gp: [N,k,chi] = [98,4,Mod(67,98)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(98, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("98.67");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,-2,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 98 Z ) × \left(\mathbb{Z}/98\mathbb{Z}\right)^\times ( Z / 9 8 Z ) × .
n n n
3 3 3
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 − 2 T 3 + 4 T_{3}^{2} - 2T_{3} + 4 T 3 2 − 2 T 3 + 4
T3^2 - 2*T3 + 4
acting on S 4 n e w ( 98 , [ χ ] ) S_{4}^{\mathrm{new}}(98, [\chi]) S 4 n e w ( 9 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
3 3 3
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
5 5 5
T 2 − 12 T + 144 T^{2} - 12T + 144 T 2 − 1 2 T + 1 4 4
T^2 - 12*T + 144
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 + 48 T + 2304 T^{2} + 48T + 2304 T 2 + 4 8 T + 2 3 0 4
T^2 + 48*T + 2304
13 13 1 3
( T − 56 ) 2 (T - 56)^{2} ( T − 5 6 ) 2
(T - 56)^2
17 17 1 7
T 2 − 114 T + 12996 T^{2} - 114T + 12996 T 2 − 1 1 4 T + 1 2 9 9 6
T^2 - 114*T + 12996
19 19 1 9
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
23 23 2 3
T 2 − 120 T + 14400 T^{2} - 120T + 14400 T 2 − 1 2 0 T + 1 4 4 0 0
T^2 - 120*T + 14400
29 29 2 9
( T + 54 ) 2 (T + 54)^{2} ( T + 5 4 ) 2
(T + 54)^2
31 31 3 1
T 2 + 236 T + 55696 T^{2} + 236T + 55696 T 2 + 2 3 6 T + 5 5 6 9 6
T^2 + 236*T + 55696
37 37 3 7
T 2 + 146 T + 21316 T^{2} + 146T + 21316 T 2 + 1 4 6 T + 2 1 3 1 6
T^2 + 146*T + 21316
41 41 4 1
( T − 126 ) 2 (T - 126)^{2} ( T − 1 2 6 ) 2
(T - 126)^2
43 43 4 3
( T + 376 ) 2 (T + 376)^{2} ( T + 3 7 6 ) 2
(T + 376)^2
47 47 4 7
T 2 − 12 T + 144 T^{2} - 12T + 144 T 2 − 1 2 T + 1 4 4
T^2 - 12*T + 144
53 53 5 3
T 2 + 174 T + 30276 T^{2} + 174T + 30276 T 2 + 1 7 4 T + 3 0 2 7 6
T^2 + 174*T + 30276
59 59 5 9
T 2 + 138 T + 19044 T^{2} + 138T + 19044 T 2 + 1 3 8 T + 1 9 0 4 4
T^2 + 138*T + 19044
61 61 6 1
T 2 + 380 T + 144400 T^{2} + 380T + 144400 T 2 + 3 8 0 T + 1 4 4 4 0 0
T^2 + 380*T + 144400
67 67 6 7
T 2 − 484 T + 234256 T^{2} - 484T + 234256 T 2 − 4 8 4 T + 2 3 4 2 5 6
T^2 - 484*T + 234256
71 71 7 1
( T − 576 ) 2 (T - 576)^{2} ( T − 5 7 6 ) 2
(T - 576)^2
73 73 7 3
T 2 − 1150 T + 1322500 T^{2} - 1150 T + 1322500 T 2 − 1 1 5 0 T + 1 3 2 2 5 0 0
T^2 - 1150*T + 1322500
79 79 7 9
T 2 + 776 T + 602176 T^{2} + 776T + 602176 T 2 + 7 7 6 T + 6 0 2 1 7 6
T^2 + 776*T + 602176
83 83 8 3
( T − 378 ) 2 (T - 378)^{2} ( T − 3 7 8 ) 2
(T - 378)^2
89 89 8 9
T 2 − 390 T + 152100 T^{2} - 390T + 152100 T 2 − 3 9 0 T + 1 5 2 1 0 0
T^2 - 390*T + 152100
97 97 9 7
( T + 1330 ) 2 (T + 1330)^{2} ( T + 1 3 3 0 ) 2
(T + 1330)^2
show more
show less