gp: [N,k,chi] = [1694,4,Mod(1,1694)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1694.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1694, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [1,-2,-2,4,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1694 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1694)) S 4 n e w ( Γ 0 ( 1 6 9 4 ) ) :
T 3 + 2 T_{3} + 2 T 3 + 2
T3 + 2
T 5 + 12 T_{5} + 12 T 5 + 1 2
T5 + 12
T 13 + 56 T_{13} + 56 T 1 3 + 5 6
T13 + 56
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T + 2 T + 2 T + 2
T + 2
5 5 5
T + 12 T + 12 T + 1 2
T + 12
7 7 7
T + 7 T + 7 T + 7
T + 7
11 11 1 1
T T T
T
13 13 1 3
T + 56 T + 56 T + 5 6
T + 56
17 17 1 7
T − 114 T - 114 T − 1 1 4
T - 114
19 19 1 9
T + 2 T + 2 T + 2
T + 2
23 23 2 3
T + 120 T + 120 T + 1 2 0
T + 120
29 29 2 9
T − 54 T - 54 T − 5 4
T - 54
31 31 3 1
T − 236 T - 236 T − 2 3 6
T - 236
37 37 3 7
T − 146 T - 146 T − 1 4 6
T - 146
41 41 4 1
T + 126 T + 126 T + 1 2 6
T + 126
43 43 4 3
T − 376 T - 376 T − 3 7 6
T - 376
47 47 4 7
T + 12 T + 12 T + 1 2
T + 12
53 53 5 3
T − 174 T - 174 T − 1 7 4
T - 174
59 59 5 9
T − 138 T - 138 T − 1 3 8
T - 138
61 61 6 1
T + 380 T + 380 T + 3 8 0
T + 380
67 67 6 7
T + 484 T + 484 T + 4 8 4
T + 484
71 71 7 1
T − 576 T - 576 T − 5 7 6
T - 576
73 73 7 3
T − 1150 T - 1150 T − 1 1 5 0
T - 1150
79 79 7 9
T + 776 T + 776 T + 7 7 6
T + 776
83 83 8 3
T + 378 T + 378 T + 3 7 8
T + 378
89 89 8 9
T + 390 T + 390 T + 3 9 0
T + 390
97 97 9 7
T + 1330 T + 1330 T + 1 3 3 0
T + 1330
show more
show less