Properties

Label 126.4.a.d
Level 126126
Weight 44
Character orbit 126.a
Self dual yes
Analytic conductor 7.4347.434
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,4,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 126=2327 126 = 2 \cdot 3^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.434240660727.43424066072
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q2+4q4+12q5+7q78q824q1048q11+56q1314q14+16q16+114q17+2q19+48q20+96q22+120q23+19q25112q26+28q28+98q98+O(q100) q - 2 q^{2} + 4 q^{4} + 12 q^{5} + 7 q^{7} - 8 q^{8} - 24 q^{10} - 48 q^{11} + 56 q^{13} - 14 q^{14} + 16 q^{16} + 114 q^{17} + 2 q^{19} + 48 q^{20} + 96 q^{22} + 120 q^{23} + 19 q^{25} - 112 q^{26} + 28 q^{28}+ \cdots - 98 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 0 4.00000 12.0000 0 7.00000 −8.00000 0 −24.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.4.a.d 1
3.b odd 2 1 14.4.a.b 1
4.b odd 2 1 1008.4.a.r 1
7.b odd 2 1 882.4.a.b 1
7.c even 3 2 882.4.g.p 2
7.d odd 6 2 882.4.g.v 2
12.b even 2 1 112.4.a.e 1
15.d odd 2 1 350.4.a.f 1
15.e even 4 2 350.4.c.g 2
21.c even 2 1 98.4.a.e 1
21.g even 6 2 98.4.c.b 2
21.h odd 6 2 98.4.c.c 2
24.f even 2 1 448.4.a.g 1
24.h odd 2 1 448.4.a.k 1
33.d even 2 1 1694.4.a.b 1
39.d odd 2 1 2366.4.a.c 1
84.h odd 2 1 784.4.a.h 1
105.g even 2 1 2450.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.b 1 3.b odd 2 1
98.4.a.e 1 21.c even 2 1
98.4.c.b 2 21.g even 6 2
98.4.c.c 2 21.h odd 6 2
112.4.a.e 1 12.b even 2 1
126.4.a.d 1 1.a even 1 1 trivial
350.4.a.f 1 15.d odd 2 1
350.4.c.g 2 15.e even 4 2
448.4.a.g 1 24.f even 2 1
448.4.a.k 1 24.h odd 2 1
784.4.a.h 1 84.h odd 2 1
882.4.a.b 1 7.b odd 2 1
882.4.g.p 2 7.c even 3 2
882.4.g.v 2 7.d odd 6 2
1008.4.a.r 1 4.b odd 2 1
1694.4.a.b 1 33.d even 2 1
2366.4.a.c 1 39.d odd 2 1
2450.4.a.i 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512 T_{5} - 12 acting on S4new(Γ0(126))S_{4}^{\mathrm{new}}(\Gamma_0(126)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T12 T - 12 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T+48 T + 48 Copy content Toggle raw display
1313 T56 T - 56 Copy content Toggle raw display
1717 T114 T - 114 Copy content Toggle raw display
1919 T2 T - 2 Copy content Toggle raw display
2323 T120 T - 120 Copy content Toggle raw display
2929 T54 T - 54 Copy content Toggle raw display
3131 T236 T - 236 Copy content Toggle raw display
3737 T146 T - 146 Copy content Toggle raw display
4141 T+126 T + 126 Copy content Toggle raw display
4343 T+376 T + 376 Copy content Toggle raw display
4747 T12 T - 12 Copy content Toggle raw display
5353 T+174 T + 174 Copy content Toggle raw display
5959 T+138 T + 138 Copy content Toggle raw display
6161 T380 T - 380 Copy content Toggle raw display
6767 T+484 T + 484 Copy content Toggle raw display
7171 T+576 T + 576 Copy content Toggle raw display
7373 T+1150 T + 1150 Copy content Toggle raw display
7979 T776 T - 776 Copy content Toggle raw display
8383 T+378 T + 378 Copy content Toggle raw display
8989 T390 T - 390 Copy content Toggle raw display
9797 T+1330 T + 1330 Copy content Toggle raw display
show more
show less