Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2160, [\chi])\).
|
Total |
New |
Old |
| Modular forms
| 1800 |
96 |
1704 |
| Cusp forms
| 1656 |
96 |
1560 |
| Eisenstein series
| 144 |
0 |
144 |
\( S_{3}^{\mathrm{old}}(2160, [\chi]) \simeq \)
\(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 20}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 16}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 10}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 12}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 10}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 5}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 3}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)\(\oplus\)
\(S_{3}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)