L(s) = 1 | − 2.30·3-s + (0.309 − 0.951i)5-s + (0.494 + 0.359i)7-s + 2.33·9-s + (−1.06 − 3.26i)11-s + (−2.36 + 1.71i)13-s + (−0.713 + 2.19i)15-s + (1.17 + 3.61i)17-s + (−1.99 − 1.45i)19-s + (−1.14 − 0.830i)21-s + (5.16 − 3.75i)23-s + (−0.809 − 0.587i)25-s + 1.53·27-s + (−3.23 + 9.96i)29-s + (−2.41 − 7.44i)31-s + ⋯ |
L(s) = 1 | − 1.33·3-s + (0.138 − 0.425i)5-s + (0.187 + 0.135i)7-s + 0.778·9-s + (−0.319 − 0.984i)11-s + (−0.655 + 0.476i)13-s + (−0.184 + 0.567i)15-s + (0.284 + 0.876i)17-s + (−0.457 − 0.332i)19-s + (−0.249 − 0.181i)21-s + (1.07 − 0.782i)23-s + (−0.161 − 0.117i)25-s + 0.295·27-s + (−0.601 + 1.85i)29-s + (−0.434 − 1.33i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0574208 + 0.167288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0574208 + 0.167288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (6.40 + 0.00775i)T \) |
good | 3 | \( 1 + 2.30T + 3T^{2} \) |
| 7 | \( 1 + (-0.494 - 0.359i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (1.06 + 3.26i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (2.36 - 1.71i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.17 - 3.61i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.99 + 1.45i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-5.16 + 3.75i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (3.23 - 9.96i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.41 + 7.44i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (2.42 - 7.47i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (9.59 - 6.96i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (10.7 - 7.81i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (1.74 - 5.35i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (9.95 - 7.23i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (1.12 + 0.815i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (0.483 - 1.48i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-1.29 - 3.98i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 - 8.61T + 73T^{2} \) |
| 79 | \( 1 - 5.67T + 79T^{2} \) |
| 83 | \( 1 - 2.05T + 83T^{2} \) |
| 89 | \( 1 + (-10.5 - 7.69i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.75 + 11.5i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84758767631891434678739422592, −9.882362872264513481013795969807, −8.846868211369853003661771610791, −8.100623385394508403521105320295, −6.81052149496837647198795047725, −6.17184714467901731078257240637, −5.19773372563285215526978536886, −4.69792348102254215582552451717, −3.16657045113181463122719731021, −1.46082541699292922384039628480,
0.10432771344686837424385474737, 1.94588847786402346531585976227, 3.42199140020649236844832825016, 4.99690337158566413383699732960, 5.19637618324518579448470644953, 6.45273728523146476122583278466, 7.13457160698666886146732266724, 7.933606692386651582229230450325, 9.355738971722503373528935700181, 10.11782164540402477401859351896