gp: [N,k,chi] = [350,4,Mod(99,350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("350.99");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-8,0,-8,0,0,46,0,96]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 350 Z ) × \left(\mathbb{Z}/350\mathbb{Z}\right)^\times ( Z / 3 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 350 , [ χ ] ) S_{4}^{\mathrm{new}}(350, [\chi]) S 4 n e w ( 3 5 0 , [ χ ] ) :
T 3 2 + 4 T_{3}^{2} + 4 T 3 2 + 4
T3^2 + 4
T 11 − 48 T_{11} - 48 T 1 1 − 4 8
T11 - 48
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
3 3 3
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T − 48 ) 2 (T - 48)^{2} ( T − 4 8 ) 2
(T - 48)^2
13 13 1 3
T 2 + 3136 T^{2} + 3136 T 2 + 3 1 3 6
T^2 + 3136
17 17 1 7
T 2 + 12996 T^{2} + 12996 T 2 + 1 2 9 9 6
T^2 + 12996
19 19 1 9
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
23 23 2 3
T 2 + 14400 T^{2} + 14400 T 2 + 1 4 4 0 0
T^2 + 14400
29 29 2 9
( T − 54 ) 2 (T - 54)^{2} ( T − 5 4 ) 2
(T - 54)^2
31 31 3 1
( T − 236 ) 2 (T - 236)^{2} ( T − 2 3 6 ) 2
(T - 236)^2
37 37 3 7
T 2 + 21316 T^{2} + 21316 T 2 + 2 1 3 1 6
T^2 + 21316
41 41 4 1
( T − 126 ) 2 (T - 126)^{2} ( T − 1 2 6 ) 2
(T - 126)^2
43 43 4 3
T 2 + 141376 T^{2} + 141376 T 2 + 1 4 1 3 7 6
T^2 + 141376
47 47 4 7
T 2 + 144 T^{2} + 144 T 2 + 1 4 4
T^2 + 144
53 53 5 3
T 2 + 30276 T^{2} + 30276 T 2 + 3 0 2 7 6
T^2 + 30276
59 59 5 9
( T + 138 ) 2 (T + 138)^{2} ( T + 1 3 8 ) 2
(T + 138)^2
61 61 6 1
( T − 380 ) 2 (T - 380)^{2} ( T − 3 8 0 ) 2
(T - 380)^2
67 67 6 7
T 2 + 234256 T^{2} + 234256 T 2 + 2 3 4 2 5 6
T^2 + 234256
71 71 7 1
( T − 576 ) 2 (T - 576)^{2} ( T − 5 7 6 ) 2
(T - 576)^2
73 73 7 3
T 2 + 1322500 T^{2} + 1322500 T 2 + 1 3 2 2 5 0 0
T^2 + 1322500
79 79 7 9
( T + 776 ) 2 (T + 776)^{2} ( T + 7 7 6 ) 2
(T + 776)^2
83 83 8 3
T 2 + 142884 T^{2} + 142884 T 2 + 1 4 2 8 8 4
T^2 + 142884
89 89 8 9
( T − 390 ) 2 (T - 390)^{2} ( T − 3 9 0 ) 2
(T - 390)^2
97 97 9 7
T 2 + 1768900 T^{2} + 1768900 T 2 + 1 7 6 8 9 0 0
T^2 + 1768900
show more
show less