) 0 0
\(333\) −9.36920 + 28.8354i −0.513429 + 1.58017i
\(334\) 0 0
\(335\) 5.52779 + 4.01617i 0.302015 + 0.219427i
\(336\) 0 0
\(337\) −25.6065 −1.39488 −0.697438 0.716645i \(-0.745677\pi\)
−0.697438 + 0.716645i \(0.745677\pi\)
\(338\) 0 0
\(339\) −15.3780 47.3287i −0.835220 2.57054i
\(340\) 0 0
\(341\) 14.9277 10.8456i 0.808380 0.587323i
\(342\) 0 0
\(343\) −5.37514 + 16.5430i −0.290230 + 0.893237i
\(344\) 0 0
\(345\) −1.73129 5.32837i −0.0932096 0.286870i
\(346\) 0 0
\(347\) 2.34086 + 1.70073i 0.125664 + 0.0913000i 0.648842 0.760923i \(-0.275254\pi\)
−0.523178 + 0.852223i \(0.675254\pi\)
\(348\) 0 0
\(349\) 2.48910 + 1.80844i 0.133239 + 0.0968034i 0.652408 0.757868i \(-0.273759\pi\)
−0.519170 + 0.854671i \(0.673759\pi\)
\(350\) 0 0
\(351\) −2.62960 + 1.91052i −0.140358 + 0.101976i
\(352\) 0 0
\(353\) −8.19633 5.95498i −0.436247 0.316952i 0.347895 0.937533i \(-0.386897\pi\)
−0.784142 + 0.620582i \(0.786897\pi\)
\(354\) 0 0
\(355\) 5.02200 0.266540
\(356\) 0 0
\(357\) −12.9076 + 39.7256i −0.683145 + 2.10250i
\(358\) 0 0
\(359\) 6.87240 + 21.1511i 0.362711 + 1.11631i 0.951402 + 0.307952i \(0.0996436\pi\)
−0.588691 + 0.808358i \(0.700356\pi\)
\(360\) 0 0
\(361\) 14.9133 + 45.8984i 0.784910 + 2.41570i
\(362\) 0 0
\(363\) −17.3135 + 12.5790i −0.908722 + 0.660225i
\(364\) 0 0
\(365\) −3.58416 + 11.0309i −0.187604 + 0.577385i
\(366\) 0 0
\(367\) −13.0049 + 9.44862i −0.678851 + 0.493214i −0.872976 0.487763i \(-0.837813\pi\)
0.194125 + 0.980977i \(0.437813\pi\)
\(368\) 0 0
\(369\) 40.9641 + 6.28251i 2.13251 + 0.327055i
\(370\) 0 0
\(371\) 21.3346 15.5005i 1.10764 0.804747i
\(372\) 0 0
\(373\) 9.03110 27.7949i 0.467613 1.43916i −0.388054 0.921636i \(-0.626853\pi\)
0.855667 0.517527i \(-0.173147\pi\)
\(374\) 0 0
\(375\) −2.48992 + 1.80903i −0.128579 + 0.0934181i
\(376\) 0 0
\(377\) −0.221382 0.681343i −0.0114017 0.0350910i
\(378\) 0 0
\(379\) −0.000967881 0.00297883i −4.97167e−5 0.000153012i 0.951032 0.309093i \(-0.100026\pi\)
−0.951081 + 0.308940i \(0.900026\pi\)
\(380\) 0 0
\(381\) 1.79349 5.51980i 0.0918833 0.282788i
\(382\) 0 0
\(383\) 6.70918 0.342823 0.171411 0.985200i \(-0.445167\pi\)
0.171411 + 0.985200i \(0.445167\pi\)
\(384\) 0 0
\(385\) 9.54477 + 6.93468i 0.486447 + 0.353424i
\(386\) 0 0
\(387\) 21.9493 15.9471i 1.11574 0.810635i
\(388\) 0 0
\(389\) −17.5285 12.7352i −0.888732 0.645702i 0.0468150 0.998904i \(-0.485093\pi\)
−0.935547 + 0.353202i \(0.885093\pi\)
\(390\) 0 0
\(391\) −7.17827 5.21532i −0.363021 0.263750i
\(392\) 0 0
\(393\) −9.97203 30.6908i −0.503023 1.54814i
\(394\) 0 0
\(395\) −3.43618 + 10.5755i −0.172893 + 0.532110i
\(396\) 0 0
\(397\) 27.3601 19.8782i 1.37316 0.997660i 0.375679 0.926750i \(-0.377410\pi\)
0.997483 0.0709105i \(-0.0225905\pi\)
\(398\) 0 0
\(399\) −21.7182 66.8418i −1.08727 3.34628i
\(400\) 0 0
\(401\) −27.1311 −1.35486 −0.677431 0.735586i \(-0.736907\pi\)
−0.677431 + 0.735586i \(0.736907\pi\)
\(402\) 0 0
\(403\) −1.07153 0.778511i −0.0533767 0.0387804i
\(404\) 0 0
\(405\) 4.16367 12.8145i 0.206895 0.636756i
\(406\) 0 0
\(407\) 19.8488 0.983868
\(408\) 0 0
\(409\) −23.3140 −1.15280 −0.576402 0.817166i \(-0.695544\pi\)
−0.576402 + 0.817166i \(0.695544\pi\)
\(410\) 0 0
\(411\) 58.2041 2.87100
\(412\) 0 0
\(413\) 27.3267 1.34466
\(414\) 0 0
\(415\) 3.01026 9.26462i 0.147768 0.454782i
\(416\) 0 0
\(417\) 21.3491 + 15.5111i 1.04547 + 0.759580i
\(418\) 0 0
\(419\) 27.3546 1.33636 0.668180 0.744000i \(-0.267074\pi\)
0.668180 + 0.744000i \(0.267074\pi\)
\(420\) 0 0
\(421\) −6.31508 19.4358i −0.307778 0.947244i −0.978626 0.205649i \(-0.934069\pi\)
0.670847 0.741595i \(-0.265931\pi\)
\(422\) 0 0
\(423\) −17.6690 + 12.8373i −0.859095 + 0.624169i
\(424\) 0 0
\(425\) −1.50621 + 4.63563i −0.0730618 + 0.224861i
\(426\) 0 0
\(427\) −2.01365 6.19739i −0.0974476 0.299913i
\(428\) 0 0
\(429\) 3.20881 + 2.33134i 0.154923 + 0.112558i
\(430\) 0 0
\(431\) 22.3342 + 16.2267i 1.07580 + 0.781615i 0.976946 0.213487i \(-0.0684822\pi\)
0.0988544 + 0.995102i \(0.468482\pi\)
\(432\) 0 0
\(433\) −9.70173 + 7.04872i −0.466235 + 0.338740i −0.795972 0.605333i \(-0.793040\pi\)
0.329737 + 0.944073i \(0.393040\pi\)
\(434\) 0 0
\(435\) 5.86490 + 4.26110i 0.281200 + 0.204304i
\(436\) 0 0
\(437\) 14.9293 0.714165
\(438\) 0 0
\(439\) 8.93400 27.4960i 0.426396 1.31231i −0.475254 0.879848i \(-0.657644\pi\)
0.901651 0.432465i \(-0.142356\pi\)
\(440\) 0 0
\(441\) 1.50599 + 4.63497i 0.0717139 + 0.220713i
\(442\) 0 0
\(443\) −4.86164 14.9626i −0.230984 0.710895i −0.997629 0.0688237i \(-0.978075\pi\)
0.766645 0.642071i \(-0.221925\pi\)
\(444\) 0 0
\(445\) 4.05088 2.94313i 0.192030 0.139518i
\(446\) 0 0
\(447\) 18.5435 57.0710i 0.877076 2.69936i
\(448\) 0 0
\(449\) 19.3366 14.0488i 0.912549 0.663006i −0.0291089 0.999576i \(-0.509267\pi\)
0.941658 + 0.336570i \(0.109267\pi\)
\(450\) 0 0
\(451\) −4.37545 26.7758i −0.206032 1.26083i
\(452\) 0 0
\(453\) 37.4842 27.2338i 1.76116 1.27956i
\(454\) 0 0
\(455\) 0.261699 0.805425i 0.0122686 0.0377589i
\(456\) 0 0
\(457\) 18.1805 13.2089i 0.850450 0.617888i −0.0748200 0.997197i \(-0.523838\pi\)
0.925270 + 0.379309i \(0.123838\pi\)
\(458\) 0 0
\(459\) −16.0965 49.5400i −0.751321 2.31233i
\(460\) 0 0
\(461\) −8.72276 26.8459i −0.406259 1.25034i −0.919839 0.392296i \(-0.871681\pi\)
0.513580 0.858042i \(-0.328319\pi\)
\(462\) 0 0
\(463\) 6.67081 20.5307i 0.310019 0.954140i −0.667737 0.744397i \(-0.732737\pi\)
0.977756 0.209744i \(-0.0672629\pi\)
\(464\) 0 0
\(465\) 13.4026 0.621532
\(466\) 0 0
\(467\) 24.9375 + 18.1181i 1.15397 + 0.838407i 0.989004 0.147892i \(-0.0472488\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(468\) 0 0
\(469\) 15.3917 11.1827i 0.710721 0.516369i
\(470\) 0 0
\(471\) −41.3723 30.0587i −1.90633 1.38503i
\(472\) 0 0
\(473\) −14.3692 10.4399i −0.660699 0.480026i
\(474\) 0 0
\(475\) −2.53432 7.79985i −0.116283 0.357882i
\(476\) 0 0
\(477\) −18.9424 + 58.2988i −0.867313 + 2.66932i
\(478\) 0 0
\(479\) −13.8328 + 10.0501i −0.632037 + 0.459202i −0.857105 0.515141i \(-0.827739\pi\)
0.225068 + 0.974343i \(0.427739\pi\)
\(480\) 0 0
\(481\) −0.440279 1.35504i −0.0200750 0.0617844i
\(482\) 0 0
\(483\) −15.5999 −0.709820
\(484\) 0 0
\(485\) −2.44910 1.77937i −0.111208 0.0807972i
\(486\) 0 0
\(487\) −4.27314 + 13.1514i −0.193634 + 0.595945i 0.806356 + 0.591431i \(0.201437\pi\)
−0.999990 + 0.00451388i \(0.998563\pi\)
\(488\) 0 0
\(489\) −32.5911 −1.47382
\(490\) 0 0
\(491\) 6.71970 0.303256 0.151628 0.988438i \(-0.451548\pi\)
0.151628 + 0.988438i \(0.451548\pi\)
\(492\) 0 0
\(493\) 11.4809 0.517075
\(494\) 0 0
\(495\) −27.4242 −1.23262
\(496\) 0 0
\(497\) 4.32109 13.2989i 0.193827 0.596539i
\(498\) 0 0
\(499\) −1.13757 0.826493i −0.0509246 0.0369989i 0.562032 0.827116i \(-0.310020\pi\)
−0.612956 + 0.790117i \(0.710020\pi\)
\(500\) 0 0
\(501\) 37.1647 1.66040
\(502\) 0 0
\(503\) −0.735820 2.26462i −0.0328086 0.100975i 0.933311 0.359069i \(-0.116906\pi\)
−0.966120 + 0.258094i \(0.916906\pi\)
\(504\) 0 0
\(505\) −12.0304 + 8.74058i −0.535345 + 0.388951i
\(506\) 0 0
\(507\) −12.2759 + 37.7813i −0.545191 + 1.67792i
\(508\) 0 0
\(509\) 6.88691 + 21.1957i 0.305257 + 0.939484i 0.979581 + 0.201049i \(0.0644350\pi\)
−0.674324 + 0.738435i \(0.735565\pi\)
\(510\) 0 0
\(511\) 26.1275 + 18.9827i 1.15581 + 0.839746i
\(512\) 0 0
\(513\) 70.9063 + 51.5164i 3.13059 + 2.27451i
\(514\) 0 0
\(515\) 3.68476 2.67713i 0.162370 0.117969i
\(516\) 0 0
\(517\) 11.5671 + 8.40401i 0.508721 + 0.369608i
\(518\) 0 0
\(519\) −80.6378 −3.53961
\(520\) 0 0
\(521\) 5.41178 16.6557i 0.237094 0.729702i −0.759742 0.650224i \(-0.774675\pi\)
0.996837 0.0794772i \(-0.0253251\pi\)
\(522\) 0 0
\(523\) −0.927661 2.85505i −0.0405638 0.124842i 0.928724 0.370772i \(-0.120907\pi\)
−0.969288 + 0.245929i \(0.920907\pi\)
\(524\) 0 0
\(525\) 2.64816 + 8.15021i 0.115575 + 0.355704i
\(526\) 0 0
\(527\) 17.1720 12.4762i 0.748025 0.543472i
\(528\) 0 0
\(529\) −6.08339 + 18.7227i −0.264495 + 0.814032i
\(530\) 0 0
\(531\) −51.3891 + 37.3364i −2.23010 + 1.62026i
\(532\) 0 0
\(533\) −1.73088 + 0.892635i −0.0749727 + 0.0386643i
\(534\) 0 0
\(535\) 7.57918 5.50660i 0.327677 0.238071i
\(536\) 0 0
\(537\) −10.4721 + 32.2298i −0.451904 + 1.39082i
\(538\) 0 0
\(539\) 2.58114 1.87531i 0.111178 0.0807753i
\(540\) 0 0
\(541\) −9.10114 28.0104i −0.391288 1.20426i −0.931815 0.362935i \(-0.881775\pi\)
0.540526 0.841327i \(-0.318225\pi\)
\(542\) 0 0
\(543\) 20.1044 + 61.8750i 0.862763 + 2.65531i
\(544\) 0 0
\(545\) 3.44181 10.5928i 0.147431 0.453746i
\(546\) 0 0
\(547\) 7.00205 0.299386 0.149693 0.988733i \(-0.452171\pi\)
0.149693 + 0.988733i \(0.452171\pi\)
\(548\) 0 0
\(549\) 12.2542 + 8.90321i 0.522997 + 0.379980i
\(550\) 0 0
\(551\) −15.6283 + 11.3546i −0.665789 + 0.483724i
\(552\) 0 0
\(553\) 25.0487 + 18.1990i 1.06518 + 0.773898i
\(554\) 0 0
\(555\) 11.6640 + 8.47437i 0.495108 + 0.359717i
\(556\) 0 0
\(557\) 5.28218 + 16.2569i 0.223813 + 0.688826i 0.998410 + 0.0563708i \(0.0179529\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(558\) 0 0
\(559\) −0.393976 + 1.21253i −0.0166634 + 0.0512847i
\(560\) 0 0
\(561\) −51.4235 + 37.3614i −2.17110 + 1.57740i
\(562\) 0 0
\(563\) −2.64600 8.14354i −0.111515 0.343209i 0.879689 0.475550i \(-0.157751\pi\)
−0.991204 + 0.132340i \(0.957751\pi\)
\(564\) 0 0
\(565\) −16.1693 −0.680246
\(566\) 0 0
\(567\) −30.3519 22.0520i −1.27466 0.926095i
\(568\) 0 0
\(569\) 2.36095 7.26624i 0.0989760 0.304617i −0.889293 0.457337i \(-0.848803\pi\)
0.988269 + 0.152720i \(0.0488033\pi\)
\(570\) 0 0
\(571\) −3.19866 −0.133860 −0.0669300 0.997758i \(-0.521320\pi\)
−0.0669300 + 0.997758i \(0.521320\pi\)
\(572\) 0 0
\(573\) 27.9048 1.16574
\(574\) 0 0
\(575\) −1.82037 −0.0759147
\(576\) 0 0
\(577\) −23.4296 −0.975386 −0.487693 0.873015i \(-0.662161\pi\)
−0.487693 + 0.873015i \(0.662161\pi\)
\(578\) 0 0
\(579\) −21.4566 + 66.0366i −0.891706 + 2.74439i
\(580\) 0 0
\(581\) −21.9439 15.9431i −0.910385 0.661433i
\(582\) 0 0
\(583\) 40.1298 1.66201
\(584\) 0 0
\(585\) 0.608313 + 1.87219i 0.0251506 + 0.0774057i
\(586\) 0 0
\(587\) 6.42994 4.67163i 0.265392 0.192819i −0.447129 0.894470i \(-0.647553\pi\)
0.712521 + 0.701651i \(0.247553\pi\)
\(588\) 0 0
\(589\) −11.0363 + 33.9663i −0.454743 + 1.39955i
\(590\) 0 0
\(591\) −24.4321 75.1943i −1.00500 3.09308i
\(592\) 0 0
\(593\) −6.54840 4.75769i −0.268911 0.195375i 0.445155 0.895453i \(-0.353148\pi\)
−0.714066 + 0.700078i \(0.753148\pi\)
\(594\) 0 0
\(595\) 10.9798 + 7.97728i 0.450128 + 0.327037i
\(596\) 0 0
\(597\) −54.3531 + 39.4899i −2.22453 + 1.61621i
\(598\) 0 0
\(599\) 7.22036 + 5.24590i 0.295016 + 0.214342i 0.725440 0.688285i \(-0.241636\pi\)
−0.430424 + 0.902627i \(0.641636\pi\)
\(600\) 0 0
\(601\) −47.4325 −1.93481 −0.967405 0.253232i \(-0.918506\pi\)
−0.967405 + 0.253232i \(0.918506\pi\)
\(602\) 0 0
\(603\) −13.6658 + 42.0591i −0.556516 + 1.71278i
\(604\) 0 0
\(605\) 2.14873 + 6.61310i 0.0873581 + 0.268861i
\(606\) 0 0
\(607\) −9.44749 29.0764i −0.383462 1.18017i −0.937590 0.347742i \(-0.886948\pi\)
0.554129 0.832431i \(-0.313052\pi\)
\(608\) 0 0
\(609\) 16.3303 11.8647i 0.661738 0.480781i
\(610\) 0 0
\(611\) 0.317147 0.976079i 0.0128304 0.0394879i
\(612\) 0 0
\(613\) −1.12817 + 0.819660i −0.0455662 + 0.0331058i −0.610335 0.792143i \(-0.708965\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(614\) 0 0
\(615\) 8.86065 17.6027i 0.357296 0.709808i
\(616\) 0 0
\(617\) −14.4969 + 10.5326i −0.583624 + 0.424028i −0.840029 0.542542i \(-0.817462\pi\)
0.256405 + 0.966570i \(0.417462\pi\)
\(618\) 0 0
\(619\) −10.0254 + 30.8549i −0.402954 + 1.24016i 0.519638 + 0.854387i \(0.326067\pi\)
−0.922592 + 0.385778i \(0.873933\pi\)
\(620\) 0 0
\(621\) 15.7386 11.4347i 0.631566 0.458860i
\(622\) 0 0
\(623\) −4.30832 13.2596i −0.172609 0.531236i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 33.0494 101.716i 1.31987 4.06213i
\(628\) 0 0
\(629\) 22.8330 0.910411
\(630\) 0 0
\(631\) −15.7009 11.4073i −0.625041 0.454119i 0.229637 0.973276i \(-0.426246\pi\)
−0.854679 + 0.519157i \(0.826246\pi\)
\(632\) 0 0
\(633\) −57.2186 + 41.5717i −2.27423 + 1.65233i
\(634\) 0 0
\(635\) −1.52562 1.10843i −0.0605424 0.0439866i
\(636\) 0 0
\(637\) −0.185278 0.134612i −0.00734097 0.00533353i
\(638\) 0 0
\(639\) 10.0443 + 30.9131i 0.397345 + 1.22290i
\(640\) 0 0
\(641\) −5.92707 + 18.2416i −0.234105 + 0.720502i 0.763134 + 0.646241i \(0.223660\pi\)
−0.997239 + 0.0742610i \(0.976340\pi\)
\(642\) 0 0
\(643\) 5.94343 4.31816i 0.234386 0.170292i −0.464392 0.885630i \(-0.653727\pi\)
0.698779 + 0.715338i \(0.253727\pi\)
\(644\) 0 0
\(645\) −3.98670 12.2698i −0.156976 0.483122i
\(646\) 0 0
\(647\) −45.8536 −1.80269 −0.901346 0.433100i \(-0.857420\pi\)
−0.901346 + 0.433100i \(0.857420\pi\)
\(648\) 0 0
\(649\) 33.6422 + 24.4425i 1.32057 + 0.959453i
\(650\) 0 0
\(651\) 11.5320 35.4920i 0.451976 1.39104i
\(652\) 0 0
\(653\) 35.9680 1.40754 0.703768 0.710430i \(-0.251499\pi\)
0.703768 + 0.710430i \(0.251499\pi\)
\(654\) 0 0
\(655\) −10.4851 −0.409687
\(656\) 0 0
\(657\) −75.0698 −2.92875
\(658\) 0 0
\(659\) 19.7307 0.768598 0.384299 0.923209i \(-0.374443\pi\)
0.384299 + 0.923209i \(0.374443\pi\)
\(660\) 0 0
\(661\) 13.6490 42.0072i 0.530883 1.63389i −0.221497 0.975161i \(-0.571094\pi\)
0.752380 0.658729i \(-0.228906\pi\)
\(662\) 0 0
\(663\) 3.69124 + 2.68185i 0.143356 + 0.104154i
\(664\) 0 0
\(665\) −22.8357 −0.885530
\(666\) 0 0
\(667\) 1.32500 + 4.07794i 0.0513043 + 0.157898i
\(668\) 0 0
\(669\) 23.6988 17.2182i 0.916250 0.665694i
\(670\) 0 0
\(671\) 3.06425 9.43080i 0.118294 0.364072i
\(672\) 0 0
\(673\) 1.42086 + 4.37296i 0.0547702 + 0.168565i 0.974700 0.223519i \(-0.0717543\pi\)
−0.919929 + 0.392084i \(0.871754\pi\)
\(674\) 0 0
\(675\) −8.64580 6.28154i −0.332777 0.241777i
\(676\) 0 0
\(677\) −3.97875 2.89073i −0.152916 0.111100i 0.508697 0.860946i \(-0.330128\pi\)
−0.661612 + 0.749846i \(0.730128\pi\)
\(678\) 0 0
\(679\) −6.81931 + 4.95452i −0.261701 + 0.190137i
\(680\) 0 0
\(681\) 60.3100 + 43.8178i 2.31109 + 1.67910i
\(682\) 0 0
\(683\) −8.72847 −0.333986 −0.166993 0.985958i \(-0.553406\pi\)
−0.166993 + 0.985958i \(0.553406\pi\)
\(684\) 0 0
\(685\) 5.84397 17.9859i 0.223287 0.687206i
\(686\) 0 0
\(687\) 25.8620 + 79.5951i 0.986697 + 3.03674i
\(688\) 0 0
\(689\) −0.890144 2.73958i −0.0339118 0.104370i
\(690\) 0 0
\(691\) 10.6534 7.74014i 0.405274 0.294449i −0.366412 0.930453i \(-0.619414\pi\)
0.771686 + 0.636004i \(0.219414\pi\)
\(692\) 0 0
\(693\) −23.5966 + 72.6230i −0.896362 + 2.75872i
\(694\) 0 0
\(695\) 6.93669 5.03980i 0.263124 0.191171i
\(696\) 0 0
\(697\) −5.03328 30.8015i −0.190649 1.16669i
\(698\) 0 0
\(699\) 25.3753 18.4362i 0.959782 0.697322i
\(700\) 0 0
\(701\) 10.9948 33.8384i 0.415267 1.27806i −0.496746 0.867896i \(-0.665472\pi\)
0.912012 0.410163i \(-0.134528\pi\)
\(702\) 0 0
\(703\) −31.0812 + 22.5818i −1.17225 + 0.851689i
\(704\) 0 0
\(705\) 3.20926 + 9.87708i 0.120868 + 0.371992i
\(706\) 0 0
\(707\) 12.7949 + 39.3788i 0.481203 + 1.48099i
\(708\) 0 0
\(709\) −8.05324 + 24.7853i −0.302446 + 0.930832i 0.678172 + 0.734903i \(0.262772\pi\)
−0.980618 + 0.195929i \(0.937228\pi\)
\(710\) 0 0
\(711\) −71.9703 −2.69910
\(712\) 0 0
\(713\) 6.41326 + 4.65951i 0.240179 + 0.174500i
\(714\) 0 0
\(715\) 1.04260 0.757490i 0.0389909 0.0283285i
\(716\) 0 0
\(717\) 22.7531 + 16.5311i 0.849730 + 0.617365i
\(718\) 0 0
\(719\) −36.9230 26.8261i −1.37700 1.00045i −0.997154 0.0753951i \(-0.975978\pi\)
−0.379842 0.925051i \(-0.624022\pi\)
\(720\) 0 0
\(721\) −3.91893 12.0612i −0.145949 0.449184i
\(722\) 0 0
\(723\) 19.6157 60.3708i 0.729514 2.24521i
\(724\) 0 0
\(725\) 1.90560 1.38450i 0.0707723 0.0514191i
\(726\) 0 0
\(727\) −12.6490 38.9297i −0.469127 1.44382i −0.853718 0.520736i \(-0.825658\pi\)
0.384591 0.923087i \(-0.374342\pi\)
\(728\) 0 0
\(729\) −11.4651 −0.424633
\(730\) 0 0
\(731\) −16.5296 12.0095i −0.611370 0.444186i
\(732\) 0 0
\(733\) 0.804354 2.47555i 0.0297095 0.0914364i −0.935102 0.354378i \(-0.884693\pi\)
0.964812 + 0.262942i \(0.0846926\pi\)
\(734\) 0 0
\(735\) 2.31744 0.0854801
\(736\) 0 0
\(737\) 28.9513 1.06643
\(738\) 0 0
\(739\) 38.1728 1.40421 0.702104 0.712074i \(-0.252244\pi\)
0.702104 + 0.712074i \(0.252244\pi\)
\(740\) 0 0
\(741\) −7.67702 −0.282022
\(742\) 0 0
\(743\) −0.275409 + 0.847621i −0.0101038 + 0.0310962i −0.955981 0.293428i \(-0.905204\pi\)
0.945878 + 0.324524i \(0.105204\pi\)
\(744\) 0 0
\(745\) −15.7739 11.4604i −0.577910 0.419876i
\(746\) 0 0
\(747\) 63.0494 2.30686
\(748\) 0 0
\(749\) −8.06086 24.8088i −0.294537 0.906493i
\(750\) 0 0
\(751\) −25.1444 + 18.2685i −0.917533 + 0.666627i −0.942909 0.333051i \(-0.891922\pi\)
0.0253760 + 0.999678i \(0.491922\pi\)
\(752\) 0 0
\(753\) −12.5861 + 38.7360i −0.458663 + 1.41162i
\(754\) 0 0
\(755\) −4.65205 14.3175i −0.169306 0.521069i
\(756\) 0 0
\(757\) 19.2078 + 13.9553i 0.698118 + 0.507212i 0.879319 0.476234i \(-0.157998\pi\)
−0.181201 + 0.983446i \(0.557998\pi\)
\(758\) 0 0
\(759\) −19.2052 13.9534i −0.697105 0.506476i
\(760\) 0 0
\(761\) 18.1163 13.1623i 0.656716 0.477132i −0.208837 0.977951i \(-0.566968\pi\)
0.865552 + 0.500819i \(0.166968\pi\)
\(762\) 0 0
\(763\) −25.0898 18.2288i −0.908311 0.659927i
\(764\) 0 0
\(765\) −31.5473 −1.14059
\(766\) 0 0
\(767\) 0.922403 2.83886i 0.0333060 0.102505i
\(768\) 0 0
\(769\) 10.7310 + 33.0268i 0.386971 + 1.19098i 0.935040 + 0.354542i \(0.115363\pi\)
−0.548068 + 0.836433i \(0.684637\pi\)
\(770\) 0 0
\(771\) −17.0511 52.4780i −0.614082 1.88995i
\(772\) 0 0
\(773\) −2.60896 + 1.89552i −0.0938377 + 0.0681771i −0.633715 0.773567i \(-0.718471\pi\)
0.539877 + 0.841744i \(0.318471\pi\)
\(774\) 0 0
\(775\) 1.34569 4.14160i 0.0483385 0.148771i
\(776\) 0 0
\(777\) 32.4773 23.5962i 1.16512 0.846508i
\(778\) 0 0
\(779\) 37.3142 + 36.9504i 1.33692 + 1.32388i
\(780\) 0 0
\(781\) 17.2150 12.5075i 0.616002 0.447552i
\(782\) 0 0
\(783\) −7.77865 + 23.9402i −0.277986 + 0.855554i
\(784\) 0 0
\(785\) −13.4425 + 9.76658i −0.479785 + 0.348584i
\(786\) 0 0
\(787\) −2.66964 8.21632i −0.0951625 0.292880i 0.892133 0.451772i \(-0.149208\pi\)
−0.987296 + 0.158892i \(0.949208\pi\)
\(788\) 0 0
\(789\) −18.9401 58.2917i −0.674286 2.07524i
\(790\) 0 0
\(791\) −13.9126 + 42.8184i −0.494674 + 1.52245i
\(792\) 0 0
\(793\) −0.711792 −0.0252765
\(794\) 0 0
\(795\) 23.5819 + 17.1333i 0.836364 + 0.607654i
\(796\) 0 0
\(797\) −19.1309 + 13.8994i −0.677650 + 0.492341i −0.872577 0.488476i \(-0.837553\pi\)
0.194927 + 0.980818i \(0.437553\pi\)
\(798\) 0 0
\(799\) 13.3062 + 9.66752i 0.470739 + 0.342012i
\(800\) 0 0
\(801\) 26.2185 + 19.0489i 0.926387 + 0.673059i
\(802\) 0 0
\(803\) 15.1866 + 46.7396i 0.535924 + 1.64941i
\(804\) 0 0
\(805\) −1.56630 + 4.82059i −0.0552050 + 0.169903i
\(806\) 0 0
\(807\) −13.6658 + 9.92875i −0.481057 + 0.349509i
\(808\) 0 0
\(809\) −5.59320 17.2141i −0.196647 0.605216i −0.999953 0.00965047i \(-0.996928\pi\)
0.803307 0.595565i \(-0.203072\pi\)
\(810\) 0 0
\(811\) −28.1652 −0.989015 −0.494507 0.869173i \(-0.664652\pi\)
−0.494507 + 0.869173i \(0.664652\pi\)
\(812\) 0 0
\(813\) 24.1137 + 17.5197i 0.845706 + 0.614441i
\(814\) 0 0
\(815\) −3.27230 + 10.0711i −0.114624 + 0.352776i
\(816\) 0 0
\(817\) 34.3781 1.20274
\(818\) 0 0
\(819\) 5.48124 0.191530
\(820\) 0 0
\(821\) −13.2112 −0.461075 −0.230537 0.973063i \(-0.574048\pi\)
−0.230537 + 0.973063i \(0.574048\pi\)
\(822\) 0 0
\(823\) −26.2174 −0.913883 −0.456941 0.889497i \(-0.651055\pi\)
−0.456941 + 0.889497i \(0.651055\pi\)
\(824\) 0 0
\(825\) −4.02981 + 12.4025i −0.140300 + 0.431798i
\(826\) 0 0
\(827\) −36.3449 26.4061i −1.26384 0.918231i −0.264898 0.964277i \(-0.585338\pi\)
−0.998939 + 0.0460452i \(0.985338\pi\)
\(828\) 0 0
\(829\) 34.6541 1.20359 0.601793 0.798652i \(-0.294453\pi\)
0.601793 + 0.798652i \(0.294453\pi\)
\(830\) 0 0
\(831\) −12.4849 38.4247i −0.433098 1.33294i
\(832\) 0 0
\(833\) 2.96921 2.15726i 0.102877 0.0747445i
\(834\) 0 0
\(835\) 3.73151 11.4844i 0.129134 0.397435i
\(836\) 0 0
\(837\) 14.3811 + 44.2604i 0.497083 + 1.52986i
\(838\) 0 0
\(839\) −0.473730 0.344185i −0.0163550 0.0118826i 0.579578 0.814917i \(-0.303218\pi\)
−0.595933 + 0.803034i \(0.703218\pi\)
\(840\) 0 0
\(841\) 18.9729 + 13.7846i 0.654239 + 0.475332i
\(842\) 0 0
\(843\) 6.82335 4.95745i 0.235009 0.170744i
\(844\) 0 0
\(845\) 10.4424 + 7.58683i 0.359229 + 0.260995i
\(846\) 0 0
\(847\) 19.3612 0.665260
\(848\) 0 0
\(849\) −24.1970 + 74.4707i −0.830438 + 2.55583i
\(850\) 0 0
\(851\) 2.63513 + 8.11010i 0.0903312 + 0.278011i
\(852\) 0 0
\(853\) 5.55872 + 17.1080i 0.190327 + 0.585766i 0.999999 0.00111623i \(-0.000355306\pi\)
−0.809673 + 0.586882i \(0.800355\pi\)
\(854\) 0 0
\(855\) 42.9435 31.2003i 1.46864 1.06703i
\(856\) 0 0
\(857\) −1.99426 + 6.13770i −0.0681226 + 0.209660i −0.979323 0.202304i \(-0.935157\pi\)
0.911200 + 0.411964i \(0.135157\pi\)
\(858\) 0 0
\(859\) −6.07954 + 4.41704i −0.207431 + 0.150708i −0.686651 0.726988i \(-0.740920\pi\)
0.479220 + 0.877695i \(0.340920\pi\)
\(860\) 0 0
\(861\) −38.9903 38.6101i −1.32879 1.31583i
\(862\) 0 0
\(863\) 9.25479 6.72400i 0.315037 0.228888i −0.419018 0.907978i \(-0.637626\pi\)
0.734055 + 0.679090i \(0.237626\pi\)
\(864\) 0 0
\(865\) −8.09642 + 24.9182i −0.275286 + 0.847245i
\(866\) 0 0
\(867\) −16.8261 + 12.2249i −0.571446 + 0.415180i
\(868\) 0 0
\(869\) 14.5596 + 44.8098i 0.493901 + 1.52007i
\(870\) 0 0
\(871\) −0.642186 1.97645i −0.0217597 0.0669693i
\(872\) 0 0
\(873\) 6.05467 18.6344i 0.204920 0.630678i
\(874\) 0 0
\(875\) 2.78442 0.0941305
\(876\) 0 0
\(877\) −12.1985 8.86272i −0.411914 0.299273i 0.362462 0.931998i \(-0.381936\pi\)
−0.774376 + 0.632726i \(0.781936\pi\)
\(878\) 0 0
\(879\) −26.1743 + 19.0168i −0.882838 + 0.641419i
\(880\) 0 0
\(881\) −31.4425 22.8443i −1.05932 0.769645i −0.0853615 0.996350i \(-0.527205\pi\)
−0.973963 + 0.226706i \(0.927205\pi\)
\(882\) 0 0
\(883\) −0.0602632 0.0437838i −0.00202802 0.00147344i 0.586771 0.809753i \(-0.300399\pi\)
−0.588799 + 0.808280i \(0.700399\pi\)
\(884\) 0 0
\(885\) 9.33392 + 28.7268i 0.313756 + 0.965642i
\(886\) 0 0
\(887\) −2.39871 + 7.38247i −0.0805408 + 0.247879i −0.983217 0.182442i \(-0.941600\pi\)
0.902676 + 0.430321i \(0.141600\pi\)
\(888\) 0 0
\(889\) −4.24796 + 3.08632i −0.142472 + 0.103512i
\(890\) 0 0
\(891\) −17.6421 54.2968i −0.591033 1.81901i
\(892\) 0 0
\(893\) −27.6741 −0.926079
\(894\) 0 0
\(895\) 8.90801 + 6.47205i 0.297762 + 0.216337i
\(896\) 0 0
\(897\) −0.526569 + 1.62061i −0.0175816 + 0.0541106i
\(898\) 0 0
\(899\) −10.2574 −0.342103
\(900\) 0 0
\(901\) 46.1631 1.53792
\(902\) 0 0
\(903\) −35.9224 −1.19542
\(904\) 0 0
\(905\) 21.1388 0.702679
\(906\) 0 0
\(907\) 1.19400 3.67474i 0.0396460 0.122018i −0.929275 0.369389i \(-0.879567\pi\)
0.968921 + 0.247372i \(0.0795669\pi\)
\(908\) 0 0
\(909\) −77.8644 56.5718i −2.58260 1.87637i
\(910\) 0 0
\(911\) 40.6015 1.34519 0.672595 0.740011i \(-0.265180\pi\)
0.672595 + 0.740011i \(0.265180\pi\)
\(912\) 0 0
\(913\) −12.7549 39.2556i −0.422126 1.29917i
\(914\) 0 0
\(915\) 5.82712 4.23365i 0.192639 0.139960i
\(916\) 0 0
\(917\) −9.02173 + 27.7660i −0.297924 + 0.916915i
\(918\) 0 0
\(919\) 14.3212 + 44.0761i 0.472412 + 1.45393i 0.849416 + 0.527723i \(0.176954\pi\)
−0.377004 + 0.926211i \(0.623046\pi\)
\(920\) 0 0
\(921\) −65.0021 47.2268i −2.14189 1.55617i
\(922\) 0 0
\(923\) −1.23572 0.897801i −0.0406741 0.0295515i
\(924\) 0 0
\(925\) 3.78982 2.75346i 0.124608 0.0905333i
\(926\) 0 0
\(927\) 23.8489 + 17.3273i 0.783301 + 0.569102i
\(928\) 0 0
\(929\) 26.8683 0.881520 0.440760 0.897625i \(-0.354709\pi\)
0.440760 + 0.897625i \(0.354709\pi\)
\(930\) 0 0
\(931\) −1.90828 + 5.87309i −0.0625415 + 0.192483i
\(932\) 0 0
\(933\) 0.172735 + 0.531624i 0.00565509 + 0.0174046i
\(934\) 0 0
\(935\) 6.38202 + 19.6418i 0.208714 + 0.642357i
\(936\) 0 0
\(937\) −12.9387 + 9.40051i −0.422689 + 0.307101i −0.778719 0.627373i \(-0.784130\pi\)
0.356030 + 0.934475i \(0.384130\pi\)
\(938\) 0 0
\(939\) 15.1604 46.6590i 0.494742 1.52266i
\(940\) 0 0
\(941\) 23.6374 17.1736i 0.770556 0.559842i −0.131574 0.991306i \(-0.542003\pi\)
0.902130 + 0.431465i \(0.142003\pi\)
\(942\) 0 0
\(943\) 10.3596 5.34255i 0.337354 0.173978i
\(944\) 0 0
\(945\) −24.0735 + 17.4904i −0.783111 + 0.568963i
\(946\) 0 0
\(947\) 3.75626 11.5606i 0.122062 0.375668i −0.871292 0.490764i \(-0.836718\pi\)
0.993354 + 0.115096i \(0.0367176\pi\)
\(948\) 0 0
\(949\) 2.85396 2.07352i 0.0926434 0.0673094i
\(950\) 0 0
\(951\) 7.67600 + 23.6243i 0.248911 + 0.766070i
\(952\) 0 0
\(953\) 1.78570 + 5.49581i 0.0578444 + 0.178027i 0.975804 0.218647i \(-0.0701644\pi\)
−0.917960 + 0.396674i \(0.870164\pi\)
\(954\) 0 0
\(955\) 2.80178 8.62299i 0.0906634 0.279033i
\(956\) 0 0
\(957\) 30.7168 0.992934
\(958\) 0 0
\(959\) −42.6008 30.9513i −1.37565 0.999469i
\(960\) 0 0
\(961\) 9.73757 7.07476i 0.314115 0.228218i
\(962\) 0 0
\(963\) 49.0549 + 35.6405i 1.58077 + 1.14850i
\(964\) 0 0
\(965\) 18.2519 + 13.2608i 0.587549 + 0.426880i
\(966\) 0 0
\(967\) 8.23352 + 25.3402i 0.264772 + 0.814885i 0.991746 + 0.128219i \(0.0409262\pi\)
−0.726974 + 0.686665i \(0.759074\pi\)
\(968\) 0 0
\(969\) 38.0183 117.008i 1.22132 3.75885i
\(970\) 0 0
\(971\) 26.5635 19.2995i 0.852462 0.619350i −0.0733619 0.997305i \(-0.523373\pi\)
0.925824 + 0.377956i \(0.123373\pi\)
\(972\) 0 0
\(973\) −7.37754 22.7057i −0.236513 0.727912i
\(974\) 0 0
\(975\) 0.936080 0.0299785
\(976\) 0 0
\(977\) −43.6030 31.6794i −1.39498 1.01351i −0.995298 0.0968621i \(-0.969119\pi\)
−0.399685 0.916652i \(-0.630881\pi\)
\(978\) 0 0
\(979\) 6.55612 20.1777i 0.209535 0.644881i
\(980\) 0 0
\(981\) 72.0883 2.30160
\(982\) 0 0
\(983\) −19.6789 −0.627660 −0.313830 0.949479i \(-0.601612\pi\)
−0.313830 + 0.949479i \(0.601612\pi\)
\(984\) 0 0
\(985\) −25.6892 −0.818526
\(986\) 0 0
\(987\) 28.9172 0.920445
\(988\) 0 0
\(989\) 2.35801 7.25719i 0.0749802 0.230765i
\(990\) 0 0
\(991\) −33.7404 24.5138i −1.07180 0.778707i −0.0955635 0.995423i \(-0.530465\pi\)
−0.976235 + 0.216716i \(0.930465\pi\)
\(992\) 0 0
\(993\) 38.5048 1.22191
\(994\) 0 0
\(995\) 6.74561 + 20.7609i 0.213850 + 0.658163i
\(996\) 0 0
\(997\) 3.14703 2.28645i 0.0996674 0.0724126i −0.536835 0.843687i \(-0.680380\pi\)
0.636503 + 0.771274i \(0.280380\pi\)
\(998\) 0 0
\(999\) −15.4700 + 47.6117i −0.489449 + 1.50637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.a.201.6 24
41.10 even 5 inner 820.2.u.a.461.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.a.201.6 24 1.1 even 1 trivial
820.2.u.a.461.6 yes 24 41.10 even 5 inner