Properties

Label 1694.4.a.b
Level 16941694
Weight 44
Character orbit 1694.a
Self dual yes
Analytic conductor 99.94999.949
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1694,4,Mod(1,1694)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1694.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1694, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 1694=27112 1694 = 2 \cdot 7 \cdot 11^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1694.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,-2,4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 99.949235549799.9492355497
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q22q3+4q412q5+4q67q78q823q9+24q108q1256q13+14q14+24q15+16q16+114q17+46q182q1948q20+98q98+O(q100) q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 12 q^{5} + 4 q^{6} - 7 q^{7} - 8 q^{8} - 23 q^{9} + 24 q^{10} - 8 q^{12} - 56 q^{13} + 14 q^{14} + 24 q^{15} + 16 q^{16} + 114 q^{17} + 46 q^{18} - 2 q^{19} - 48 q^{20}+ \cdots - 98 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 −2.00000 4.00000 −12.0000 4.00000 −7.00000 −8.00000 −23.0000 24.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
77 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1694.4.a.b 1
11.b odd 2 1 14.4.a.b 1
33.d even 2 1 126.4.a.d 1
44.c even 2 1 112.4.a.e 1
55.d odd 2 1 350.4.a.f 1
55.e even 4 2 350.4.c.g 2
77.b even 2 1 98.4.a.e 1
77.h odd 6 2 98.4.c.c 2
77.i even 6 2 98.4.c.b 2
88.b odd 2 1 448.4.a.k 1
88.g even 2 1 448.4.a.g 1
132.d odd 2 1 1008.4.a.r 1
143.d odd 2 1 2366.4.a.c 1
231.h odd 2 1 882.4.a.b 1
231.k odd 6 2 882.4.g.v 2
231.l even 6 2 882.4.g.p 2
308.g odd 2 1 784.4.a.h 1
385.h even 2 1 2450.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.b 1 11.b odd 2 1
98.4.a.e 1 77.b even 2 1
98.4.c.b 2 77.i even 6 2
98.4.c.c 2 77.h odd 6 2
112.4.a.e 1 44.c even 2 1
126.4.a.d 1 33.d even 2 1
350.4.a.f 1 55.d odd 2 1
350.4.c.g 2 55.e even 4 2
448.4.a.g 1 88.g even 2 1
448.4.a.k 1 88.b odd 2 1
784.4.a.h 1 308.g odd 2 1
882.4.a.b 1 231.h odd 2 1
882.4.g.p 2 231.l even 6 2
882.4.g.v 2 231.k odd 6 2
1008.4.a.r 1 132.d odd 2 1
1694.4.a.b 1 1.a even 1 1 trivial
2366.4.a.c 1 143.d odd 2 1
2450.4.a.i 1 385.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1694))S_{4}^{\mathrm{new}}(\Gamma_0(1694)):

T3+2 T_{3} + 2 Copy content Toggle raw display
T5+12 T_{5} + 12 Copy content Toggle raw display
T13+56 T_{13} + 56 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T+2 T + 2 Copy content Toggle raw display
55 T+12 T + 12 Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+56 T + 56 Copy content Toggle raw display
1717 T114 T - 114 Copy content Toggle raw display
1919 T+2 T + 2 Copy content Toggle raw display
2323 T+120 T + 120 Copy content Toggle raw display
2929 T54 T - 54 Copy content Toggle raw display
3131 T236 T - 236 Copy content Toggle raw display
3737 T146 T - 146 Copy content Toggle raw display
4141 T+126 T + 126 Copy content Toggle raw display
4343 T376 T - 376 Copy content Toggle raw display
4747 T+12 T + 12 Copy content Toggle raw display
5353 T174 T - 174 Copy content Toggle raw display
5959 T138 T - 138 Copy content Toggle raw display
6161 T+380 T + 380 Copy content Toggle raw display
6767 T+484 T + 484 Copy content Toggle raw display
7171 T576 T - 576 Copy content Toggle raw display
7373 T1150 T - 1150 Copy content Toggle raw display
7979 T+776 T + 776 Copy content Toggle raw display
8383 T+378 T + 378 Copy content Toggle raw display
8989 T+390 T + 390 Copy content Toggle raw display
9797 T+1330 T + 1330 Copy content Toggle raw display
show more
show less