Properties

Label 98.4.c.c
Level 9898
Weight 44
Character orbit 98.c
Analytic conductor 5.7825.782
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,4,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 98=272 98 = 2 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 98.c (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.782187180565.78218718056
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2ζ6q2+(2ζ6+2)q3+(4ζ64)q4+12ζ6q54q6+8q8+23ζ6q9+(24ζ6+24)q10+(48ζ648)q11+8ζ6q12+1104q99+O(q100) q - 2 \zeta_{6} q^{2} + ( - 2 \zeta_{6} + 2) q^{3} + (4 \zeta_{6} - 4) q^{4} + 12 \zeta_{6} q^{5} - 4 q^{6} + 8 q^{8} + 23 \zeta_{6} q^{9} + ( - 24 \zeta_{6} + 24) q^{10} + (48 \zeta_{6} - 48) q^{11} + 8 \zeta_{6} q^{12} + \cdots - 1104 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q34q4+12q58q6+16q8+23q9+24q1048q11+8q12+112q13+48q1516q16+114q17+46q182q1996q20+192q22+2208q99+O(q100) 2 q - 2 q^{2} + 2 q^{3} - 4 q^{4} + 12 q^{5} - 8 q^{6} + 16 q^{8} + 23 q^{9} + 24 q^{10} - 48 q^{11} + 8 q^{12} + 112 q^{13} + 48 q^{15} - 16 q^{16} + 114 q^{17} + 46 q^{18} - 2 q^{19} - 96 q^{20} + 192 q^{22}+ \cdots - 2208 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/98Z)×\left(\mathbb{Z}/98\mathbb{Z}\right)^\times.

nn 33
χ(n)\chi(n) ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 1.00000 1.73205i −2.00000 + 3.46410i 6.00000 + 10.3923i −4.00000 0 8.00000 11.5000 + 19.9186i 12.0000 20.7846i
79.1 −1.00000 + 1.73205i 1.00000 + 1.73205i −2.00000 3.46410i 6.00000 10.3923i −4.00000 0 8.00000 11.5000 19.9186i 12.0000 + 20.7846i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.4.c.c 2
3.b odd 2 1 882.4.g.p 2
7.b odd 2 1 98.4.c.b 2
7.c even 3 1 14.4.a.b 1
7.c even 3 1 inner 98.4.c.c 2
7.d odd 6 1 98.4.a.e 1
7.d odd 6 1 98.4.c.b 2
21.c even 2 1 882.4.g.v 2
21.g even 6 1 882.4.a.b 1
21.g even 6 1 882.4.g.v 2
21.h odd 6 1 126.4.a.d 1
21.h odd 6 1 882.4.g.p 2
28.f even 6 1 784.4.a.h 1
28.g odd 6 1 112.4.a.e 1
35.i odd 6 1 2450.4.a.i 1
35.j even 6 1 350.4.a.f 1
35.l odd 12 2 350.4.c.g 2
56.k odd 6 1 448.4.a.g 1
56.p even 6 1 448.4.a.k 1
77.h odd 6 1 1694.4.a.b 1
84.n even 6 1 1008.4.a.r 1
91.r even 6 1 2366.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.b 1 7.c even 3 1
98.4.a.e 1 7.d odd 6 1
98.4.c.b 2 7.b odd 2 1
98.4.c.b 2 7.d odd 6 1
98.4.c.c 2 1.a even 1 1 trivial
98.4.c.c 2 7.c even 3 1 inner
112.4.a.e 1 28.g odd 6 1
126.4.a.d 1 21.h odd 6 1
350.4.a.f 1 35.j even 6 1
350.4.c.g 2 35.l odd 12 2
448.4.a.g 1 56.k odd 6 1
448.4.a.k 1 56.p even 6 1
784.4.a.h 1 28.f even 6 1
882.4.a.b 1 21.g even 6 1
882.4.g.p 2 3.b odd 2 1
882.4.g.p 2 21.h odd 6 1
882.4.g.v 2 21.c even 2 1
882.4.g.v 2 21.g even 6 1
1008.4.a.r 1 84.n even 6 1
1694.4.a.b 1 77.h odd 6 1
2366.4.a.c 1 91.r even 6 1
2450.4.a.i 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T322T3+4 T_{3}^{2} - 2T_{3} + 4 acting on S4new(98,[χ])S_{4}^{\mathrm{new}}(98, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
33 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
55 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+48T+2304 T^{2} + 48T + 2304 Copy content Toggle raw display
1313 (T56)2 (T - 56)^{2} Copy content Toggle raw display
1717 T2114T+12996 T^{2} - 114T + 12996 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2120T+14400 T^{2} - 120T + 14400 Copy content Toggle raw display
2929 (T+54)2 (T + 54)^{2} Copy content Toggle raw display
3131 T2+236T+55696 T^{2} + 236T + 55696 Copy content Toggle raw display
3737 T2+146T+21316 T^{2} + 146T + 21316 Copy content Toggle raw display
4141 (T126)2 (T - 126)^{2} Copy content Toggle raw display
4343 (T+376)2 (T + 376)^{2} Copy content Toggle raw display
4747 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
5353 T2+174T+30276 T^{2} + 174T + 30276 Copy content Toggle raw display
5959 T2+138T+19044 T^{2} + 138T + 19044 Copy content Toggle raw display
6161 T2+380T+144400 T^{2} + 380T + 144400 Copy content Toggle raw display
6767 T2484T+234256 T^{2} - 484T + 234256 Copy content Toggle raw display
7171 (T576)2 (T - 576)^{2} Copy content Toggle raw display
7373 T21150T+1322500 T^{2} - 1150 T + 1322500 Copy content Toggle raw display
7979 T2+776T+602176 T^{2} + 776T + 602176 Copy content Toggle raw display
8383 (T378)2 (T - 378)^{2} Copy content Toggle raw display
8989 T2390T+152100 T^{2} - 390T + 152100 Copy content Toggle raw display
9797 (T+1330)2 (T + 1330)^{2} Copy content Toggle raw display
show more
show less