Properties

Label 2160.3.bs.c.1601.1
Level $2160$
Weight $3$
Character 2160.1601
Analytic conductor $58.856$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,3,Mod(881,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.881"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.1
Root \(-3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1601
Dual form 2160.3.bs.c.881.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93649 + 1.11803i) q^{5} +(-3.63061 + 6.28840i) q^{7} +(6.50668 + 3.75663i) q^{11} +(-1.46668 - 2.54036i) q^{13} -1.90107i q^{17} +7.38378 q^{19} +(-30.6549 + 17.6986i) q^{23} +(2.50000 - 4.33013i) q^{25} +(14.2015 + 8.19922i) q^{29} +(13.3206 + 23.0720i) q^{31} -16.2366i q^{35} -44.6613 q^{37} +(-14.8634 + 8.58140i) q^{41} +(20.5554 - 35.6031i) q^{43} +(36.4950 + 21.0704i) q^{47} +(-1.86263 - 3.22616i) q^{49} +100.474i q^{53} -16.8002 q^{55} +(-4.12003 + 2.37870i) q^{59} +(38.4629 - 66.6197i) q^{61} +(5.68041 + 3.27959i) q^{65} +(-41.9225 - 72.6119i) q^{67} +23.1134i q^{71} -103.753 q^{73} +(-47.2464 + 27.2777i) q^{77} +(40.2610 - 69.7340i) q^{79} +(-17.1034 - 9.87463i) q^{83} +(2.12546 + 3.68141i) q^{85} +29.0566i q^{89} +21.2997 q^{91} +(-14.2986 + 8.25532i) q^{95} +(47.7972 - 82.7872i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} - 18 q^{11} - 10 q^{13} + 52 q^{19} - 54 q^{23} + 40 q^{25} + 54 q^{29} - 32 q^{31} + 44 q^{37} - 144 q^{41} + 124 q^{43} - 216 q^{47} - 54 q^{49} - 486 q^{59} + 62 q^{61} + 90 q^{65} - 14 q^{67}+ \cdots - 142 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.93649 + 1.11803i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −3.63061 + 6.28840i −0.518658 + 0.898342i 0.481107 + 0.876662i \(0.340235\pi\)
−0.999765 + 0.0216804i \(0.993098\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.50668 + 3.75663i 0.591516 + 0.341512i 0.765697 0.643202i \(-0.222394\pi\)
−0.174181 + 0.984714i \(0.555728\pi\)
\(12\) 0 0
\(13\) −1.46668 2.54036i −0.112821 0.195412i 0.804085 0.594514i \(-0.202655\pi\)
−0.916907 + 0.399102i \(0.869322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.90107i 0.111828i −0.998436 0.0559139i \(-0.982193\pi\)
0.998436 0.0559139i \(-0.0178072\pi\)
\(18\) 0 0
\(19\) 7.38378 0.388620 0.194310 0.980940i \(-0.437753\pi\)
0.194310 + 0.980940i \(0.437753\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −30.6549 + 17.6986i −1.33282 + 0.769506i −0.985731 0.168326i \(-0.946164\pi\)
−0.347091 + 0.937831i \(0.612831\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 14.2015 + 8.19922i 0.489705 + 0.282732i 0.724452 0.689325i \(-0.242093\pi\)
−0.234747 + 0.972057i \(0.575426\pi\)
\(30\) 0 0
\(31\) 13.3206 + 23.0720i 0.429697 + 0.744257i 0.996846 0.0793581i \(-0.0252871\pi\)
−0.567149 + 0.823615i \(0.691954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 16.2366i 0.463902i
\(36\) 0 0
\(37\) −44.6613 −1.20706 −0.603531 0.797340i \(-0.706240\pi\)
−0.603531 + 0.797340i \(0.706240\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −14.8634 + 8.58140i −0.362522 + 0.209302i −0.670187 0.742193i \(-0.733786\pi\)
0.307664 + 0.951495i \(0.400453\pi\)
\(42\) 0 0
\(43\) 20.5554 35.6031i 0.478033 0.827978i −0.521650 0.853160i \(-0.674683\pi\)
0.999683 + 0.0251818i \(0.00801646\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 36.4950 + 21.0704i 0.776490 + 0.448307i 0.835185 0.549969i \(-0.185361\pi\)
−0.0586949 + 0.998276i \(0.518694\pi\)
\(48\) 0 0
\(49\) −1.86263 3.22616i −0.0380128 0.0658401i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 100.474i 1.89573i 0.318671 + 0.947865i \(0.396764\pi\)
−0.318671 + 0.947865i \(0.603236\pi\)
\(54\) 0 0
\(55\) −16.8002 −0.305458
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.12003 + 2.37870i −0.0698310 + 0.0403169i −0.534509 0.845163i \(-0.679503\pi\)
0.464678 + 0.885480i \(0.346170\pi\)
\(60\) 0 0
\(61\) 38.4629 66.6197i 0.630539 1.09213i −0.356902 0.934142i \(-0.616167\pi\)
0.987442 0.157985i \(-0.0504996\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.68041 + 3.27959i 0.0873910 + 0.0504552i
\(66\) 0 0
\(67\) −41.9225 72.6119i −0.625709 1.08376i −0.988403 0.151852i \(-0.951476\pi\)
0.362694 0.931908i \(-0.381857\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 23.1134i 0.325540i 0.986664 + 0.162770i \(0.0520429\pi\)
−0.986664 + 0.162770i \(0.947957\pi\)
\(72\) 0 0
\(73\) −103.753 −1.42127 −0.710637 0.703559i \(-0.751593\pi\)
−0.710637 + 0.703559i \(0.751593\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −47.2464 + 27.2777i −0.613589 + 0.354256i
\(78\) 0 0
\(79\) 40.2610 69.7340i 0.509633 0.882709i −0.490305 0.871551i \(-0.663115\pi\)
0.999938 0.0111586i \(-0.00355198\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −17.1034 9.87463i −0.206065 0.118971i 0.393417 0.919360i \(-0.371293\pi\)
−0.599481 + 0.800389i \(0.704626\pi\)
\(84\) 0 0
\(85\) 2.12546 + 3.68141i 0.0250055 + 0.0433107i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 29.0566i 0.326478i 0.986587 + 0.163239i \(0.0521942\pi\)
−0.986587 + 0.163239i \(0.947806\pi\)
\(90\) 0 0
\(91\) 21.2997 0.234063
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14.2986 + 8.25532i −0.150512 + 0.0868981i
\(96\) 0 0
\(97\) 47.7972 82.7872i 0.492755 0.853476i −0.507210 0.861822i \(-0.669323\pi\)
0.999965 + 0.00834602i \(0.00265665\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −117.817 68.0219i −1.16651 0.673484i −0.213653 0.976910i \(-0.568536\pi\)
−0.952855 + 0.303426i \(0.901870\pi\)
\(102\) 0 0
\(103\) −85.9401 148.853i −0.834370 1.44517i −0.894542 0.446983i \(-0.852498\pi\)
0.0601721 0.998188i \(-0.480835\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 98.6056i 0.921548i −0.887518 0.460774i \(-0.847572\pi\)
0.887518 0.460774i \(-0.152428\pi\)
\(108\) 0 0
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.36782 + 1.36706i −0.0209542 + 0.0120979i −0.510440 0.859913i \(-0.670518\pi\)
0.489486 + 0.872011i \(0.337184\pi\)
\(114\) 0 0
\(115\) 39.5753 68.5465i 0.344133 0.596056i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.9547 + 6.90205i 0.100460 + 0.0580004i
\(120\) 0 0
\(121\) −32.2754 55.9027i −0.266739 0.462006i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −193.060 −1.52015 −0.760077 0.649833i \(-0.774839\pi\)
−0.760077 + 0.649833i \(0.774839\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −201.259 + 116.197i −1.53633 + 0.886999i −0.537278 + 0.843405i \(0.680547\pi\)
−0.999049 + 0.0435937i \(0.986119\pi\)
\(132\) 0 0
\(133\) −26.8076 + 46.4322i −0.201561 + 0.349114i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −154.172 89.0111i −1.12534 0.649716i −0.182582 0.983191i \(-0.558445\pi\)
−0.942759 + 0.333475i \(0.891779\pi\)
\(138\) 0 0
\(139\) 16.0343 + 27.7722i 0.115355 + 0.199800i 0.917922 0.396762i \(-0.129866\pi\)
−0.802567 + 0.596562i \(0.796533\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.0390i 0.154119i
\(144\) 0 0
\(145\) −36.6680 −0.252883
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −80.4653 + 46.4567i −0.540036 + 0.311790i −0.745093 0.666960i \(-0.767595\pi\)
0.205058 + 0.978750i \(0.434262\pi\)
\(150\) 0 0
\(151\) −113.614 + 196.785i −0.752408 + 1.30321i 0.194245 + 0.980953i \(0.437774\pi\)
−0.946653 + 0.322256i \(0.895559\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −51.5905 29.7858i −0.332842 0.192166i
\(156\) 0 0
\(157\) 0.792406 + 1.37249i 0.00504717 + 0.00874196i 0.868538 0.495623i \(-0.165060\pi\)
−0.863491 + 0.504365i \(0.831727\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 257.027i 1.59644i
\(162\) 0 0
\(163\) 41.6801 0.255706 0.127853 0.991793i \(-0.459191\pi\)
0.127853 + 0.991793i \(0.459191\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.01405 4.62692i 0.0479884 0.0277061i −0.475814 0.879546i \(-0.657846\pi\)
0.523802 + 0.851840i \(0.324513\pi\)
\(168\) 0 0
\(169\) 80.1977 138.907i 0.474543 0.821932i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 127.637 + 73.6913i 0.737787 + 0.425962i 0.821264 0.570548i \(-0.193269\pi\)
−0.0834771 + 0.996510i \(0.526603\pi\)
\(174\) 0 0
\(175\) 18.1530 + 31.4420i 0.103732 + 0.179668i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 160.022i 0.893977i 0.894540 + 0.446988i \(0.147504\pi\)
−0.894540 + 0.446988i \(0.852496\pi\)
\(180\) 0 0
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 86.4862 49.9328i 0.467493 0.269907i
\(186\) 0 0
\(187\) 7.14163 12.3697i 0.0381905 0.0661480i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −249.938 144.302i −1.30857 0.755506i −0.326716 0.945122i \(-0.605942\pi\)
−0.981858 + 0.189617i \(0.939275\pi\)
\(192\) 0 0
\(193\) 47.3339 + 81.9847i 0.245253 + 0.424791i 0.962203 0.272334i \(-0.0877955\pi\)
−0.716949 + 0.697125i \(0.754462\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 129.755i 0.658657i −0.944215 0.329329i \(-0.893178\pi\)
0.944215 0.329329i \(-0.106822\pi\)
\(198\) 0 0
\(199\) −136.428 −0.685570 −0.342785 0.939414i \(-0.611370\pi\)
−0.342785 + 0.939414i \(0.611370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −103.120 + 59.5363i −0.507980 + 0.293282i
\(204\) 0 0
\(205\) 19.1886 33.2356i 0.0936029 0.162125i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 48.0439 + 27.7382i 0.229875 + 0.132718i
\(210\) 0 0
\(211\) 79.1144 + 137.030i 0.374950 + 0.649432i 0.990320 0.138806i \(-0.0443266\pi\)
−0.615370 + 0.788239i \(0.710993\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 91.9267i 0.427566i
\(216\) 0 0
\(217\) −193.448 −0.891463
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.82941 + 2.78826i −0.0218525 + 0.0126166i
\(222\) 0 0
\(223\) −103.124 + 178.616i −0.462440 + 0.800969i −0.999082 0.0428406i \(-0.986359\pi\)
0.536642 + 0.843810i \(0.319693\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −127.562 73.6481i −0.561948 0.324441i 0.191979 0.981399i \(-0.438510\pi\)
−0.753927 + 0.656958i \(0.771843\pi\)
\(228\) 0 0
\(229\) 13.5751 + 23.5127i 0.0592798 + 0.102676i 0.894142 0.447783i \(-0.147786\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 39.6011i 0.169962i 0.996383 + 0.0849808i \(0.0270829\pi\)
−0.996383 + 0.0849808i \(0.972917\pi\)
\(234\) 0 0
\(235\) −94.2298 −0.400978
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 54.9394 31.7193i 0.229872 0.132717i −0.380641 0.924723i \(-0.624297\pi\)
0.610513 + 0.792006i \(0.290963\pi\)
\(240\) 0 0
\(241\) 69.1161 119.713i 0.286789 0.496733i −0.686253 0.727363i \(-0.740746\pi\)
0.973041 + 0.230630i \(0.0740789\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.21392 + 4.16496i 0.0294446 + 0.0169998i
\(246\) 0 0
\(247\) −10.8296 18.7575i −0.0438446 0.0759411i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 186.477i 0.742936i 0.928446 + 0.371468i \(0.121145\pi\)
−0.928446 + 0.371468i \(0.878855\pi\)
\(252\) 0 0
\(253\) −265.949 −1.05118
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −201.713 + 116.459i −0.784877 + 0.453149i −0.838156 0.545431i \(-0.816366\pi\)
0.0532790 + 0.998580i \(0.483033\pi\)
\(258\) 0 0
\(259\) 162.148 280.848i 0.626053 1.08435i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.34728 5.39665i −0.0355410 0.0205196i 0.482124 0.876103i \(-0.339865\pi\)
−0.517665 + 0.855583i \(0.673199\pi\)
\(264\) 0 0
\(265\) −112.333 194.567i −0.423898 0.734213i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 58.4601i 0.217324i −0.994079 0.108662i \(-0.965343\pi\)
0.994079 0.108662i \(-0.0346566\pi\)
\(270\) 0 0
\(271\) 65.5995 0.242065 0.121032 0.992649i \(-0.461380\pi\)
0.121032 + 0.992649i \(0.461380\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 32.5334 18.7832i 0.118303 0.0683024i
\(276\) 0 0
\(277\) −134.128 + 232.317i −0.484218 + 0.838690i −0.999836 0.0181286i \(-0.994229\pi\)
0.515618 + 0.856819i \(0.327562\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −159.428 92.0461i −0.567361 0.327566i 0.188734 0.982028i \(-0.439562\pi\)
−0.756095 + 0.654462i \(0.772895\pi\)
\(282\) 0 0
\(283\) −231.303 400.628i −0.817324 1.41565i −0.907647 0.419734i \(-0.862123\pi\)
0.0903234 0.995912i \(-0.471210\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 124.623i 0.434226i
\(288\) 0 0
\(289\) 285.386 0.987495
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −248.349 + 143.384i −0.847608 + 0.489367i −0.859843 0.510559i \(-0.829439\pi\)
0.0122351 + 0.999925i \(0.496105\pi\)
\(294\) 0 0
\(295\) 5.31893 9.21266i 0.0180303 0.0312294i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 89.9217 + 51.9163i 0.300741 + 0.173633i
\(300\) 0 0
\(301\) 149.257 + 258.521i 0.495872 + 0.858875i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 172.011i 0.563972i
\(306\) 0 0
\(307\) 236.738 0.771133 0.385567 0.922680i \(-0.374006\pi\)
0.385567 + 0.922680i \(0.374006\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 448.597 258.997i 1.44243 0.832789i 0.444421 0.895818i \(-0.353409\pi\)
0.998012 + 0.0630292i \(0.0200761\pi\)
\(312\) 0 0
\(313\) 247.615 428.882i 0.791102 1.37023i −0.134183 0.990957i \(-0.542841\pi\)
0.925285 0.379272i \(-0.123826\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 189.840 + 109.604i 0.598864 + 0.345754i 0.768595 0.639736i \(-0.220956\pi\)
−0.169731 + 0.985491i \(0.554290\pi\)
\(318\) 0 0
\(319\) 61.6029 + 106.699i 0.193112 + 0.334481i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.0371i 0.0434586i
\(324\) 0 0
\(325\) −14.6668 −0.0451285
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −264.998 + 152.997i −0.805466 + 0.465036i
\(330\) 0 0
\(331\) −47.4838 + 82.2443i −0.143455 + 0.248472i −0.928796 0.370592i \(-0.879155\pi\)
0.785340 + 0.619064i \(0.212488\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 162.365 + 93.7416i 0.484672 + 0.279826i
\(336\) 0 0
\(337\) 257.989 + 446.850i 0.765547 + 1.32597i 0.939957 + 0.341293i \(0.110865\pi\)
−0.174411 + 0.984673i \(0.555802\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 200.162i 0.586986i
\(342\) 0 0
\(343\) −328.750 −0.958454
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −96.4994 + 55.7140i −0.278096 + 0.160559i −0.632561 0.774510i \(-0.717996\pi\)
0.354465 + 0.935069i \(0.384663\pi\)
\(348\) 0 0
\(349\) −310.131 + 537.162i −0.888627 + 1.53915i −0.0471279 + 0.998889i \(0.515007\pi\)
−0.841499 + 0.540258i \(0.818327\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −488.067 281.786i −1.38263 0.798260i −0.390157 0.920748i \(-0.627579\pi\)
−0.992470 + 0.122488i \(0.960913\pi\)
\(354\) 0 0
\(355\) −25.8415 44.7588i −0.0727930 0.126081i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 415.128i 1.15635i −0.815915 0.578173i \(-0.803766\pi\)
0.815915 0.578173i \(-0.196234\pi\)
\(360\) 0 0
\(361\) −306.480 −0.848974
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 200.917 115.999i 0.550457 0.317807i
\(366\) 0 0
\(367\) 313.940 543.761i 0.855423 1.48164i −0.0208286 0.999783i \(-0.506630\pi\)
0.876252 0.481853i \(-0.160036\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −631.819 364.781i −1.70302 0.983237i
\(372\) 0 0
\(373\) −195.467 338.559i −0.524040 0.907665i −0.999608 0.0279857i \(-0.991091\pi\)
0.475568 0.879679i \(-0.342243\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 48.1024i 0.127593i
\(378\) 0 0
\(379\) −52.4430 −0.138372 −0.0691860 0.997604i \(-0.522040\pi\)
−0.0691860 + 0.997604i \(0.522040\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −96.0614 + 55.4610i −0.250813 + 0.144807i −0.620136 0.784494i \(-0.712923\pi\)
0.369324 + 0.929301i \(0.379589\pi\)
\(384\) 0 0
\(385\) 60.9948 105.646i 0.158428 0.274405i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 91.6114 + 52.8918i 0.235505 + 0.135969i 0.613109 0.789998i \(-0.289919\pi\)
−0.377604 + 0.925967i \(0.623252\pi\)
\(390\) 0 0
\(391\) 33.6464 + 58.2773i 0.0860521 + 0.149047i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 180.053i 0.455829i
\(396\) 0 0
\(397\) 99.8892 0.251610 0.125805 0.992055i \(-0.459849\pi\)
0.125805 + 0.992055i \(0.459849\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 136.080 78.5658i 0.339352 0.195925i −0.320634 0.947203i \(-0.603896\pi\)
0.659985 + 0.751279i \(0.270563\pi\)
\(402\) 0 0
\(403\) 39.0740 67.6782i 0.0969579 0.167936i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −290.597 167.776i −0.713996 0.412226i
\(408\) 0 0
\(409\) −342.619 593.434i −0.837700 1.45094i −0.891813 0.452404i \(-0.850567\pi\)
0.0541134 0.998535i \(-0.482767\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 34.5445i 0.0836428i
\(414\) 0 0
\(415\) 44.1607 0.106411
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −44.6836 + 25.7981i −0.106643 + 0.0615706i −0.552373 0.833597i \(-0.686278\pi\)
0.445730 + 0.895168i \(0.352944\pi\)
\(420\) 0 0
\(421\) −7.37620 + 12.7760i −0.0175207 + 0.0303467i −0.874653 0.484750i \(-0.838911\pi\)
0.857132 + 0.515097i \(0.172244\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.23189 4.75268i −0.0193691 0.0111828i
\(426\) 0 0
\(427\) 279.287 + 483.740i 0.654069 + 1.13288i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 38.6810i 0.0897472i −0.998993 0.0448736i \(-0.985711\pi\)
0.998993 0.0448736i \(-0.0142885\pi\)
\(432\) 0 0
\(433\) −544.647 −1.25784 −0.628922 0.777468i \(-0.716504\pi\)
−0.628922 + 0.777468i \(0.716504\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −226.349 + 130.683i −0.517962 + 0.299045i
\(438\) 0 0
\(439\) 125.709 217.735i 0.286353 0.495978i −0.686583 0.727051i \(-0.740890\pi\)
0.972936 + 0.231073i \(0.0742236\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 632.952 + 365.435i 1.42878 + 0.824909i 0.997025 0.0770796i \(-0.0245596\pi\)
0.431760 + 0.901989i \(0.357893\pi\)
\(444\) 0 0
\(445\) −32.4862 56.2678i −0.0730028 0.126445i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 94.7211i 0.210960i 0.994421 + 0.105480i \(0.0336379\pi\)
−0.994421 + 0.105480i \(0.966362\pi\)
\(450\) 0 0
\(451\) −128.949 −0.285917
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −41.2467 + 23.8138i −0.0906521 + 0.0523380i
\(456\) 0 0
\(457\) 204.206 353.695i 0.446840 0.773949i −0.551339 0.834282i \(-0.685883\pi\)
0.998178 + 0.0603323i \(0.0192160\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 511.735 + 295.450i 1.11005 + 0.640890i 0.938843 0.344344i \(-0.111899\pi\)
0.171211 + 0.985234i \(0.445232\pi\)
\(462\) 0 0
\(463\) 400.967 + 694.496i 0.866020 + 1.49999i 0.866031 + 0.499991i \(0.166663\pi\)
−1.04649e−5 1.00000i \(0.500003\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.6432i 0.0442039i −0.999756 0.0221019i \(-0.992964\pi\)
0.999756 0.0221019i \(-0.00703584\pi\)
\(468\) 0 0
\(469\) 608.817 1.29812
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 267.495 154.438i 0.565529 0.326508i
\(474\) 0 0
\(475\) 18.4595 31.9727i 0.0388620 0.0673110i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 435.378 + 251.366i 0.908931 + 0.524771i 0.880087 0.474812i \(-0.157484\pi\)
0.0288439 + 0.999584i \(0.490817\pi\)
\(480\) 0 0
\(481\) 65.5037 + 113.456i 0.136182 + 0.235875i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 213.756i 0.440733i
\(486\) 0 0
\(487\) −80.4336 −0.165161 −0.0825807 0.996584i \(-0.526316\pi\)
−0.0825807 + 0.996584i \(0.526316\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −417.972 + 241.316i −0.851267 + 0.491479i −0.861078 0.508473i \(-0.830210\pi\)
0.00981129 + 0.999952i \(0.496877\pi\)
\(492\) 0 0
\(493\) 15.5873 26.9980i 0.0316173 0.0547627i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −145.346 83.9155i −0.292447 0.168844i
\(498\) 0 0
\(499\) −17.5059 30.3212i −0.0350820 0.0607638i 0.847951 0.530074i \(-0.177836\pi\)
−0.883033 + 0.469310i \(0.844503\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 211.016i 0.419514i 0.977754 + 0.209757i \(0.0672673\pi\)
−0.977754 + 0.209757i \(0.932733\pi\)
\(504\) 0 0
\(505\) 304.203 0.602382
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 732.292 422.789i 1.43869 0.830627i 0.440930 0.897542i \(-0.354649\pi\)
0.997759 + 0.0669144i \(0.0213154\pi\)
\(510\) 0 0
\(511\) 376.687 652.440i 0.737156 1.27679i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 332.845 + 192.168i 0.646300 + 0.373142i
\(516\) 0 0
\(517\) 158.308 + 274.197i 0.306204 + 0.530361i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 260.960i 0.500883i −0.968132 0.250442i \(-0.919424\pi\)
0.968132 0.250442i \(-0.0805758\pi\)
\(522\) 0 0
\(523\) −553.330 −1.05799 −0.528996 0.848624i \(-0.677431\pi\)
−0.528996 + 0.848624i \(0.677431\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 43.8615 25.3234i 0.0832286 0.0480521i
\(528\) 0 0
\(529\) 361.983 626.973i 0.684278 1.18520i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 43.5996 + 25.1723i 0.0818005 + 0.0472275i
\(534\) 0 0
\(535\) 110.244 + 190.949i 0.206064 + 0.356914i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.9888i 0.0519273i
\(540\) 0 0
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.08622 + 2.93653i −0.00933252 + 0.00538813i
\(546\) 0 0
\(547\) −303.604 + 525.858i −0.555035 + 0.961348i 0.442866 + 0.896588i \(0.353962\pi\)
−0.997901 + 0.0647606i \(0.979372\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 104.861 + 60.5412i 0.190309 + 0.109875i
\(552\) 0 0
\(553\) 292.344 + 506.354i 0.528650 + 0.915649i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 686.808i 1.23305i 0.787336 + 0.616524i \(0.211460\pi\)
−0.787336 + 0.616524i \(0.788540\pi\)
\(558\) 0 0
\(559\) −120.593 −0.215729
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −208.976 + 120.652i −0.371182 + 0.214302i −0.673975 0.738754i \(-0.735414\pi\)
0.302792 + 0.953057i \(0.402081\pi\)
\(564\) 0 0
\(565\) 3.05685 5.29461i 0.00541035 0.00937099i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 666.084 + 384.564i 1.17062 + 0.675859i 0.953827 0.300358i \(-0.0971061\pi\)
0.216796 + 0.976217i \(0.430439\pi\)
\(570\) 0 0
\(571\) 48.7253 + 84.3947i 0.0853333 + 0.147802i 0.905533 0.424275i \(-0.139471\pi\)
−0.820200 + 0.572077i \(0.806138\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 176.986i 0.307802i
\(576\) 0 0
\(577\) 277.283 0.480560 0.240280 0.970704i \(-0.422761\pi\)
0.240280 + 0.970704i \(0.422761\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 124.191 71.7018i 0.213754 0.123411i
\(582\) 0 0
\(583\) −377.443 + 653.750i −0.647415 + 1.12136i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 405.017 + 233.836i 0.689977 + 0.398358i 0.803603 0.595165i \(-0.202913\pi\)
−0.113626 + 0.993524i \(0.536247\pi\)
\(588\) 0 0
\(589\) 98.3565 + 170.358i 0.166989 + 0.289233i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 254.411i 0.429023i −0.976721 0.214512i \(-0.931184\pi\)
0.976721 0.214512i \(-0.0688160\pi\)
\(594\) 0 0
\(595\) −30.8669 −0.0518772
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 352.081 203.274i 0.587780 0.339355i −0.176439 0.984312i \(-0.556458\pi\)
0.764219 + 0.644956i \(0.223124\pi\)
\(600\) 0 0
\(601\) −249.967 + 432.956i −0.415919 + 0.720393i −0.995524 0.0945042i \(-0.969873\pi\)
0.579605 + 0.814897i \(0.303207\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 125.002 + 72.1701i 0.206615 + 0.119289i
\(606\) 0 0
\(607\) 29.9627 + 51.8970i 0.0493620 + 0.0854975i 0.889651 0.456642i \(-0.150948\pi\)
−0.840289 + 0.542139i \(0.817615\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 123.614i 0.202314i
\(612\) 0 0
\(613\) −373.866 −0.609896 −0.304948 0.952369i \(-0.598639\pi\)
−0.304948 + 0.952369i \(0.598639\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 320.088 184.803i 0.518782 0.299519i −0.217654 0.976026i \(-0.569841\pi\)
0.736436 + 0.676507i \(0.236507\pi\)
\(618\) 0 0
\(619\) 598.225 1036.16i 0.966438 1.67392i 0.260738 0.965410i \(-0.416034\pi\)
0.705701 0.708510i \(-0.250632\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −182.719 105.493i −0.293289 0.169331i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 84.9044i 0.134983i
\(630\) 0 0
\(631\) −628.525 −0.996078 −0.498039 0.867155i \(-0.665946\pi\)
−0.498039 + 0.867155i \(0.665946\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 373.858 215.847i 0.588753 0.339917i
\(636\) 0 0
\(637\) −5.46374 + 9.46347i −0.00857730 + 0.0148563i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −824.417 475.977i −1.28614 0.742554i −0.308178 0.951329i \(-0.599719\pi\)
−0.977964 + 0.208774i \(0.933053\pi\)
\(642\) 0 0
\(643\) −35.7759 61.9656i −0.0556390 0.0963696i 0.836864 0.547410i \(-0.184386\pi\)
−0.892503 + 0.451041i \(0.851053\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 900.292i 1.39149i 0.718290 + 0.695744i \(0.244925\pi\)
−0.718290 + 0.695744i \(0.755075\pi\)
\(648\) 0 0
\(649\) −35.7436 −0.0550748
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 222.825 128.648i 0.341233 0.197011i −0.319584 0.947558i \(-0.603543\pi\)
0.660817 + 0.750547i \(0.270210\pi\)
\(654\) 0 0
\(655\) 259.824 450.029i 0.396678 0.687066i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 477.967 + 275.954i 0.725291 + 0.418747i 0.816697 0.577067i \(-0.195803\pi\)
−0.0914057 + 0.995814i \(0.529136\pi\)
\(660\) 0 0
\(661\) 523.413 + 906.578i 0.791851 + 1.37153i 0.924820 + 0.380405i \(0.124216\pi\)
−0.132969 + 0.991120i \(0.542451\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 119.887i 0.180282i
\(666\) 0 0
\(667\) −580.460 −0.870254
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 500.531 288.982i 0.745948 0.430673i
\(672\) 0 0
\(673\) −118.875 + 205.898i −0.176635 + 0.305940i −0.940726 0.339168i \(-0.889854\pi\)
0.764091 + 0.645108i \(0.223188\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 145.591 + 84.0570i 0.215053 + 0.124161i 0.603658 0.797244i \(-0.293709\pi\)
−0.388605 + 0.921405i \(0.627043\pi\)
\(678\) 0 0
\(679\) 347.066 + 601.136i 0.511143 + 0.885325i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 995.446i 1.45746i −0.684800 0.728731i \(-0.740111\pi\)
0.684800 0.728731i \(-0.259889\pi\)
\(684\) 0 0
\(685\) 398.070 0.581123
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 255.239 147.362i 0.370449 0.213879i
\(690\) 0 0
\(691\) −298.570 + 517.138i −0.432084 + 0.748391i −0.997053 0.0767211i \(-0.975555\pi\)
0.564969 + 0.825112i \(0.308888\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −62.1006 35.8538i −0.0893534 0.0515882i
\(696\) 0 0
\(697\) 16.3139 + 28.2564i 0.0234058 + 0.0405401i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 413.729i 0.590199i 0.955467 + 0.295099i \(0.0953528\pi\)
−0.955467 + 0.295099i \(0.904647\pi\)
\(702\) 0 0
\(703\) −329.769 −0.469089
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 855.497 493.921i 1.21004 0.698616i
\(708\) 0 0
\(709\) 328.568 569.096i 0.463424 0.802674i −0.535705 0.844405i \(-0.679954\pi\)
0.999129 + 0.0417311i \(0.0132873\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −816.684 471.513i −1.14542 0.661308i
\(714\) 0 0
\(715\) 24.6404 + 42.6784i 0.0344621 + 0.0596901i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 217.226i 0.302122i 0.988524 + 0.151061i \(0.0482690\pi\)
−0.988524 + 0.151061i \(0.951731\pi\)
\(720\) 0 0
\(721\) 1248.06 1.73101
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 71.0073 40.9961i 0.0979411 0.0565463i
\(726\) 0 0
\(727\) 304.437 527.300i 0.418757 0.725309i −0.577057 0.816704i \(-0.695799\pi\)
0.995815 + 0.0913946i \(0.0291325\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −67.6840 39.0774i −0.0925910 0.0534574i
\(732\) 0 0
\(733\) 440.351 + 762.709i 0.600751 + 1.04053i 0.992708 + 0.120548i \(0.0384650\pi\)
−0.391957 + 0.919984i \(0.628202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 629.950i 0.854749i
\(738\) 0 0
\(739\) 917.157 1.24108 0.620540 0.784175i \(-0.286914\pi\)
0.620540 + 0.784175i \(0.286914\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −956.492 + 552.231i −1.28734 + 0.743245i −0.978179 0.207765i \(-0.933381\pi\)
−0.309159 + 0.951010i \(0.600048\pi\)
\(744\) 0 0
\(745\) 103.880 179.926i 0.139437 0.241511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 620.071 + 357.998i 0.827866 + 0.477968i
\(750\) 0 0
\(751\) 330.239 + 571.990i 0.439732 + 0.761638i 0.997669 0.0682453i \(-0.0217401\pi\)
−0.557936 + 0.829884i \(0.688407\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 508.096i 0.672974i
\(756\) 0 0
\(757\) −353.728 −0.467276 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −708.380 + 408.983i −0.930854 + 0.537429i −0.887081 0.461613i \(-0.847271\pi\)
−0.0437722 + 0.999042i \(0.513938\pi\)
\(762\) 0 0
\(763\) −9.53584 + 16.5166i −0.0124978 + 0.0216469i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0855 + 6.97756i 0.0157568 + 0.00909721i
\(768\) 0 0
\(769\) 500.408 + 866.732i 0.650725 + 1.12709i 0.982947 + 0.183888i \(0.0588684\pi\)
−0.332222 + 0.943201i \(0.607798\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 860.440i 1.11312i 0.830808 + 0.556559i \(0.187879\pi\)
−0.830808 + 0.556559i \(0.812121\pi\)
\(774\) 0 0
\(775\) 133.206 0.171879
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −109.748 + 63.3632i −0.140884 + 0.0813391i
\(780\) 0 0
\(781\) −86.8283 + 150.391i −0.111176 + 0.192562i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.06898 1.77187i −0.00390952 0.00225716i
\(786\) 0 0
\(787\) 463.491 + 802.789i 0.588933 + 1.02006i 0.994372 + 0.105940i \(0.0337853\pi\)
−0.405439 + 0.914122i \(0.632881\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.8531i 0.0250987i
\(792\) 0 0
\(793\) −225.651 −0.284553
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 825.230 476.447i 1.03542 0.597800i 0.116888 0.993145i \(-0.462708\pi\)
0.918533 + 0.395345i \(0.129375\pi\)
\(798\) 0 0
\(799\) 40.0564 69.3797i 0.0501332 0.0868332i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −675.087 389.762i −0.840707 0.485382i
\(804\) 0 0
\(805\) 287.365 + 497.731i 0.356975 + 0.618299i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1425.22i 1.76171i −0.473387 0.880855i \(-0.656969\pi\)
0.473387 0.880855i \(-0.343031\pi\)
\(810\) 0 0
\(811\) 473.774 0.584185 0.292093 0.956390i \(-0.405648\pi\)
0.292093 + 0.956390i \(0.405648\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −80.7131 + 46.5997i −0.0990345 + 0.0571776i
\(816\) 0 0
\(817\) 151.777 262.885i 0.185773 0.321769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 63.4905 + 36.6562i 0.0773331 + 0.0446483i 0.538168 0.842838i \(-0.319117\pi\)
−0.460835 + 0.887486i \(0.652450\pi\)
\(822\) 0 0
\(823\) 316.027 + 547.374i 0.383994 + 0.665096i 0.991629 0.129120i \(-0.0412151\pi\)
−0.607635 + 0.794216i \(0.707882\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 226.153i 0.273462i −0.990608 0.136731i \(-0.956340\pi\)
0.990608 0.136731i \(-0.0436597\pi\)
\(828\) 0 0
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.13317 + 3.54099i −0.00736275 + 0.00425089i
\(834\) 0 0
\(835\) −10.3461 + 17.9200i −0.0123905 + 0.0214610i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 511.329 + 295.216i 0.609450 + 0.351866i 0.772750 0.634710i \(-0.218881\pi\)
−0.163300 + 0.986576i \(0.552214\pi\)
\(840\) 0 0
\(841\) −286.046 495.446i −0.340126 0.589115i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 358.655i 0.424444i
\(846\) 0 0
\(847\) 468.718 0.553386
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1369.09 790.444i 1.60880 0.928841i
\(852\) 0 0
\(853\) −693.749 + 1201.61i −0.813305 + 1.40869i 0.0972332 + 0.995262i \(0.469001\pi\)
−0.910538 + 0.413424i \(0.864333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 683.058 + 394.363i 0.797033 + 0.460167i 0.842433 0.538801i \(-0.181123\pi\)
−0.0453994 + 0.998969i \(0.514456\pi\)
\(858\) 0 0
\(859\) 413.601 + 716.378i 0.481491 + 0.833968i 0.999774 0.0212416i \(-0.00676191\pi\)
−0.518283 + 0.855209i \(0.673429\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1089.70i 1.26268i −0.775504 0.631342i \(-0.782504\pi\)
0.775504 0.631342i \(-0.217496\pi\)
\(864\) 0 0
\(865\) −329.558 −0.380992
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 523.930 302.491i 0.602912 0.348091i
\(870\) 0 0
\(871\) −122.974 + 212.996i −0.141187 + 0.244542i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −70.3064 40.5914i −0.0803502 0.0463902i
\(876\) 0 0
\(877\) −213.875 370.443i −0.243872 0.422398i 0.717942 0.696103i \(-0.245084\pi\)
−0.961814 + 0.273705i \(0.911751\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1113.87i 1.26432i −0.774837 0.632161i \(-0.782168\pi\)
0.774837 0.632161i \(-0.217832\pi\)
\(882\) 0 0
\(883\) 408.581 0.462719 0.231359 0.972868i \(-0.425683\pi\)
0.231359 + 0.972868i \(0.425683\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −755.098 + 435.956i −0.851294 + 0.491495i −0.861087 0.508457i \(-0.830216\pi\)
0.00979311 + 0.999952i \(0.496883\pi\)
\(888\) 0 0
\(889\) 700.924 1214.04i 0.788441 1.36562i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 269.471 + 155.579i 0.301760 + 0.174221i
\(894\) 0 0
\(895\) −178.910 309.881i −0.199899 0.346236i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 436.874i 0.485956i
\(900\) 0 0
\(901\) 191.008 0.211995
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 58.7427 33.9151i 0.0649091 0.0374753i
\(906\) 0 0
\(907\) −843.097 + 1460.29i −0.929544 + 1.61002i −0.145459 + 0.989364i \(0.546466\pi\)
−0.784085 + 0.620653i \(0.786867\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −383.084 221.173i −0.420509 0.242781i 0.274786 0.961505i \(-0.411393\pi\)
−0.695295 + 0.718724i \(0.744726\pi\)
\(912\) 0 0
\(913\) −74.1907 128.502i −0.0812603 0.140747i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1687.46i 1.84020i
\(918\) 0 0
\(919\) 182.236 0.198298 0.0991489 0.995073i \(-0.468388\pi\)
0.0991489 + 0.995073i \(0.468388\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 58.7162 33.8998i 0.0636145 0.0367279i
\(924\) 0 0
\(925\) −111.653 + 193.389i −0.120706 + 0.209069i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1150.27 + 664.111i 1.23819 + 0.714867i 0.968723 0.248144i \(-0.0798205\pi\)
0.269463 + 0.963011i \(0.413154\pi\)
\(930\) 0 0
\(931\) −13.7532 23.8213i −0.0147725 0.0255868i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31.9383i 0.0341587i
\(936\) 0 0
\(937\) −276.582 −0.295178 −0.147589 0.989049i \(-0.547151\pi\)
−0.147589 + 0.989049i \(0.547151\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1083.50 + 625.557i −1.15143 + 0.664779i −0.949236 0.314566i \(-0.898141\pi\)
−0.202196 + 0.979345i \(0.564808\pi\)
\(942\) 0 0
\(943\) 303.758 526.124i 0.322119 0.557926i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −935.323 540.009i −0.987670 0.570232i −0.0830930 0.996542i \(-0.526480\pi\)
−0.904577 + 0.426310i \(0.859813\pi\)
\(948\) 0 0
\(949\) 152.172 + 263.570i 0.160350 + 0.277734i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 328.534i 0.344737i −0.985033 0.172369i \(-0.944858\pi\)
0.985033 0.172369i \(-0.0551420\pi\)
\(954\) 0 0
\(955\) 645.336 0.675745
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1119.47 646.328i 1.16733 0.673961i
\(960\) 0 0
\(961\) 125.623 217.585i 0.130721 0.226416i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −183.323 105.842i −0.189972 0.109681i
\(966\) 0 0
\(967\) −298.854 517.631i −0.309053 0.535296i 0.669102 0.743170i \(-0.266679\pi\)
−0.978155 + 0.207875i \(0.933345\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 711.597i 0.732850i 0.930448 + 0.366425i \(0.119418\pi\)
−0.930448 + 0.366425i \(0.880582\pi\)
\(972\) 0 0
\(973\) −232.857 −0.239319
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −292.262 + 168.738i −0.299142 + 0.172710i −0.642058 0.766656i \(-0.721919\pi\)
0.342915 + 0.939366i \(0.388586\pi\)
\(978\) 0 0
\(979\) −109.155 + 189.062i −0.111496 + 0.193117i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −274.504 158.485i −0.279252 0.161226i 0.353833 0.935309i \(-0.384878\pi\)
−0.633085 + 0.774083i \(0.718211\pi\)
\(984\) 0 0
\(985\) 145.071 + 251.270i 0.147280 + 0.255097i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1455.21i 1.47140i
\(990\) 0 0
\(991\) −685.922 −0.692152 −0.346076 0.938207i \(-0.612486\pi\)
−0.346076 + 0.938207i \(0.612486\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 264.192 152.532i 0.265520 0.153298i
\(996\) 0 0
\(997\) −293.035 + 507.551i −0.293917 + 0.509078i −0.974732 0.223376i \(-0.928292\pi\)
0.680816 + 0.732455i \(0.261625\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.bs.c.1601.1 16
3.2 odd 2 720.3.bs.c.641.2 16
4.3 odd 2 135.3.i.a.116.8 16
9.4 even 3 720.3.bs.c.401.2 16
9.5 odd 6 inner 2160.3.bs.c.881.1 16
12.11 even 2 45.3.i.a.11.1 16
20.3 even 4 675.3.i.c.224.16 32
20.7 even 4 675.3.i.c.224.1 32
20.19 odd 2 675.3.j.b.251.1 16
36.7 odd 6 405.3.c.a.161.1 16
36.11 even 6 405.3.c.a.161.16 16
36.23 even 6 135.3.i.a.71.8 16
36.31 odd 6 45.3.i.a.41.1 yes 16
60.23 odd 4 225.3.i.b.74.1 32
60.47 odd 4 225.3.i.b.74.16 32
60.59 even 2 225.3.j.b.101.8 16
180.23 odd 12 675.3.i.c.449.1 32
180.59 even 6 675.3.j.b.476.1 16
180.67 even 12 225.3.i.b.149.1 32
180.103 even 12 225.3.i.b.149.16 32
180.139 odd 6 225.3.j.b.176.8 16
180.167 odd 12 675.3.i.c.449.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 12.11 even 2
45.3.i.a.41.1 yes 16 36.31 odd 6
135.3.i.a.71.8 16 36.23 even 6
135.3.i.a.116.8 16 4.3 odd 2
225.3.i.b.74.1 32 60.23 odd 4
225.3.i.b.74.16 32 60.47 odd 4
225.3.i.b.149.1 32 180.67 even 12
225.3.i.b.149.16 32 180.103 even 12
225.3.j.b.101.8 16 60.59 even 2
225.3.j.b.176.8 16 180.139 odd 6
405.3.c.a.161.1 16 36.7 odd 6
405.3.c.a.161.16 16 36.11 even 6
675.3.i.c.224.1 32 20.7 even 4
675.3.i.c.224.16 32 20.3 even 4
675.3.i.c.449.1 32 180.23 odd 12
675.3.i.c.449.16 32 180.167 odd 12
675.3.j.b.251.1 16 20.19 odd 2
675.3.j.b.476.1 16 180.59 even 6
720.3.bs.c.401.2 16 9.4 even 3
720.3.bs.c.641.2 16 3.2 odd 2
2160.3.bs.c.881.1 16 9.5 odd 6 inner
2160.3.bs.c.1601.1 16 1.1 even 1 trivial