Properties

Label 2160.3.bs
Level $2160$
Weight $3$
Character orbit 2160.bs
Rep. character $\chi_{2160}(881,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $5$
Sturm bound $1296$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.bs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(1296\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2160, [\chi])\).

Total New Old
Modular forms 1800 96 1704
Cusp forms 1656 96 1560
Eisenstein series 144 0 144

Trace form

\( 96 q + O(q^{10}) \) \( 96 q + 240 q^{25} - 72 q^{29} + 48 q^{31} - 72 q^{41} - 96 q^{43} - 336 q^{49} - 432 q^{59} + 48 q^{73} + 288 q^{77} + 720 q^{83} - 384 q^{91} + 120 q^{97} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(2160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2160.3.bs.a 2160.bs 9.d $4$ $58.856$ \(\Q(\sqrt{-3}, \sqrt{-5})\) None 180.3.o.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{5}+(-2\beta _{1}-4\beta _{2}-2\beta _{3})q^{7}+\cdots\)
2160.3.bs.b 2160.bs 9.d $12$ $58.856$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 180.3.o.b \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{4}q^{5}+(1+\beta _{2}+\beta _{3}-2\beta _{4}-\beta _{9}+\cdots)q^{7}+\cdots\)
2160.3.bs.c 2160.bs 9.d $16$ $58.856$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 45.3.i.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{9}q^{5}+(-\beta _{1}+\beta _{10})q^{7}+(-1+\beta _{1}+\cdots)q^{11}+\cdots\)
2160.3.bs.d 2160.bs 9.d $16$ $58.856$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 90.3.h.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{8}q^{5}+(\beta _{1}-\beta _{4}+\beta _{5}+\beta _{7}-\beta _{13}+\cdots)q^{7}+\cdots\)
2160.3.bs.e 2160.bs 9.d $48$ $58.856$ None 360.3.bc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(2160, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2160, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1080, [\chi])\)\(^{\oplus 2}\)