L(s) = 1 | + 2.53·3-s + (0.309 − 0.951i)5-s + (2.92 + 2.12i)7-s + 3.43·9-s + (0.677 + 2.08i)11-s + (−0.433 + 0.314i)13-s + (0.784 − 2.41i)15-s + (0.573 + 1.76i)17-s + (−3.44 − 2.50i)19-s + (7.42 + 5.39i)21-s + (−0.406 + 0.295i)23-s + (−0.809 − 0.587i)25-s + 1.10·27-s + (−1.25 + 3.85i)29-s + (−2.97 − 9.14i)31-s + ⋯ |
L(s) = 1 | + 1.46·3-s + (0.138 − 0.425i)5-s + (1.10 + 0.803i)7-s + 1.14·9-s + (0.204 + 0.629i)11-s + (−0.120 + 0.0872i)13-s + (0.202 − 0.623i)15-s + (0.139 + 0.428i)17-s + (−0.790 − 0.574i)19-s + (1.61 + 1.17i)21-s + (−0.0847 + 0.0615i)23-s + (−0.161 − 0.117i)25-s + 0.213·27-s + (−0.232 + 0.715i)29-s + (−0.533 − 1.64i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.180i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.983 - 0.180i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.80239 + 0.255331i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.80239 + 0.255331i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-4.26 + 4.77i)T \) |
good | 3 | \( 1 - 2.53T + 3T^{2} \) |
| 7 | \( 1 + (-2.92 - 2.12i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (-0.677 - 2.08i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (0.433 - 0.314i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.573 - 1.76i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (3.44 + 2.50i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (0.406 - 0.295i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (1.25 - 3.85i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.97 + 9.14i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (1.08 - 3.32i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (-0.275 + 0.200i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (-0.751 + 0.546i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.97 + 9.14i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-8.01 + 5.82i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (3.28 + 2.38i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (4.46 - 13.7i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (3.10 + 9.57i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + 1.59T + 73T^{2} \) |
| 79 | \( 1 + 14.3T + 79T^{2} \) |
| 83 | \( 1 - 7.14T + 83T^{2} \) |
| 89 | \( 1 + (-3.09 - 2.24i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (2.83 - 8.71i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.960550274217809661720099469943, −9.149016948338814128617019919805, −8.610754071300840466509177499983, −7.978208864176493120133625684056, −7.11453120622096240585108801623, −5.74604542057780168069907891764, −4.72044599695298135947719184320, −3.82352611803082983535143579128, −2.40873011142100309007978183826, −1.79696175938556410072716059327,
1.49515296306016025839455911876, 2.65040057697340473738551647492, 3.66899708660760838810807869353, 4.50891895723484647270802937876, 5.85112003028161577287351204259, 7.13368791148285138205567219552, 7.74874037886303568532832564600, 8.480988174605266116916068199559, 9.165101102743457670677976218173, 10.22593847692295471009965784365