Properties

Label 350.4
Level 350
Weight 4
Dimension 3180
Nonzero newspaces 12
Sturm bound 28800
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(28800\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(350))\).

Total New Old
Modular forms 11136 3180 7956
Cusp forms 10464 3180 7284
Eisenstein series 672 0 672

Trace form

\( 3180 q + 8 q^{2} - 20 q^{3} - 16 q^{4} - 10 q^{5} - 68 q^{6} - 56 q^{7} + 32 q^{8} + 374 q^{9} + 100 q^{10} - 134 q^{11} - 80 q^{12} - 166 q^{13} - 92 q^{14} - 160 q^{15} + 192 q^{16} - 1166 q^{17} - 772 q^{18}+ \cdots + 33188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(350))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
350.4.a \(\chi_{350}(1, \cdot)\) 350.4.a.a 1 1
350.4.a.b 1
350.4.a.c 1
350.4.a.d 1
350.4.a.e 1
350.4.a.f 1
350.4.a.g 1
350.4.a.h 1
350.4.a.i 1
350.4.a.j 1
350.4.a.k 1
350.4.a.l 1
350.4.a.m 1
350.4.a.n 1
350.4.a.o 1
350.4.a.p 1
350.4.a.q 1
350.4.a.r 1
350.4.a.s 1
350.4.a.t 1
350.4.a.u 1
350.4.a.v 1
350.4.a.w 3
350.4.a.x 3
350.4.c \(\chi_{350}(99, \cdot)\) 350.4.c.a 2 1
350.4.c.b 2
350.4.c.c 2
350.4.c.d 2
350.4.c.e 2
350.4.c.f 2
350.4.c.g 2
350.4.c.h 2
350.4.c.i 2
350.4.c.j 2
350.4.c.k 2
350.4.c.l 2
350.4.c.m 2
350.4.c.n 2
350.4.e \(\chi_{350}(51, \cdot)\) 350.4.e.a 2 2
350.4.e.b 2
350.4.e.c 2
350.4.e.d 2
350.4.e.e 2
350.4.e.f 2
350.4.e.g 2
350.4.e.h 4
350.4.e.i 6
350.4.e.j 6
350.4.e.k 6
350.4.e.l 8
350.4.e.m 8
350.4.e.n 12
350.4.e.o 12
350.4.g \(\chi_{350}(293, \cdot)\) 350.4.g.a 16 2
350.4.g.b 24
350.4.g.c 32
350.4.h \(\chi_{350}(71, \cdot)\) n/a 184 4
350.4.j \(\chi_{350}(149, \cdot)\) 350.4.j.a 4 2
350.4.j.b 4
350.4.j.c 4
350.4.j.d 4
350.4.j.e 4
350.4.j.f 4
350.4.j.g 8
350.4.j.h 12
350.4.j.i 12
350.4.j.j 16
350.4.m \(\chi_{350}(29, \cdot)\) n/a 176 4
350.4.o \(\chi_{350}(143, \cdot)\) n/a 144 4
350.4.q \(\chi_{350}(11, \cdot)\) n/a 480 8
350.4.r \(\chi_{350}(13, \cdot)\) n/a 480 8
350.4.u \(\chi_{350}(9, \cdot)\) n/a 480 8
350.4.x \(\chi_{350}(3, \cdot)\) n/a 960 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(350))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(350)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 2}\)