Properties

Label 882.4.g.p
Level 882882
Weight 44
Character orbit 882.g
Analytic conductor 52.04052.040
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(361,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.g (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-4,-12,0,0,-16,0,24,48,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q2+(4ζ64)q412ζ6q58q8+(24ζ6+24)q10+(48ζ6+48)q11+56q1316ζ6q16+(114ζ6114)q17+1330q97+O(q100) q + 2 \zeta_{6} q^{2} + (4 \zeta_{6} - 4) q^{4} - 12 \zeta_{6} q^{5} - 8 q^{8} + ( - 24 \zeta_{6} + 24) q^{10} + ( - 48 \zeta_{6} + 48) q^{11} + 56 q^{13} - 16 \zeta_{6} q^{16} + (114 \zeta_{6} - 114) q^{17} + \cdots - 1330 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q24q412q516q8+24q10+48q11+112q1316q16114q172q19+96q20+192q22120q2319q25+112q26+108q29236q31+2660q97+O(q100) 2 q + 2 q^{2} - 4 q^{4} - 12 q^{5} - 16 q^{8} + 24 q^{10} + 48 q^{11} + 112 q^{13} - 16 q^{16} - 114 q^{17} - 2 q^{19} + 96 q^{20} + 192 q^{22} - 120 q^{23} - 19 q^{25} + 112 q^{26} + 108 q^{29} - 236 q^{31}+ \cdots - 2660 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i −6.00000 10.3923i 0 0 −8.00000 0 12.0000 20.7846i
667.1 1.00000 1.73205i 0 −2.00000 3.46410i −6.00000 + 10.3923i 0 0 −8.00000 0 12.0000 + 20.7846i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.p 2
3.b odd 2 1 98.4.c.c 2
7.b odd 2 1 882.4.g.v 2
7.c even 3 1 126.4.a.d 1
7.c even 3 1 inner 882.4.g.p 2
7.d odd 6 1 882.4.a.b 1
7.d odd 6 1 882.4.g.v 2
21.c even 2 1 98.4.c.b 2
21.g even 6 1 98.4.a.e 1
21.g even 6 1 98.4.c.b 2
21.h odd 6 1 14.4.a.b 1
21.h odd 6 1 98.4.c.c 2
28.g odd 6 1 1008.4.a.r 1
84.j odd 6 1 784.4.a.h 1
84.n even 6 1 112.4.a.e 1
105.o odd 6 1 350.4.a.f 1
105.p even 6 1 2450.4.a.i 1
105.x even 12 2 350.4.c.g 2
168.s odd 6 1 448.4.a.k 1
168.v even 6 1 448.4.a.g 1
231.l even 6 1 1694.4.a.b 1
273.w odd 6 1 2366.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.b 1 21.h odd 6 1
98.4.a.e 1 21.g even 6 1
98.4.c.b 2 21.c even 2 1
98.4.c.b 2 21.g even 6 1
98.4.c.c 2 3.b odd 2 1
98.4.c.c 2 21.h odd 6 1
112.4.a.e 1 84.n even 6 1
126.4.a.d 1 7.c even 3 1
350.4.a.f 1 105.o odd 6 1
350.4.c.g 2 105.x even 12 2
448.4.a.g 1 168.v even 6 1
448.4.a.k 1 168.s odd 6 1
784.4.a.h 1 84.j odd 6 1
882.4.a.b 1 7.d odd 6 1
882.4.g.p 2 1.a even 1 1 trivial
882.4.g.p 2 7.c even 3 1 inner
882.4.g.v 2 7.b odd 2 1
882.4.g.v 2 7.d odd 6 1
1008.4.a.r 1 28.g odd 6 1
1694.4.a.b 1 231.l even 6 1
2366.4.a.c 1 273.w odd 6 1
2450.4.a.i 1 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(882,[χ])S_{4}^{\mathrm{new}}(882, [\chi]):

T52+12T5+144 T_{5}^{2} + 12T_{5} + 144 Copy content Toggle raw display
T11248T11+2304 T_{11}^{2} - 48T_{11} + 2304 Copy content Toggle raw display
T1356 T_{13} - 56 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T248T+2304 T^{2} - 48T + 2304 Copy content Toggle raw display
1313 (T56)2 (T - 56)^{2} Copy content Toggle raw display
1717 T2+114T+12996 T^{2} + 114T + 12996 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2+120T+14400 T^{2} + 120T + 14400 Copy content Toggle raw display
2929 (T54)2 (T - 54)^{2} Copy content Toggle raw display
3131 T2+236T+55696 T^{2} + 236T + 55696 Copy content Toggle raw display
3737 T2+146T+21316 T^{2} + 146T + 21316 Copy content Toggle raw display
4141 (T+126)2 (T + 126)^{2} Copy content Toggle raw display
4343 (T+376)2 (T + 376)^{2} Copy content Toggle raw display
4747 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
5353 T2174T+30276 T^{2} - 174T + 30276 Copy content Toggle raw display
5959 T2138T+19044 T^{2} - 138T + 19044 Copy content Toggle raw display
6161 T2+380T+144400 T^{2} + 380T + 144400 Copy content Toggle raw display
6767 T2484T+234256 T^{2} - 484T + 234256 Copy content Toggle raw display
7171 (T+576)2 (T + 576)^{2} Copy content Toggle raw display
7373 T21150T+1322500 T^{2} - 1150 T + 1322500 Copy content Toggle raw display
7979 T2+776T+602176 T^{2} + 776T + 602176 Copy content Toggle raw display
8383 (T+378)2 (T + 378)^{2} Copy content Toggle raw display
8989 T2+390T+152100 T^{2} + 390T + 152100 Copy content Toggle raw display
9797 (T+1330)2 (T + 1330)^{2} Copy content Toggle raw display
show more
show less