Defining parameters
Level: | \( N \) | \(=\) | \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 2160.bs (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(1296\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(2160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1800 | 96 | 1704 |
Cusp forms | 1656 | 96 | 1560 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(2160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2160.3.bs.a | $4$ | $58.856$ | \(\Q(\sqrt{-3}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{1}q^{5}+(-2\beta _{1}-4\beta _{2}-2\beta _{3})q^{7}+\cdots\) |
2160.3.bs.b | $12$ | $58.856$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(6\) | \(q+\beta _{4}q^{5}+(1+\beta _{2}+\beta _{3}-2\beta _{4}-\beta _{9}+\cdots)q^{7}+\cdots\) |
2160.3.bs.c | $16$ | $58.856$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{9}q^{5}+(-\beta _{1}+\beta _{10})q^{7}+(-1+\beta _{1}+\cdots)q^{11}+\cdots\) |
2160.3.bs.d | $16$ | $58.856$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{8}q^{5}+(\beta _{1}-\beta _{4}+\beta _{5}+\beta _{7}-\beta _{13}+\cdots)q^{7}+\cdots\) |
2160.3.bs.e | $48$ | $58.856$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(2160, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(2160, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)