gp: [N,k,chi] = [2366,4,Mod(1,2366)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2366, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2366.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,-2,4,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
7 7 7
+ 1 +1 + 1
13 13 1 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 2366 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(2366)) S 4 n e w ( Γ 0 ( 2 3 6 6 ) ) :
T 3 + 2 T_{3} + 2 T 3 + 2
T3 + 2
T 5 − 12 T_{5} - 12 T 5 − 1 2
T5 - 12
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T + 2 T + 2 T + 2
T + 2
5 5 5
T − 12 T - 12 T − 1 2
T - 12
7 7 7
T + 7 T + 7 T + 7
T + 7
11 11 1 1
T + 48 T + 48 T + 4 8
T + 48
13 13 1 3
T T T
T
17 17 1 7
T + 114 T + 114 T + 1 1 4
T + 114
19 19 1 9
T + 2 T + 2 T + 2
T + 2
23 23 2 3
T + 120 T + 120 T + 1 2 0
T + 120
29 29 2 9
T + 54 T + 54 T + 5 4
T + 54
31 31 3 1
T + 236 T + 236 T + 2 3 6
T + 236
37 37 3 7
T + 146 T + 146 T + 1 4 6
T + 146
41 41 4 1
T + 126 T + 126 T + 1 2 6
T + 126
43 43 4 3
T + 376 T + 376 T + 3 7 6
T + 376
47 47 4 7
T − 12 T - 12 T − 1 2
T - 12
53 53 5 3
T − 174 T - 174 T − 1 7 4
T - 174
59 59 5 9
T + 138 T + 138 T + 1 3 8
T + 138
61 61 6 1
T − 380 T - 380 T − 3 8 0
T - 380
67 67 6 7
T − 484 T - 484 T − 4 8 4
T - 484
71 71 7 1
T + 576 T + 576 T + 5 7 6
T + 576
73 73 7 3
T − 1150 T - 1150 T − 1 1 5 0
T - 1150
79 79 7 9
T − 776 T - 776 T − 7 7 6
T - 776
83 83 8 3
T + 378 T + 378 T + 3 7 8
T + 378
89 89 8 9
T − 390 T - 390 T − 3 9 0
T - 390
97 97 9 7
T − 1330 T - 1330 T − 1 3 3 0
T - 1330
show more
show less