Properties

Label 126.4.a.d
Level $126$
Weight $4$
Character orbit 126.a
Self dual yes
Analytic conductor $7.434$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,4,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 12 q^{5} + 7 q^{7} - 8 q^{8} - 24 q^{10} - 48 q^{11} + 56 q^{13} - 14 q^{14} + 16 q^{16} + 114 q^{17} + 2 q^{19} + 48 q^{20} + 96 q^{22} + 120 q^{23} + 19 q^{25} - 112 q^{26} + 28 q^{28}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 12.0000 0 7.00000 −8.00000 0 −24.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.4.a.d 1
3.b odd 2 1 14.4.a.b 1
4.b odd 2 1 1008.4.a.r 1
7.b odd 2 1 882.4.a.b 1
7.c even 3 2 882.4.g.p 2
7.d odd 6 2 882.4.g.v 2
12.b even 2 1 112.4.a.e 1
15.d odd 2 1 350.4.a.f 1
15.e even 4 2 350.4.c.g 2
21.c even 2 1 98.4.a.e 1
21.g even 6 2 98.4.c.b 2
21.h odd 6 2 98.4.c.c 2
24.f even 2 1 448.4.a.g 1
24.h odd 2 1 448.4.a.k 1
33.d even 2 1 1694.4.a.b 1
39.d odd 2 1 2366.4.a.c 1
84.h odd 2 1 784.4.a.h 1
105.g even 2 1 2450.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.b 1 3.b odd 2 1
98.4.a.e 1 21.c even 2 1
98.4.c.b 2 21.g even 6 2
98.4.c.c 2 21.h odd 6 2
112.4.a.e 1 12.b even 2 1
126.4.a.d 1 1.a even 1 1 trivial
350.4.a.f 1 15.d odd 2 1
350.4.c.g 2 15.e even 4 2
448.4.a.g 1 24.f even 2 1
448.4.a.k 1 24.h odd 2 1
784.4.a.h 1 84.h odd 2 1
882.4.a.b 1 7.b odd 2 1
882.4.g.p 2 7.c even 3 2
882.4.g.v 2 7.d odd 6 2
1008.4.a.r 1 4.b odd 2 1
1694.4.a.b 1 33.d even 2 1
2366.4.a.c 1 39.d odd 2 1
2450.4.a.i 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 12 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(126))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 12 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 48 \) Copy content Toggle raw display
$13$ \( T - 56 \) Copy content Toggle raw display
$17$ \( T - 114 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T - 120 \) Copy content Toggle raw display
$29$ \( T - 54 \) Copy content Toggle raw display
$31$ \( T - 236 \) Copy content Toggle raw display
$37$ \( T - 146 \) Copy content Toggle raw display
$41$ \( T + 126 \) Copy content Toggle raw display
$43$ \( T + 376 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T + 174 \) Copy content Toggle raw display
$59$ \( T + 138 \) Copy content Toggle raw display
$61$ \( T - 380 \) Copy content Toggle raw display
$67$ \( T + 484 \) Copy content Toggle raw display
$71$ \( T + 576 \) Copy content Toggle raw display
$73$ \( T + 1150 \) Copy content Toggle raw display
$79$ \( T - 776 \) Copy content Toggle raw display
$83$ \( T + 378 \) Copy content Toggle raw display
$89$ \( T - 390 \) Copy content Toggle raw display
$97$ \( T + 1330 \) Copy content Toggle raw display
show more
show less