Learn more

Refine search


Results (1-50 of 309 matches)

Next   Download to        
Label Char Prim Dim $A$ Field CM Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
350.2.a.a 350.a 1.a $1$ $2.795$ \(\Q\) None \(-1\) \(-1\) \(0\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
350.2.a.b 350.a 1.a $1$ $2.795$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-3q^{9}+4q^{11}+\cdots\)
350.2.a.c 350.a 1.a $1$ $2.795$ \(\Q\) None \(-1\) \(3\) \(0\) \(1\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}-3q^{6}+q^{7}-q^{8}+\cdots\)
350.2.a.d 350.a 1.a $1$ $2.795$ \(\Q\) None \(1\) \(-3\) \(0\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-3q^{6}-q^{7}+q^{8}+\cdots\)
350.2.a.e 350.a 1.a $1$ $2.795$ \(\Q\) None \(1\) \(1\) \(0\) \(1\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
350.2.a.f 350.a 1.a $1$ $2.795$ \(\Q\) None \(1\) \(2\) \(0\) \(-1\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{6}-q^{7}+q^{8}+\cdots\)
350.2.a.g 350.a 1.a $2$ $2.795$ \(\Q(\sqrt{6}) \) None \(-2\) \(0\) \(0\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}-q^{7}-q^{8}+\cdots\)
350.2.a.h 350.a 1.a $2$ $2.795$ \(\Q(\sqrt{6}) \) None \(2\) \(0\) \(0\) \(2\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+\beta q^{6}+q^{7}+q^{8}+\cdots\)
350.2.c.a 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+3iq^{3}-q^{4}-3q^{6}-iq^{7}+\cdots\)
350.2.c.b 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}-iq^{7}-iq^{8}+3q^{9}+\cdots\)
350.2.c.c 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+iq^{7}-iq^{8}+\cdots\)
350.2.c.d 350.c 5.b $2$ $2.795$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-2iq^{3}-q^{4}+2q^{6}-iq^{7}+\cdots\)
350.2.e.a 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(-2\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.b 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.c 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(-3+2\zeta_{6})q^{7}+\cdots\)
350.2.e.d 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(2-3\zeta_{6})q^{7}+\cdots\)
350.2.e.e 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(1\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.f 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(-1\) \(3\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(3-3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.g 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(-3\) \(0\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-3+3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.h 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.i 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(-2+3\zeta_{6})q^{7}+\cdots\)
350.2.e.j 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+(3-2\zeta_{6})q^{7}+\cdots\)
350.2.e.k 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(2\) \(0\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.e.l 350.e 7.c $2$ $2.795$ \(\Q(\sqrt{-3}) \) None \(1\) \(3\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(3-3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
350.2.g.a 350.g 35.f $8$ $2.795$ \(\Q(\zeta_{16})\) None \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{16}q^{2}+\zeta_{16}^{2}q^{3}+\zeta_{16}^{3}q^{4}+(\zeta_{16}^{4}+\cdots)q^{6}+\cdots\)
350.2.g.b 350.g 35.f $16$ $2.795$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}+\beta _{3}q^{3}+\beta _{10}q^{4}+\beta _{15}q^{6}+\cdots\)
350.2.h.a 350.h 25.d $8$ $2.795$ \(\Q(\zeta_{15})\) None \(-2\) \(3\) \(0\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{15}^{4}q^{2}+(-\zeta_{15}^{3}-\zeta_{15}^{4}+\zeta_{15}^{6}+\cdots)q^{3}+\cdots\)
350.2.h.b 350.h 25.d $12$ $2.795$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(3\) \(1\) \(-5\) \(-12\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{5}q^{2}+(\beta _{1}-\beta _{3}+\beta _{7})q^{3}-\beta _{3}q^{4}+\cdots\)
350.2.h.c 350.h 25.d $16$ $2.795$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(-4\) \(1\) \(-4\) \(-16\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{6}q^{2}-\beta _{10}q^{3}-\beta _{1}q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
350.2.h.d 350.h 25.d $20$ $2.795$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(5\) \(3\) \(-5\) \(20\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{14}q^{2}+\beta _{1}q^{3}+\beta _{6}q^{4}+(\beta _{10}+\beta _{13}+\cdots)q^{5}+\cdots\)
350.2.j.a 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-2\zeta_{12}+2\zeta_{12}^{3})q^{3}+\cdots\)
350.2.j.b 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
350.2.j.c 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+\zeta_{12}^{2}q^{4}+(3\zeta_{12}-2\zeta_{12}^{3})q^{7}+\cdots\)
350.2.j.d 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
350.2.j.e 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(2\zeta_{12}-2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
350.2.j.f 350.j 35.j $4$ $2.795$ \(\Q(\zeta_{12})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(3\zeta_{12}-3\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
350.2.m.a 350.m 25.e $24$ $2.795$ None \(0\) \(0\) \(10\) \(0\) $\mathrm{SU}(2)[C_{10}]$
350.2.m.b 350.m 25.e $40$ $2.795$ None \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{10}]$
350.2.o.a 350.o 35.k $8$ $2.795$ \(\Q(\zeta_{24})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}+(2\zeta_{24}-\zeta_{24}^{3}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\)
350.2.o.b 350.o 35.k $8$ $2.795$ \(\Q(\zeta_{24})\) None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}+(2\zeta_{24}+\zeta_{24}^{3}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\)
350.2.o.c 350.o 35.k $16$ $2.795$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{13}q^{2}+(\beta _{3}-\beta _{7}-\beta _{15})q^{3}+(\beta _{11}+\cdots)q^{4}+\cdots\)
350.2.o.d 350.o 35.k $16$ $2.795$ 16.0.\(\cdots\).1 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{5}+\beta _{7})q^{2}+(-\beta _{4}-\beta _{13}+\beta _{14}+\cdots)q^{3}+\cdots\)
350.2.q.a 350.q 175.q $8$ $2.795$ \(\Q(\zeta_{15})\) None \(-1\) \(-3\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{15}]$ \(q-\zeta_{15}q^{2}+(1-\zeta_{15}^{2}+\zeta_{15}^{3}-\zeta_{15}^{4}+\cdots)q^{3}+\cdots\)
350.2.q.b 350.q 175.q $72$ $2.795$ None \(-9\) \(1\) \(0\) \(8\) $\mathrm{SU}(2)[C_{15}]$
350.2.q.c 350.q 175.q $80$ $2.795$ None \(10\) \(2\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{15}]$
350.2.r.a 350.r 175.s $160$ $2.795$ None \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{20}]$
350.2.u.a 350.u 175.t $160$ $2.795$ None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{30}]$
350.2.x.a 350.x 175.x $320$ $2.795$ None \(0\) \(0\) \(12\) \(-8\) $\mathrm{SU}(2)[C_{60}]$
350.3.b.a 350.b 7.b $4$ $9.537$ 4.0.7168.1 None \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+\beta _{1}q^{3}+2q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{6}+\cdots\)
350.3.b.b 350.b 7.b $4$ $9.537$ 4.0.7168.1 None \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+\beta _{1}q^{3}+2q^{4}+(\beta _{1}-\beta _{2}+\cdots)q^{6}+\cdots\)
Next   Download to