Properties

Label 45.3.i.a.41.1
Level $45$
Weight $3$
Character 45.41
Analytic conductor $1.226$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(11,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.1
Root \(3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 45.41
Dual form 45.3.i.a.11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.23594 + 1.86827i) q^{2} +(2.62117 - 1.45927i) q^{3} +(4.98088 - 8.62715i) q^{4} +(1.93649 + 1.11803i) q^{5} +(-5.75562 + 9.61919i) q^{6} +(3.63061 + 6.28840i) q^{7} +22.2764i q^{8} +(4.74103 - 7.65001i) q^{9} -8.35517 q^{10} +(6.50668 - 3.75663i) q^{11} +(0.466354 - 29.8817i) q^{12} +(-1.46668 + 2.54036i) q^{13} +(-23.4969 - 13.5659i) q^{14} +(6.70739 + 0.104680i) q^{15} +(-21.6949 - 37.5766i) q^{16} -1.90107i q^{17} +(-1.04942 + 33.6125i) q^{18} -7.38378 q^{19} +(19.2909 - 11.1376i) q^{20} +(18.6929 + 11.1849i) q^{21} +(-14.0368 + 24.3125i) q^{22} +(-30.6549 - 17.6986i) q^{23} +(32.5074 + 58.3902i) q^{24} +(2.50000 + 4.33013i) q^{25} -10.9606i q^{26} +(1.26358 - 26.9704i) q^{27} +72.3346 q^{28} +(-14.2015 + 8.19922i) q^{29} +(-21.9003 + 12.1925i) q^{30} +(-13.3206 + 23.0720i) q^{31} +(63.2391 + 36.5111i) q^{32} +(11.5731 - 19.3418i) q^{33} +(3.55172 + 6.15176i) q^{34} +16.2366i q^{35} +(-42.3832 - 79.0054i) q^{36} -44.6613 q^{37} +(23.8935 - 13.7949i) q^{38} +(-0.137323 + 8.79899i) q^{39} +(-24.9058 + 43.1381i) q^{40} +(14.8634 + 8.58140i) q^{41} +(-81.3857 - 1.27016i) q^{42} +(-20.5554 - 35.6031i) q^{43} -74.8454i q^{44} +(17.7339 - 9.51354i) q^{45} +132.263 q^{46} +(36.4950 - 21.0704i) q^{47} +(-111.701 - 66.8359i) q^{48} +(-1.86263 + 3.22616i) q^{49} +(-16.1797 - 9.34136i) q^{50} +(-2.77419 - 4.98303i) q^{51} +(14.6107 + 25.3065i) q^{52} +100.474i q^{53} +(46.2992 + 89.6354i) q^{54} +16.8002 q^{55} +(-140.083 + 80.8770i) q^{56} +(-19.3541 + 10.7750i) q^{57} +(30.6367 - 53.0644i) q^{58} +(-4.12003 - 2.37870i) q^{59} +(34.3118 - 57.3442i) q^{60} +(38.4629 + 66.6197i) q^{61} -99.5461i q^{62} +(65.3191 + 2.03933i) q^{63} -99.2915 q^{64} +(-5.68041 + 3.27959i) q^{65} +(-1.31425 + 84.2107i) q^{66} +(41.9225 - 72.6119i) q^{67} +(-16.4008 - 9.46903i) q^{68} +(-106.179 - 1.65710i) q^{69} +(-30.3343 - 52.5406i) q^{70} -23.1134i q^{71} +(170.415 + 105.613i) q^{72} -103.753 q^{73} +(144.521 - 83.4395i) q^{74} +(12.8718 + 7.70180i) q^{75} +(-36.7778 + 63.7010i) q^{76} +(47.2464 + 27.2777i) q^{77} +(-15.9945 - 28.7296i) q^{78} +(-40.2610 - 69.7340i) q^{79} -97.0225i q^{80} +(-36.0452 - 72.5379i) q^{81} -64.1296 q^{82} +(-17.1034 + 9.87463i) q^{83} +(189.601 - 105.556i) q^{84} +(2.12546 - 3.68141i) q^{85} +(133.032 + 76.8063i) q^{86} +(-25.2595 + 42.2153i) q^{87} +(83.6843 + 144.945i) q^{88} +29.0566i q^{89} +(-39.6121 + 63.9171i) q^{90} -21.2997 q^{91} +(-305.377 + 176.310i) q^{92} +(-1.24719 + 79.9139i) q^{93} +(-78.7306 + 136.365i) q^{94} +(-14.2986 - 8.25532i) q^{95} +(219.040 + 3.41849i) q^{96} +(47.7972 + 82.7872i) q^{97} -13.9196i q^{98} +(2.11011 - 67.5864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{3} + 16 q^{4} - 22 q^{6} + 2 q^{7} + 8 q^{9} - 18 q^{11} - 22 q^{12} - 10 q^{13} - 54 q^{14} + 10 q^{15} - 32 q^{16} - 8 q^{18} - 52 q^{19} + 72 q^{21} - 24 q^{22} - 54 q^{23} + 108 q^{24} + 40 q^{25}+ \cdots - 824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.23594 + 1.86827i −1.61797 + 0.934136i −0.630528 + 0.776167i \(0.717161\pi\)
−0.987444 + 0.157969i \(0.949505\pi\)
\(3\) 2.62117 1.45927i 0.873722 0.486425i
\(4\) 4.98088 8.62715i 1.24522 2.15679i
\(5\) 1.93649 + 1.11803i 0.387298 + 0.223607i
\(6\) −5.75562 + 9.61919i −0.959271 + 1.60320i
\(7\) 3.63061 + 6.28840i 0.518658 + 0.898342i 0.999765 + 0.0216804i \(0.00690163\pi\)
−0.481107 + 0.876662i \(0.659765\pi\)
\(8\) 22.2764i 2.78455i
\(9\) 4.74103 7.65001i 0.526781 0.850001i
\(10\) −8.35517 −0.835517
\(11\) 6.50668 3.75663i 0.591516 0.341512i −0.174181 0.984714i \(-0.555728\pi\)
0.765697 + 0.643202i \(0.222394\pi\)
\(12\) 0.466354 29.8817i 0.0388628 2.49014i
\(13\) −1.46668 + 2.54036i −0.112821 + 0.195412i −0.916907 0.399102i \(-0.869322\pi\)
0.804085 + 0.594514i \(0.202655\pi\)
\(14\) −23.4969 13.5659i −1.67835 0.968995i
\(15\) 6.70739 + 0.104680i 0.447159 + 0.00697867i
\(16\) −21.6949 37.5766i −1.35593 2.34854i
\(17\) 1.90107i 0.111828i −0.998436 0.0559139i \(-0.982193\pi\)
0.998436 0.0559139i \(-0.0178072\pi\)
\(18\) −1.04942 + 33.6125i −0.0583009 + 1.86736i
\(19\) −7.38378 −0.388620 −0.194310 0.980940i \(-0.562247\pi\)
−0.194310 + 0.980940i \(0.562247\pi\)
\(20\) 19.2909 11.1376i 0.964544 0.556880i
\(21\) 18.6929 + 11.1849i 0.890140 + 0.532614i
\(22\) −14.0368 + 24.3125i −0.638037 + 1.10511i
\(23\) −30.6549 17.6986i −1.33282 0.769506i −0.347091 0.937831i \(-0.612831\pi\)
−0.985731 + 0.168326i \(0.946164\pi\)
\(24\) 32.5074 + 58.3902i 1.35448 + 2.43293i
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 10.9606i 0.421562i
\(27\) 1.26358 26.9704i 0.0467992 0.998904i
\(28\) 72.3346 2.58338
\(29\) −14.2015 + 8.19922i −0.489705 + 0.282732i −0.724452 0.689325i \(-0.757907\pi\)
0.234747 + 0.972057i \(0.424574\pi\)
\(30\) −21.9003 + 12.1925i −0.730010 + 0.406416i
\(31\) −13.3206 + 23.0720i −0.429697 + 0.744257i −0.996846 0.0793581i \(-0.974713\pi\)
0.567149 + 0.823615i \(0.308046\pi\)
\(32\) 63.2391 + 36.5111i 1.97622 + 1.14097i
\(33\) 11.5731 19.3418i 0.350701 0.586115i
\(34\) 3.55172 + 6.15176i 0.104462 + 0.180934i
\(35\) 16.2366i 0.463902i
\(36\) −42.3832 79.0054i −1.17731 2.19459i
\(37\) −44.6613 −1.20706 −0.603531 0.797340i \(-0.706240\pi\)
−0.603531 + 0.797340i \(0.706240\pi\)
\(38\) 23.8935 13.7949i 0.628776 0.363024i
\(39\) −0.137323 + 8.79899i −0.00352110 + 0.225615i
\(40\) −24.9058 + 43.1381i −0.622645 + 1.07845i
\(41\) 14.8634 + 8.58140i 0.362522 + 0.209302i 0.670187 0.742193i \(-0.266214\pi\)
−0.307664 + 0.951495i \(0.599547\pi\)
\(42\) −81.3857 1.27016i −1.93775 0.0302419i
\(43\) −20.5554 35.6031i −0.478033 0.827978i 0.521650 0.853160i \(-0.325317\pi\)
−0.999683 + 0.0251818i \(0.991984\pi\)
\(44\) 74.8454i 1.70103i
\(45\) 17.7339 9.51354i 0.394088 0.211412i
\(46\) 132.263 2.87529
\(47\) 36.4950 21.0704i 0.776490 0.448307i −0.0586949 0.998276i \(-0.518694\pi\)
0.835185 + 0.549969i \(0.185361\pi\)
\(48\) −111.701 66.8359i −2.32710 1.39241i
\(49\) −1.86263 + 3.22616i −0.0380128 + 0.0658401i
\(50\) −16.1797 9.34136i −0.323594 0.186827i
\(51\) −2.77419 4.98303i −0.0543959 0.0977065i
\(52\) 14.6107 + 25.3065i 0.280975 + 0.486663i
\(53\) 100.474i 1.89573i 0.318671 + 0.947865i \(0.396764\pi\)
−0.318671 + 0.947865i \(0.603236\pi\)
\(54\) 46.2992 + 89.6354i 0.857393 + 1.65992i
\(55\) 16.8002 0.305458
\(56\) −140.083 + 80.8770i −2.50148 + 1.44423i
\(57\) −19.3541 + 10.7750i −0.339546 + 0.189035i
\(58\) 30.6367 53.0644i 0.528220 0.914903i
\(59\) −4.12003 2.37870i −0.0698310 0.0403169i 0.464678 0.885480i \(-0.346170\pi\)
−0.534509 + 0.845163i \(0.679503\pi\)
\(60\) 34.3118 57.3442i 0.571864 0.955737i
\(61\) 38.4629 + 66.6197i 0.630539 + 1.09213i 0.987442 + 0.157985i \(0.0504996\pi\)
−0.356902 + 0.934142i \(0.616167\pi\)
\(62\) 99.5461i 1.60558i
\(63\) 65.3191 + 2.03933i 1.03681 + 0.0323703i
\(64\) −99.2915 −1.55143
\(65\) −5.68041 + 3.27959i −0.0873910 + 0.0504552i
\(66\) −1.31425 + 84.2107i −0.0199129 + 1.27592i
\(67\) 41.9225 72.6119i 0.625709 1.08376i −0.362694 0.931908i \(-0.618143\pi\)
0.988403 0.151852i \(-0.0485237\pi\)
\(68\) −16.4008 9.46903i −0.241189 0.139250i
\(69\) −106.179 1.65710i −1.53882 0.0240159i
\(70\) −30.3343 52.5406i −0.433348 0.750580i
\(71\) 23.1134i 0.325540i −0.986664 0.162770i \(-0.947957\pi\)
0.986664 0.162770i \(-0.0520429\pi\)
\(72\) 170.415 + 105.613i 2.36687 + 1.46685i
\(73\) −103.753 −1.42127 −0.710637 0.703559i \(-0.751593\pi\)
−0.710637 + 0.703559i \(0.751593\pi\)
\(74\) 144.521 83.4395i 1.95299 1.12756i
\(75\) 12.8718 + 7.70180i 0.171624 + 0.102691i
\(76\) −36.7778 + 63.7010i −0.483918 + 0.838171i
\(77\) 47.2464 + 27.2777i 0.613589 + 0.354256i
\(78\) −15.9945 28.7296i −0.205058 0.368328i
\(79\) −40.2610 69.7340i −0.509633 0.882709i −0.999938 0.0111586i \(-0.996448\pi\)
0.490305 0.871551i \(-0.336885\pi\)
\(80\) 97.0225i 1.21278i
\(81\) −36.0452 72.5379i −0.445003 0.895529i
\(82\) −64.1296 −0.782068
\(83\) −17.1034 + 9.87463i −0.206065 + 0.118971i −0.599481 0.800389i \(-0.704626\pi\)
0.393417 + 0.919360i \(0.371293\pi\)
\(84\) 189.601 105.556i 2.25715 1.25662i
\(85\) 2.12546 3.68141i 0.0250055 0.0433107i
\(86\) 133.032 + 76.8063i 1.54689 + 0.893097i
\(87\) −25.2595 + 42.2153i −0.290339 + 0.485234i
\(88\) 83.6843 + 144.945i 0.950958 + 1.64711i
\(89\) 29.0566i 0.326478i 0.986587 + 0.163239i \(0.0521942\pi\)
−0.986587 + 0.163239i \(0.947806\pi\)
\(90\) −39.6121 + 63.9171i −0.440135 + 0.710190i
\(91\) −21.2997 −0.234063
\(92\) −305.377 + 176.310i −3.31932 + 1.91641i
\(93\) −1.24719 + 79.9139i −0.0134107 + 0.859289i
\(94\) −78.7306 + 136.365i −0.837559 + 1.45070i
\(95\) −14.2986 8.25532i −0.150512 0.0868981i
\(96\) 219.040 + 3.41849i 2.28167 + 0.0356092i
\(97\) 47.7972 + 82.7872i 0.492755 + 0.853476i 0.999965 0.00834602i \(-0.00265665\pi\)
−0.507210 + 0.861822i \(0.669323\pi\)
\(98\) 13.9196i 0.142036i
\(99\) 2.11011 67.5864i 0.0213143 0.682691i
\(100\) 49.8088 0.498088
\(101\) 117.817 68.0219i 1.16651 0.673484i 0.213653 0.976910i \(-0.431464\pi\)
0.952855 + 0.303426i \(0.0981305\pi\)
\(102\) 18.2868 + 10.9419i 0.179282 + 0.107273i
\(103\) 85.9401 148.853i 0.834370 1.44517i −0.0601721 0.998188i \(-0.519165\pi\)
0.894542 0.446983i \(-0.147502\pi\)
\(104\) −56.5901 32.6723i −0.544135 0.314157i
\(105\) 23.6936 + 42.5588i 0.225654 + 0.405322i
\(106\) −187.712 325.127i −1.77087 3.06724i
\(107\) 98.6056i 0.921548i 0.887518 + 0.460774i \(0.152428\pi\)
−0.887518 + 0.460774i \(0.847572\pi\)
\(108\) −226.384 145.238i −2.09615 1.34479i
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) −54.3644 + 31.3873i −0.494222 + 0.285339i
\(111\) −117.065 + 65.1731i −1.05464 + 0.587145i
\(112\) 157.531 272.852i 1.40653 2.43618i
\(113\) 2.36782 + 1.36706i 0.0209542 + 0.0120979i 0.510440 0.859913i \(-0.329482\pi\)
−0.489486 + 0.872011i \(0.662816\pi\)
\(114\) 42.4983 71.0260i 0.372792 0.623035i
\(115\) −39.5753 68.5465i −0.344133 0.596056i
\(116\) 163.357i 1.40825i
\(117\) 12.4802 + 23.2640i 0.106668 + 0.198838i
\(118\) 17.7762 0.150646
\(119\) 11.9547 6.90205i 0.100460 0.0580004i
\(120\) −2.33190 + 149.417i −0.0194325 + 1.24514i
\(121\) −32.2754 + 55.9027i −0.266739 + 0.462006i
\(122\) −248.928 143.718i −2.04039 1.17802i
\(123\) 51.4821 + 0.803465i 0.418554 + 0.00653224i
\(124\) 132.697 + 229.838i 1.07014 + 1.85353i
\(125\) 11.1803i 0.0894427i
\(126\) −215.179 + 115.435i −1.70777 + 0.916149i
\(127\) 193.060 1.52015 0.760077 0.649833i \(-0.225161\pi\)
0.760077 + 0.649833i \(0.225161\pi\)
\(128\) 68.3455 39.4593i 0.533950 0.308276i
\(129\) −105.834 63.3255i −0.820418 0.490896i
\(130\) 12.2543 21.2251i 0.0942641 0.163270i
\(131\) −201.259 116.197i −1.53633 0.886999i −0.999049 0.0435937i \(-0.986119\pi\)
−0.537278 0.843405i \(-0.680547\pi\)
\(132\) −109.220 196.182i −0.827424 1.48623i
\(133\) −26.8076 46.4322i −0.201561 0.349114i
\(134\) 313.291i 2.33799i
\(135\) 32.6007 50.8153i 0.241487 0.376409i
\(136\) 42.3491 0.311390
\(137\) 154.172 89.0111i 1.12534 0.649716i 0.182582 0.983191i \(-0.441555\pi\)
0.942759 + 0.333475i \(0.108221\pi\)
\(138\) 346.685 193.009i 2.51221 1.39861i
\(139\) −16.0343 + 27.7722i −0.115355 + 0.199800i −0.917922 0.396762i \(-0.870134\pi\)
0.802567 + 0.596562i \(0.203467\pi\)
\(140\) 140.075 + 80.8725i 1.00054 + 0.577661i
\(141\) 64.9120 108.485i 0.460369 0.769400i
\(142\) 43.1820 + 74.7935i 0.304099 + 0.526715i
\(143\) 22.0390i 0.154119i
\(144\) −390.318 12.1861i −2.71054 0.0846257i
\(145\) −36.6680 −0.252883
\(146\) 335.739 193.839i 2.29958 1.32766i
\(147\) −0.174395 + 11.1744i −0.00118636 + 0.0760163i
\(148\) −222.453 + 385.299i −1.50306 + 2.60337i
\(149\) 80.4653 + 46.4567i 0.540036 + 0.311790i 0.745093 0.666960i \(-0.232405\pi\)
−0.205058 + 0.978750i \(0.565738\pi\)
\(150\) −56.0414 0.874620i −0.373609 0.00583080i
\(151\) 113.614 + 196.785i 0.752408 + 1.30321i 0.946653 + 0.322256i \(0.104441\pi\)
−0.194245 + 0.980953i \(0.562226\pi\)
\(152\) 164.484i 1.08213i
\(153\) −14.5432 9.01305i −0.0950537 0.0589088i
\(154\) −203.849 −1.32369
\(155\) −51.5905 + 29.7858i −0.332842 + 0.192166i
\(156\) 75.2261 + 45.0114i 0.482219 + 0.288535i
\(157\) 0.792406 1.37249i 0.00504717 0.00874196i −0.863491 0.504365i \(-0.831727\pi\)
0.868538 + 0.495623i \(0.165060\pi\)
\(158\) 260.564 + 150.437i 1.64914 + 0.952133i
\(159\) 146.619 + 263.358i 0.922131 + 1.65634i
\(160\) 81.6413 + 141.407i 0.510258 + 0.883793i
\(161\) 257.027i 1.59644i
\(162\) 252.161 + 167.386i 1.55655 + 1.03325i
\(163\) −41.6801 −0.255706 −0.127853 0.991793i \(-0.540809\pi\)
−0.127853 + 0.991793i \(0.540809\pi\)
\(164\) 148.066 85.4859i 0.902841 0.521256i
\(165\) 44.0360 24.5161i 0.266885 0.148582i
\(166\) 36.8970 63.9075i 0.222271 0.384985i
\(167\) 8.01405 + 4.62692i 0.0479884 + 0.0277061i 0.523802 0.851840i \(-0.324513\pi\)
−0.475814 + 0.879546i \(0.657846\pi\)
\(168\) −249.159 + 416.412i −1.48309 + 2.47864i
\(169\) 80.1977 + 138.907i 0.474543 + 0.821932i
\(170\) 15.8838i 0.0934340i
\(171\) −35.0068 + 56.4860i −0.204718 + 0.330327i
\(172\) −409.537 −2.38103
\(173\) −127.637 + 73.6913i −0.737787 + 0.425962i −0.821264 0.570548i \(-0.806731\pi\)
0.0834771 + 0.996510i \(0.473397\pi\)
\(174\) 2.86848 183.798i 0.0164855 1.05631i
\(175\) −18.1530 + 31.4420i −0.103732 + 0.179668i
\(176\) −282.323 162.999i −1.60411 0.926133i
\(177\) −14.2705 0.222714i −0.0806240 0.00125827i
\(178\) −54.2856 94.0254i −0.304975 0.528233i
\(179\) 160.022i 0.893977i −0.894540 0.446988i \(-0.852496\pi\)
0.894540 0.446988i \(-0.147504\pi\)
\(180\) 6.25603 200.379i 0.0347557 1.11322i
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) 68.9246 39.7937i 0.378707 0.218646i
\(183\) 198.034 + 118.493i 1.08215 + 0.647505i
\(184\) 394.262 682.882i 2.14273 3.71132i
\(185\) −86.4862 49.9328i −0.467493 0.269907i
\(186\) −145.265 260.927i −0.780995 1.40283i
\(187\) −7.14163 12.3697i −0.0381905 0.0661480i
\(188\) 419.797i 2.23296i
\(189\) 174.188 89.9731i 0.921631 0.476048i
\(190\) 61.6928 0.324699
\(191\) −249.938 + 144.302i −1.30857 + 0.755506i −0.981858 0.189617i \(-0.939275\pi\)
−0.326716 + 0.945122i \(0.605942\pi\)
\(192\) −260.260 + 144.894i −1.35552 + 0.754654i
\(193\) 47.3339 81.9847i 0.245253 0.424791i −0.716949 0.697125i \(-0.754462\pi\)
0.962203 + 0.272334i \(0.0877955\pi\)
\(194\) −309.338 178.596i −1.59453 0.920600i
\(195\) −10.1035 + 16.8856i −0.0518128 + 0.0865930i
\(196\) 18.5551 + 32.1383i 0.0946686 + 0.163971i
\(197\) 129.755i 0.658657i −0.944215 0.329329i \(-0.893178\pi\)
0.944215 0.329329i \(-0.106822\pi\)
\(198\) 119.442 + 222.648i 0.603241 + 1.12449i
\(199\) 136.428 0.685570 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(200\) −96.4597 + 55.6911i −0.482299 + 0.278455i
\(201\) 3.92515 251.504i 0.0195281 1.25127i
\(202\) −254.167 + 440.230i −1.25825 + 2.17936i
\(203\) −103.120 59.5363i −0.507980 0.293282i
\(204\) −56.8072 0.886573i −0.278467 0.00434594i
\(205\) 19.1886 + 33.2356i 0.0936029 + 0.162125i
\(206\) 642.238i 3.11766i
\(207\) −280.731 + 150.601i −1.35619 + 0.727539i
\(208\) 127.278 0.611911
\(209\) −48.0439 + 27.7382i −0.229875 + 0.132718i
\(210\) −156.183 93.4516i −0.743727 0.445008i
\(211\) −79.1144 + 137.030i −0.374950 + 0.649432i −0.990320 0.138806i \(-0.955673\pi\)
0.615370 + 0.788239i \(0.289007\pi\)
\(212\) 866.802 + 500.448i 4.08869 + 2.36060i
\(213\) −33.7287 60.5840i −0.158351 0.284432i
\(214\) −184.222 319.082i −0.860851 1.49104i
\(215\) 91.9267i 0.427566i
\(216\) 600.804 + 28.1480i 2.78150 + 0.130315i
\(217\) −193.448 −0.891463
\(218\) −8.49925 + 4.90704i −0.0389874 + 0.0225094i
\(219\) −271.954 + 151.404i −1.24180 + 0.691343i
\(220\) 83.6797 144.937i 0.380362 0.658807i
\(221\) 4.82941 + 2.78826i 0.0218525 + 0.0126166i
\(222\) 257.054 429.605i 1.15790 1.93516i
\(223\) 103.124 + 178.616i 0.462440 + 0.800969i 0.999082 0.0428406i \(-0.0136407\pi\)
−0.536642 + 0.843810i \(0.680307\pi\)
\(224\) 530.230i 2.36710i
\(225\) 44.9781 + 1.40426i 0.199903 + 0.00624115i
\(226\) −10.2162 −0.0452044
\(227\) −127.562 + 73.6481i −0.561948 + 0.324441i −0.753927 0.656958i \(-0.771843\pi\)
0.191979 + 0.981399i \(0.438510\pi\)
\(228\) −3.44346 + 220.640i −0.0151029 + 0.967718i
\(229\) 13.5751 23.5127i 0.0592798 0.102676i −0.834863 0.550458i \(-0.814453\pi\)
0.894142 + 0.447783i \(0.147786\pi\)
\(230\) 256.127 + 147.875i 1.11360 + 0.642935i
\(231\) 163.646 + 2.55398i 0.708426 + 0.0110562i
\(232\) −182.649 316.358i −0.787281 1.36361i
\(233\) 39.6011i 0.169962i 0.996383 + 0.0849808i \(0.0270829\pi\)
−0.996383 + 0.0849808i \(0.972917\pi\)
\(234\) −83.8487 51.9646i −0.358328 0.222071i
\(235\) 94.2298 0.400978
\(236\) −41.0428 + 23.6960i −0.173910 + 0.100407i
\(237\) −207.292 124.033i −0.874649 0.523345i
\(238\) −25.7898 + 44.6693i −0.108361 + 0.187686i
\(239\) 54.9394 + 31.7193i 0.229872 + 0.132717i 0.610513 0.792006i \(-0.290963\pi\)
−0.380641 + 0.924723i \(0.624297\pi\)
\(240\) −141.582 254.312i −0.589927 1.05963i
\(241\) 69.1161 + 119.713i 0.286789 + 0.496733i 0.973041 0.230630i \(-0.0740789\pi\)
−0.686253 + 0.727363i \(0.740746\pi\)
\(242\) 241.197i 0.996683i
\(243\) −200.333 137.534i −0.824416 0.565984i
\(244\) 766.317 3.14064
\(245\) −7.21392 + 4.16496i −0.0294446 + 0.0169998i
\(246\) −168.094 + 93.5827i −0.683310 + 0.380417i
\(247\) 10.8296 18.7575i 0.0438446 0.0759411i
\(248\) −513.961 296.735i −2.07242 1.19651i
\(249\) −30.4210 + 50.8415i −0.122173 + 0.204183i
\(250\) −20.8879 36.1789i −0.0835517 0.144716i
\(251\) 186.477i 0.742936i −0.928446 0.371468i \(-0.878855\pi\)
0.928446 0.371468i \(-0.121145\pi\)
\(252\) 342.941 553.360i 1.36088 2.19587i
\(253\) −265.949 −1.05118
\(254\) −624.730 + 360.688i −2.45957 + 1.42003i
\(255\) 0.199004 12.7512i 0.000780410 0.0500048i
\(256\) 51.1416 88.5798i 0.199772 0.346015i
\(257\) 201.713 + 116.459i 0.784877 + 0.453149i 0.838156 0.545431i \(-0.183634\pi\)
−0.0532790 + 0.998580i \(0.516967\pi\)
\(258\) 460.782 + 7.19128i 1.78598 + 0.0278732i
\(259\) −162.148 280.848i −0.626053 1.08435i
\(260\) 65.3410i 0.251312i
\(261\) −4.60553 + 147.514i −0.0176457 + 0.565188i
\(262\) 868.350 3.31431
\(263\) −9.34728 + 5.39665i −0.0355410 + 0.0205196i −0.517665 0.855583i \(-0.673199\pi\)
0.482124 + 0.876103i \(0.339865\pi\)
\(264\) 430.866 + 257.808i 1.63207 + 0.976545i
\(265\) −112.333 + 194.567i −0.423898 + 0.734213i
\(266\) 173.496 + 100.168i 0.652240 + 0.376571i
\(267\) 42.4015 + 76.1622i 0.158807 + 0.285252i
\(268\) −417.622 723.343i −1.55829 2.69904i
\(269\) 58.4601i 0.217324i −0.994079 0.108662i \(-0.965343\pi\)
0.994079 0.108662i \(-0.0346566\pi\)
\(270\) −10.5574 + 225.342i −0.0391015 + 0.834601i
\(271\) −65.5995 −0.242065 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(272\) −71.4360 + 41.2436i −0.262632 + 0.151631i
\(273\) −55.8301 + 31.0821i −0.204506 + 0.113854i
\(274\) −332.594 + 576.069i −1.21385 + 2.10244i
\(275\) 32.5334 + 18.7832i 0.118303 + 0.0683024i
\(276\) −543.161 + 907.767i −1.96797 + 3.28901i
\(277\) −134.128 232.317i −0.484218 0.838690i 0.515618 0.856819i \(-0.327562\pi\)
−0.999836 + 0.0181286i \(0.994229\pi\)
\(278\) 119.826i 0.431028i
\(279\) 113.347 + 211.288i 0.406263 + 0.757303i
\(280\) −361.693 −1.29176
\(281\) 159.428 92.0461i 0.567361 0.327566i −0.188734 0.982028i \(-0.560438\pi\)
0.756095 + 0.654462i \(0.227105\pi\)
\(282\) −7.37144 + 472.326i −0.0261399 + 1.67491i
\(283\) 231.303 400.628i 0.817324 1.41565i −0.0903234 0.995912i \(-0.528790\pi\)
0.907647 0.419734i \(-0.137877\pi\)
\(284\) −199.402 115.125i −0.702121 0.405370i
\(285\) −49.5259 0.772935i −0.173775 0.00271205i
\(286\) −41.1750 71.3171i −0.143968 0.249361i
\(287\) 124.623i 0.434226i
\(288\) 579.129 310.679i 2.01086 1.07875i
\(289\) 285.386 0.987495
\(290\) 118.656 68.5058i 0.409157 0.236227i
\(291\) 246.094 + 147.250i 0.845683 + 0.506013i
\(292\) −516.782 + 895.093i −1.76980 + 3.06539i
\(293\) 248.349 + 143.384i 0.847608 + 0.489367i 0.859843 0.510559i \(-0.170561\pi\)
−0.0122351 + 0.999925i \(0.503895\pi\)
\(294\) −20.3125 36.4855i −0.0690901 0.124100i
\(295\) −5.31893 9.21266i −0.0180303 0.0312294i
\(296\) 994.894i 3.36113i
\(297\) −93.0962 180.235i −0.313455 0.606850i
\(298\) −347.175 −1.16502
\(299\) 89.9217 51.9163i 0.300741 0.173633i
\(300\) 130.557 72.6848i 0.435191 0.242283i
\(301\) 149.257 258.521i 0.495872 0.858875i
\(302\) −735.294 424.522i −2.43475 1.40570i
\(303\) 209.556 350.225i 0.691605 1.15586i
\(304\) 160.190 + 277.458i 0.526942 + 0.912690i
\(305\) 172.011i 0.563972i
\(306\) 63.8999 + 1.99502i 0.208823 + 0.00651966i
\(307\) −236.738 −0.771133 −0.385567 0.922680i \(-0.625994\pi\)
−0.385567 + 0.922680i \(0.625994\pi\)
\(308\) 470.658 271.734i 1.52811 0.882254i
\(309\) 8.04646 515.578i 0.0260403 1.66854i
\(310\) 111.296 192.770i 0.359019 0.621839i
\(311\) 448.597 + 258.997i 1.44243 + 0.832789i 0.998012 0.0630292i \(-0.0200761\pi\)
0.444421 + 0.895818i \(0.353409\pi\)
\(312\) −196.010 3.05907i −0.628237 0.00980470i
\(313\) 247.615 + 428.882i 0.791102 + 1.37023i 0.925285 + 0.379272i \(0.123826\pi\)
−0.134183 + 0.990957i \(0.542841\pi\)
\(314\) 5.92172i 0.0188590i
\(315\) 124.210 + 76.9781i 0.394317 + 0.244375i
\(316\) −802.141 −2.53842
\(317\) −189.840 + 109.604i −0.598864 + 0.345754i −0.768595 0.639736i \(-0.779044\pi\)
0.169731 + 0.985491i \(0.445710\pi\)
\(318\) −966.475 578.289i −3.03923 1.81852i
\(319\) −61.6029 + 106.699i −0.193112 + 0.334481i
\(320\) −192.277 111.011i −0.600866 0.346910i
\(321\) 143.893 + 258.462i 0.448264 + 0.805177i
\(322\) 480.197 + 831.725i 1.49129 + 2.58300i
\(323\) 14.0371i 0.0434586i
\(324\) −805.332 50.3356i −2.48559 0.155357i
\(325\) −14.6668 −0.0451285
\(326\) 134.874 77.8697i 0.413725 0.238864i
\(327\) 6.88453 3.83281i 0.0210536 0.0117211i
\(328\) −191.163 + 331.104i −0.582813 + 1.00946i
\(329\) 264.998 + 152.997i 0.805466 + 0.465036i
\(330\) −96.6954 + 161.604i −0.293016 + 0.489709i
\(331\) 47.4838 + 82.2443i 0.143455 + 0.248472i 0.928796 0.370592i \(-0.120845\pi\)
−0.785340 + 0.619064i \(0.787512\pi\)
\(332\) 196.738i 0.592583i
\(333\) −211.741 + 341.659i −0.635858 + 1.02600i
\(334\) −34.5774 −0.103525
\(335\) 162.365 93.7416i 0.484672 0.279826i
\(336\) 14.7494 945.072i 0.0438972 2.81272i
\(337\) 257.989 446.850i 0.765547 1.32597i −0.174411 0.984673i \(-0.555802\pi\)
0.939957 0.341293i \(-0.110865\pi\)
\(338\) −519.031 299.662i −1.53559 0.886575i
\(339\) 8.20138 + 0.127996i 0.0241929 + 0.000377570i
\(340\) −21.1734 36.6734i −0.0622747 0.107863i
\(341\) 200.162i 0.586986i
\(342\) 7.74866 248.188i 0.0226569 0.725695i
\(343\) 328.750 0.958454
\(344\) 793.109 457.902i 2.30555 1.33111i
\(345\) −203.762 121.921i −0.590614 0.353393i
\(346\) 275.351 476.922i 0.795812 1.37839i
\(347\) −96.4994 55.7140i −0.278096 0.160559i 0.354465 0.935069i \(-0.384663\pi\)
−0.632561 + 0.774510i \(0.717996\pi\)
\(348\) 238.383 + 428.187i 0.685010 + 1.23042i
\(349\) −310.131 537.162i −0.888627 1.53915i −0.841499 0.540258i \(-0.818327\pi\)
−0.0471279 0.998889i \(-0.515007\pi\)
\(350\) 135.659i 0.387598i
\(351\) 66.6613 + 42.7668i 0.189918 + 0.121843i
\(352\) 548.635 1.55862
\(353\) 488.067 281.786i 1.38263 0.798260i 0.390157 0.920748i \(-0.372421\pi\)
0.992470 + 0.122488i \(0.0390873\pi\)
\(354\) 46.5945 25.9404i 0.131623 0.0732780i
\(355\) 25.8415 44.7588i 0.0727930 0.126081i
\(356\) 250.675 + 144.727i 0.704144 + 0.406538i
\(357\) 21.2633 35.5366i 0.0595610 0.0995424i
\(358\) 298.964 + 517.822i 0.835096 + 1.44643i
\(359\) 415.128i 1.15635i 0.815915 + 0.578173i \(0.196234\pi\)
−0.815915 + 0.578173i \(0.803766\pi\)
\(360\) 211.928 + 395.049i 0.588688 + 1.09736i
\(361\) −306.480 −0.848974
\(362\) 98.1611 56.6733i 0.271163 0.156556i
\(363\) −3.02191 + 193.629i −0.00832482 + 0.533413i
\(364\) −106.091 + 183.756i −0.291460 + 0.504823i
\(365\) −200.917 115.999i −0.550457 0.317807i
\(366\) −862.205 13.4562i −2.35575 0.0367655i
\(367\) −313.940 543.761i −0.855423 1.48164i −0.876252 0.481853i \(-0.839964\pi\)
0.0208286 0.999783i \(-0.493370\pi\)
\(368\) 1535.88i 4.17358i
\(369\) 136.116 73.0205i 0.368877 0.197888i
\(370\) 373.153 1.00852
\(371\) −631.819 + 364.781i −1.70302 + 0.983237i
\(372\) 683.217 + 408.802i 1.83660 + 1.09893i
\(373\) −195.467 + 338.559i −0.524040 + 0.907665i 0.475568 + 0.879679i \(0.342243\pi\)
−0.999608 + 0.0279857i \(0.991091\pi\)
\(374\) 46.2198 + 26.6850i 0.123582 + 0.0713503i
\(375\) 16.3152 + 29.3055i 0.0435072 + 0.0781481i
\(376\) 469.373 + 812.979i 1.24833 + 2.16218i
\(377\) 48.1024i 0.127593i
\(378\) −395.569 + 616.579i −1.04648 + 1.63116i
\(379\) 52.4430 0.138372 0.0691860 0.997604i \(-0.477960\pi\)
0.0691860 + 0.997604i \(0.477960\pi\)
\(380\) −142.440 + 82.2376i −0.374841 + 0.216415i
\(381\) 506.042 281.727i 1.32819 0.739441i
\(382\) 539.189 933.904i 1.41149 2.44477i
\(383\) −96.0614 55.4610i −0.250813 0.144807i 0.369324 0.929301i \(-0.379589\pi\)
−0.620136 + 0.784494i \(0.712923\pi\)
\(384\) 121.563 203.164i 0.316571 0.529074i
\(385\) 60.9948 + 105.646i 0.158428 + 0.274405i
\(386\) 353.731i 0.916400i
\(387\) −369.818 11.5461i −0.955601 0.0298348i
\(388\) 952.290 2.45435
\(389\) −91.6114 + 52.8918i −0.235505 + 0.135969i −0.613109 0.789998i \(-0.710081\pi\)
0.377604 + 0.925967i \(0.376748\pi\)
\(390\) 1.14736 73.5170i 0.00294194 0.188505i
\(391\) −33.6464 + 58.2773i −0.0860521 + 0.149047i
\(392\) −71.8674 41.4926i −0.183335 0.105849i
\(393\) −697.096 10.8794i −1.77378 0.0276829i
\(394\) 242.419 + 419.881i 0.615276 + 1.06569i
\(395\) 180.053i 0.455829i
\(396\) −572.568 354.844i −1.44588 0.896072i
\(397\) 99.8892 0.251610 0.125805 0.992055i \(-0.459849\pi\)
0.125805 + 0.992055i \(0.459849\pi\)
\(398\) −441.475 + 254.885i −1.10923 + 0.640416i
\(399\) −138.025 82.5868i −0.345926 0.206984i
\(400\) 108.474 187.883i 0.271186 0.469708i
\(401\) −136.080 78.5658i −0.339352 0.195925i 0.320634 0.947203i \(-0.396104\pi\)
−0.659985 + 0.751279i \(0.729437\pi\)
\(402\) 457.177 + 821.187i 1.13726 + 2.04275i
\(403\) −39.0740 67.6782i −0.0969579 0.167936i
\(404\) 1355.24i 3.35455i
\(405\) 11.2986 180.769i 0.0278977 0.446343i
\(406\) 444.920 1.09586
\(407\) −290.597 + 167.776i −0.713996 + 0.412226i
\(408\) 111.004 61.7990i 0.272069 0.151468i
\(409\) −342.619 + 593.434i −0.837700 + 1.45094i 0.0541134 + 0.998535i \(0.482767\pi\)
−0.891813 + 0.452404i \(0.850567\pi\)
\(410\) −124.186 71.6990i −0.302894 0.174876i
\(411\) 274.218 458.292i 0.667197 1.11506i
\(412\) −856.116 1482.84i −2.07795 3.59912i
\(413\) 34.5445i 0.0836428i
\(414\) 627.065 1011.82i 1.51465 2.44400i
\(415\) −44.1607 −0.106411
\(416\) −185.502 + 107.100i −0.445919 + 0.257452i
\(417\) −1.50127 + 96.1942i −0.00360017 + 0.230681i
\(418\) 103.645 179.518i 0.247954 0.429469i
\(419\) −44.6836 25.7981i −0.106643 0.0615706i 0.445730 0.895168i \(-0.352944\pi\)
−0.552373 + 0.833597i \(0.686278\pi\)
\(420\) 485.176 + 7.57199i 1.15518 + 0.0180285i
\(421\) −7.37620 12.7760i −0.0175207 0.0303467i 0.857132 0.515097i \(-0.172244\pi\)
−0.874653 + 0.484750i \(0.838911\pi\)
\(422\) 591.229i 1.40102i
\(423\) 11.8353 379.083i 0.0279795 0.896177i
\(424\) −2238.20 −5.27876
\(425\) 8.23189 4.75268i 0.0193691 0.0111828i
\(426\) 222.332 + 133.032i 0.521905 + 0.312281i
\(427\) −279.287 + 483.740i −0.654069 + 1.13288i
\(428\) 850.685 + 491.143i 1.98758 + 1.14753i
\(429\) 32.1610 + 57.7680i 0.0749674 + 0.134657i
\(430\) 171.744 + 297.470i 0.399405 + 0.691790i
\(431\) 38.6810i 0.0897472i 0.998993 + 0.0448736i \(0.0142885\pi\)
−0.998993 + 0.0448736i \(0.985711\pi\)
\(432\) −1040.87 + 537.639i −2.40942 + 1.24454i
\(433\) −544.647 −1.25784 −0.628922 0.777468i \(-0.716504\pi\)
−0.628922 + 0.777468i \(0.716504\pi\)
\(434\) 625.985 361.413i 1.44236 0.832748i
\(435\) −96.1130 + 53.5087i −0.220949 + 0.123009i
\(436\) 13.0824 22.6593i 0.0300054 0.0519709i
\(437\) 226.349 + 130.683i 0.517962 + 0.299045i
\(438\) 597.163 998.020i 1.36339 2.27858i
\(439\) −125.709 217.735i −0.286353 0.495978i 0.686583 0.727051i \(-0.259110\pi\)
−0.972936 + 0.231073i \(0.925776\pi\)
\(440\) 374.248i 0.850563i
\(441\) 15.8494 + 29.5444i 0.0359397 + 0.0669942i
\(442\) −20.8369 −0.0471423
\(443\) 632.952 365.435i 1.42878 0.824909i 0.431760 0.901989i \(-0.357893\pi\)
0.997025 + 0.0770796i \(0.0245596\pi\)
\(444\) −20.8280 + 1334.55i −0.0469098 + 3.00575i
\(445\) −32.4862 + 56.2678i −0.0730028 + 0.126445i
\(446\) −667.407 385.328i −1.49643 0.863964i
\(447\) 278.706 + 4.34968i 0.623504 + 0.00973083i
\(448\) −360.489 624.385i −0.804662 1.39372i
\(449\) 94.7211i 0.210960i 0.994421 + 0.105480i \(0.0336379\pi\)
−0.994421 + 0.105480i \(0.966362\pi\)
\(450\) −148.170 + 79.4872i −0.329267 + 0.176638i
\(451\) 128.949 0.285917
\(452\) 23.5877 13.6184i 0.0521852 0.0301291i
\(453\) 584.963 + 350.012i 1.29131 + 0.772653i
\(454\) 275.190 476.642i 0.606144 1.04987i
\(455\) −41.2467 23.8138i −0.0906521 0.0523380i
\(456\) −240.028 431.141i −0.526377 0.945484i
\(457\) 204.206 + 353.695i 0.446840 + 0.773949i 0.998178 0.0603323i \(-0.0192160\pi\)
−0.551339 + 0.834282i \(0.685883\pi\)
\(458\) 101.448i 0.221502i
\(459\) −51.2727 2.40215i −0.111705 0.00523345i
\(460\) −788.481 −1.71409
\(461\) −511.735 + 295.450i −1.11005 + 0.640890i −0.938843 0.344344i \(-0.888101\pi\)
−0.171211 + 0.985234i \(0.554768\pi\)
\(462\) −534.322 + 297.471i −1.15654 + 0.643878i
\(463\) −400.967 + 694.496i −0.866020 + 1.49999i 1.04649e−5 1.00000i \(0.499997\pi\)
−0.866031 + 0.499991i \(0.833337\pi\)
\(464\) 616.198 + 355.762i 1.32801 + 0.766729i
\(465\) −91.7616 + 153.358i −0.197337 + 0.329803i
\(466\) −73.9856 128.147i −0.158767 0.274993i
\(467\) 20.6432i 0.0442039i 0.999756 + 0.0221019i \(0.00703584\pi\)
−0.999756 + 0.0221019i \(0.992964\pi\)
\(468\) 262.864 + 8.20688i 0.561676 + 0.0175361i
\(469\) 608.817 1.29812
\(470\) −304.922 + 176.047i −0.648771 + 0.374568i
\(471\) 0.0741920 4.75386i 0.000157520 0.0100931i
\(472\) 52.9889 91.7795i 0.112265 0.194448i
\(473\) −267.495 154.438i −0.565529 0.326508i
\(474\) 902.512 + 14.0852i 1.90403 + 0.0297156i
\(475\) −18.4595 31.9727i −0.0388620 0.0673110i
\(476\) 137.513i 0.288893i
\(477\) 768.625 + 476.349i 1.61137 + 0.998636i
\(478\) −237.041 −0.495902
\(479\) 435.378 251.366i 0.908931 0.524771i 0.0288439 0.999584i \(-0.490817\pi\)
0.880087 + 0.474812i \(0.157484\pi\)
\(480\) 420.347 + 251.514i 0.875723 + 0.523987i
\(481\) 65.5037 113.456i 0.136182 0.235875i
\(482\) −447.312 258.255i −0.928032 0.535800i
\(483\) −375.073 673.711i −0.776549 1.39485i
\(484\) 321.521 + 556.890i 0.664299 + 1.15060i
\(485\) 213.756i 0.440733i
\(486\) 905.218 + 70.7752i 1.86259 + 0.145628i
\(487\) 80.4336 0.165161 0.0825807 0.996584i \(-0.473684\pi\)
0.0825807 + 0.996584i \(0.473684\pi\)
\(488\) −1484.05 + 856.816i −3.04108 + 1.75577i
\(489\) −109.250 + 60.8227i −0.223416 + 0.124382i
\(490\) 15.5626 26.9551i 0.0317603 0.0550105i
\(491\) −417.972 241.316i −0.851267 0.491479i 0.00981129 0.999952i \(-0.496877\pi\)
−0.861078 + 0.508473i \(0.830210\pi\)
\(492\) 263.358 440.142i 0.535281 0.894597i
\(493\) 15.5873 + 26.9980i 0.0316173 + 0.0547627i
\(494\) 80.9307i 0.163827i
\(495\) 79.6501 128.521i 0.160909 0.259639i
\(496\) 1155.96 2.33056
\(497\) 145.346 83.9155i 0.292447 0.168844i
\(498\) 3.45462 221.355i 0.00693698 0.444488i
\(499\) 17.5059 30.3212i 0.0350820 0.0607638i −0.847951 0.530074i \(-0.822164\pi\)
0.883033 + 0.469310i \(0.155497\pi\)
\(500\) 96.4544 + 55.6880i 0.192909 + 0.111376i
\(501\) 27.7581 + 0.433212i 0.0554054 + 0.000864695i
\(502\) 348.390 + 603.429i 0.694004 + 1.20205i
\(503\) 211.016i 0.419514i −0.977754 0.209757i \(-0.932733\pi\)
0.977754 0.209757i \(-0.0672673\pi\)
\(504\) −45.4289 + 1455.08i −0.0901367 + 2.88706i
\(505\) 304.203 0.602382
\(506\) 860.595 496.865i 1.70078 0.981947i
\(507\) 412.914 + 247.067i 0.814427 + 0.487311i
\(508\) 961.608 1665.55i 1.89293 3.27865i
\(509\) −732.292 422.789i −1.43869 0.830627i −0.440930 0.897542i \(-0.645351\pi\)
−0.997759 + 0.0669144i \(0.978685\pi\)
\(510\) 23.1788 + 41.6341i 0.0454487 + 0.0816354i
\(511\) −376.687 652.440i −0.737156 1.27679i
\(512\) 697.860i 1.36301i
\(513\) −9.32998 + 199.144i −0.0181871 + 0.388194i
\(514\) −870.311 −1.69321
\(515\) 332.845 192.168i 0.646300 0.373142i
\(516\) −1073.46 + 597.627i −2.08036 + 1.15819i
\(517\) 158.308 274.197i 0.306204 0.530361i
\(518\) 1049.40 + 605.872i 2.02587 + 1.16964i
\(519\) −227.022 + 379.415i −0.437423 + 0.731050i
\(520\) −73.0575 126.539i −0.140495 0.243345i
\(521\) 260.960i 0.500883i −0.968132 0.250442i \(-0.919424\pi\)
0.968132 0.250442i \(-0.0805758\pi\)
\(522\) −260.693 485.951i −0.499412 0.930941i
\(523\) 553.330 1.05799 0.528996 0.848624i \(-0.322569\pi\)
0.528996 + 0.848624i \(0.322569\pi\)
\(524\) −2004.89 + 1157.53i −3.82613 + 2.20902i
\(525\) −1.69965 + 108.905i −0.00323742 + 0.207438i
\(526\) 20.1648 34.9265i 0.0383362 0.0664003i
\(527\) 43.8615 + 25.3234i 0.0832286 + 0.0480521i
\(528\) −977.877 15.2614i −1.85204 0.0289042i
\(529\) 361.983 + 626.973i 0.684278 + 1.18520i
\(530\) 839.475i 1.58392i
\(531\) −37.7302 + 20.2407i −0.0710551 + 0.0381182i
\(532\) −534.103 −1.00395
\(533\) −43.5996 + 25.1723i −0.0818005 + 0.0472275i
\(534\) −279.501 167.239i −0.523409 0.313181i
\(535\) −110.244 + 190.949i −0.206064 + 0.356914i
\(536\) 1617.53 + 933.884i 3.01779 + 1.74232i
\(537\) −233.516 419.444i −0.434853 0.781088i
\(538\) 109.219 + 189.174i 0.203010 + 0.351624i
\(539\) 27.9888i 0.0519273i
\(540\) −276.010 534.356i −0.511130 0.989549i
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) 212.276 122.558i 0.391654 0.226121i
\(543\) −79.5121 + 44.2665i −0.146431 + 0.0815222i
\(544\) 69.4102 120.222i 0.127592 0.220996i
\(545\) 5.08622 + 2.93653i 0.00933252 + 0.00538813i
\(546\) 122.593 204.886i 0.224529 0.375249i
\(547\) 303.604 + 525.858i 0.555035 + 0.961348i 0.997901 + 0.0647606i \(0.0206284\pi\)
−0.442866 + 0.896588i \(0.646038\pi\)
\(548\) 1773.42i 3.23616i
\(549\) 691.995 + 21.6048i 1.26046 + 0.0393529i
\(550\) −140.368 −0.255215
\(551\) 104.861 60.5412i 0.190309 0.109875i
\(552\) 36.9143 2365.28i 0.0668736 4.28494i
\(553\) 292.344 506.354i 0.528650 0.915649i
\(554\) 868.064 + 501.177i 1.56690 + 0.904651i
\(555\) −299.561 4.67515i −0.539749 0.00842369i
\(556\) 159.730 + 276.661i 0.287284 + 0.497591i
\(557\) 686.808i 1.23305i 0.787336 + 0.616524i \(0.211460\pi\)
−0.787336 + 0.616524i \(0.788540\pi\)
\(558\) −761.528 471.951i −1.36475 0.845791i
\(559\) 120.593 0.215729
\(560\) 610.116 352.251i 1.08949 0.629019i
\(561\) −36.7702 22.0014i −0.0655439 0.0392181i
\(562\) −343.934 + 595.712i −0.611983 + 1.05999i
\(563\) −208.976 120.652i −0.371182 0.214302i 0.302792 0.953057i \(-0.402081\pi\)
−0.673975 + 0.738754i \(0.735414\pi\)
\(564\) −612.600 1100.36i −1.08617 1.95099i
\(565\) 3.05685 + 5.29461i 0.00541035 + 0.00937099i
\(566\) 1728.55i 3.05397i
\(567\) 325.281 490.023i 0.573688 0.864238i
\(568\) 514.883 0.906484
\(569\) −666.084 + 384.564i −1.17062 + 0.675859i −0.953827 0.300358i \(-0.902894\pi\)
−0.216796 + 0.976217i \(0.569561\pi\)
\(570\) 161.707 90.0267i 0.283697 0.157942i
\(571\) −48.7253 + 84.3947i −0.0853333 + 0.147802i −0.905533 0.424275i \(-0.860529\pi\)
0.820200 + 0.572077i \(0.193862\pi\)
\(572\) 190.134 + 109.774i 0.332402 + 0.191913i
\(573\) −444.553 + 742.966i −0.775834 + 1.29663i
\(574\) −232.829 403.272i −0.405626 0.702565i
\(575\) 176.986i 0.307802i
\(576\) −470.745 + 759.581i −0.817265 + 1.31872i
\(577\) 277.283 0.480560 0.240280 0.970704i \(-0.422761\pi\)
0.240280 + 0.970704i \(0.422761\pi\)
\(578\) −923.493 + 533.179i −1.59774 + 0.922454i
\(579\) 4.43181 283.969i 0.00765425 0.490447i
\(580\) −182.639 + 316.340i −0.314895 + 0.545414i
\(581\) −124.191 71.7018i −0.213754 0.123411i
\(582\) −1071.45 16.7218i −1.84098 0.0287315i
\(583\) 377.443 + 653.750i 0.647415 + 1.12136i
\(584\) 2311.25i 3.95761i
\(585\) −1.84216 + 59.0038i −0.00314899 + 0.100861i
\(586\) −1071.52 −1.82854
\(587\) 405.017 233.836i 0.689977 0.398358i −0.113626 0.993524i \(-0.536247\pi\)
0.803603 + 0.595165i \(0.202913\pi\)
\(588\) 95.5345 + 57.1629i 0.162474 + 0.0972158i
\(589\) 98.3565 170.358i 0.166989 0.289233i
\(590\) 34.4235 + 19.8744i 0.0583449 + 0.0336855i
\(591\) −189.349 340.111i −0.320387 0.575483i
\(592\) 968.922 + 1678.22i 1.63669 + 2.83483i
\(593\) 254.411i 0.429023i −0.976721 0.214512i \(-0.931184\pi\)
0.976721 0.214512i \(-0.0688160\pi\)
\(594\) 637.981 + 409.300i 1.07404 + 0.689057i
\(595\) 30.8669 0.0518772
\(596\) 801.577 462.791i 1.34493 0.776495i
\(597\) 357.602 199.087i 0.598998 0.333478i
\(598\) −193.988 + 335.997i −0.324394 + 0.561867i
\(599\) 352.081 + 203.274i 0.587780 + 0.339355i 0.764219 0.644956i \(-0.223124\pi\)
−0.176439 + 0.984312i \(0.556458\pi\)
\(600\) −171.569 + 286.737i −0.285948 + 0.477895i
\(601\) −249.967 432.956i −0.415919 0.720393i 0.579605 0.814897i \(-0.303207\pi\)
−0.995524 + 0.0945042i \(0.969873\pi\)
\(602\) 1115.41i 1.85285i
\(603\) −356.726 664.963i −0.591585 1.10276i
\(604\) 2263.59 3.74766
\(605\) −125.002 + 72.1701i −0.206615 + 0.119289i
\(606\) −23.7973 + 1524.81i −0.0392695 + 2.51620i
\(607\) −29.9627 + 51.8970i −0.0493620 + 0.0854975i −0.889651 0.456642i \(-0.849052\pi\)
0.840289 + 0.542139i \(0.182385\pi\)
\(608\) −466.944 269.590i −0.767999 0.443405i
\(609\) −357.174 5.57430i −0.586493 0.00915321i
\(610\) −321.364 556.619i −0.526826 0.912490i
\(611\) 123.614i 0.202314i
\(612\) −150.195 + 80.5735i −0.245417 + 0.131656i
\(613\) −373.866 −0.609896 −0.304948 0.952369i \(-0.598639\pi\)
−0.304948 + 0.952369i \(0.598639\pi\)
\(614\) 766.071 442.291i 1.24767 0.720344i
\(615\) 98.7964 + 59.1147i 0.160645 + 0.0961214i
\(616\) −607.650 + 1052.48i −0.986444 + 1.70857i
\(617\) −320.088 184.803i −0.518782 0.299519i 0.217654 0.976026i \(-0.430159\pi\)
−0.736436 + 0.676507i \(0.763493\pi\)
\(618\) 937.202 + 1683.41i 1.51651 + 2.72397i
\(619\) −598.225 1036.16i −0.966438 1.67392i −0.705701 0.708510i \(-0.749368\pi\)
−0.260738 0.965410i \(-0.583966\pi\)
\(620\) 593.438i 0.957158i
\(621\) −516.074 + 804.413i −0.831037 + 1.29535i
\(622\) −1935.51 −3.11175
\(623\) −182.719 + 105.493i −0.293289 + 0.169331i
\(624\) 333.616 185.733i 0.534640 0.297649i
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) −1602.54 925.224i −2.55996 1.47799i
\(627\) −85.4535 + 142.816i −0.136289 + 0.227776i
\(628\) −7.89377 13.6724i −0.0125697 0.0217713i
\(629\) 84.9044i 0.134983i
\(630\) −545.752 17.0389i −0.866273 0.0270459i
\(631\) 628.525 0.996078 0.498039 0.867155i \(-0.334054\pi\)
0.498039 + 0.867155i \(0.334054\pi\)
\(632\) 1553.43 896.870i 2.45795 1.41910i
\(633\) −7.40738 + 474.629i −0.0117020 + 0.749808i
\(634\) 409.541 709.345i 0.645963 1.11884i
\(635\) 373.858 + 215.847i 0.588753 + 0.339917i
\(636\) 3002.32 + 46.8563i 4.72063 + 0.0736734i
\(637\) −5.46374 9.46347i −0.00857730 0.0148563i
\(638\) 460.364i 0.721573i
\(639\) −176.817 109.581i −0.276709 0.171489i
\(640\) 176.467 0.275730
\(641\) 824.417 475.977i 1.28614 0.742554i 0.308178 0.951329i \(-0.400281\pi\)
0.977964 + 0.208774i \(0.0669474\pi\)
\(642\) −948.506 567.537i −1.47742 0.884014i
\(643\) 35.7759 61.9656i 0.0556390 0.0963696i −0.836864 0.547410i \(-0.815614\pi\)
0.892503 + 0.451041i \(0.148947\pi\)
\(644\) −2217.41 1280.22i −3.44318 1.98792i
\(645\) −134.146 240.955i −0.207979 0.373574i
\(646\) −26.2252 45.4233i −0.0405962 0.0703147i
\(647\) 900.292i 1.39149i −0.718290 0.695744i \(-0.755075\pi\)
0.718290 0.695744i \(-0.244925\pi\)
\(648\) 1615.88 802.958i 2.49365 1.23913i
\(649\) −35.7436 −0.0550748
\(650\) 47.4608 27.4015i 0.0730166 0.0421562i
\(651\) −507.058 + 282.293i −0.778892 + 0.433630i
\(652\) −207.604 + 359.580i −0.318410 + 0.551503i
\(653\) −222.825 128.648i −0.341233 0.197011i 0.319584 0.947558i \(-0.396457\pi\)
−0.660817 + 0.750547i \(0.729790\pi\)
\(654\) −15.1172 + 25.2649i −0.0231150 + 0.0386314i
\(655\) −259.824 450.029i −0.396678 0.687066i
\(656\) 744.690i 1.13520i
\(657\) −491.897 + 793.711i −0.748701 + 1.20808i
\(658\) −1143.36 −1.73763
\(659\) 477.967 275.954i 0.725291 0.418747i −0.0914057 0.995814i \(-0.529136\pi\)
0.816697 + 0.577067i \(0.195803\pi\)
\(660\) 7.83482 502.017i 0.0118709 0.760632i
\(661\) 523.413 906.578i 0.791851 1.37153i −0.132969 0.991120i \(-0.542451\pi\)
0.924820 0.380405i \(-0.124216\pi\)
\(662\) −307.309 177.425i −0.464214 0.268014i
\(663\) 16.7275 + 0.261061i 0.0252300 + 0.000393757i
\(664\) −219.971 381.002i −0.331282 0.573798i
\(665\) 119.887i 0.180282i
\(666\) 46.8683 1501.18i 0.0703728 2.25402i
\(667\) 580.460 0.870254
\(668\) 79.8342 46.0923i 0.119512 0.0690004i
\(669\) 530.956 + 317.696i 0.793656 + 0.474883i
\(670\) −350.270 + 606.685i −0.522791 + 0.905500i
\(671\) 500.531 + 288.982i 0.745948 + 0.430673i
\(672\) 773.751 + 1389.82i 1.15142 + 2.06819i
\(673\) −118.875 205.898i −0.176635 0.305940i 0.764091 0.645108i \(-0.223188\pi\)
−0.940726 + 0.339168i \(0.889854\pi\)
\(674\) 1927.98i 2.86050i
\(675\) 119.944 61.9546i 0.177695 0.0917846i
\(676\) 1597.82 2.36364
\(677\) −145.591 + 84.0570i −0.215053 + 0.124161i −0.603658 0.797244i \(-0.706291\pi\)
0.388605 + 0.921405i \(0.372957\pi\)
\(678\) −26.7783 + 14.9082i −0.0394961 + 0.0219885i
\(679\) −347.066 + 601.136i −0.511143 + 0.885325i
\(680\) 82.0087 + 47.3477i 0.120601 + 0.0696290i
\(681\) −226.889 + 379.192i −0.333171 + 0.556817i
\(682\) −373.958 647.714i −0.548325 0.949727i
\(683\) 995.446i 1.45746i 0.684800 + 0.728731i \(0.259889\pi\)
−0.684800 + 0.728731i \(0.740111\pi\)
\(684\) 312.948 + 583.359i 0.457527 + 0.852864i
\(685\) 398.070 0.581123
\(686\) −1063.82 + 614.194i −1.55075 + 0.895327i
\(687\) 1.27102 81.4405i 0.00185010 0.118545i
\(688\) −891.896 + 1544.81i −1.29636 + 2.24536i
\(689\) −255.239 147.362i −0.370449 0.213879i
\(690\) 887.142 + 13.8453i 1.28571 + 0.0200657i
\(691\) 298.570 + 517.138i 0.432084 + 0.748391i 0.997053 0.0767211i \(-0.0244451\pi\)
−0.564969 + 0.825112i \(0.691112\pi\)
\(692\) 1468.19i 2.12167i
\(693\) 432.671 232.111i 0.624345 0.334936i
\(694\) 416.355 0.599936
\(695\) −62.1006 + 35.8538i −0.0893534 + 0.0515882i
\(696\) −940.407 562.691i −1.35116 0.808464i
\(697\) 16.3139 28.2564i 0.0234058 0.0405401i
\(698\) 2007.13 + 1158.82i 2.87555 + 1.66020i
\(699\) 57.7888 + 103.801i 0.0826736 + 0.148499i
\(700\) 180.836 + 313.218i 0.258338 + 0.447454i
\(701\) 413.729i 0.590199i 0.955467 + 0.295099i \(0.0953528\pi\)
−0.955467 + 0.295099i \(0.904647\pi\)
\(702\) −295.612 13.8496i −0.421100 0.0197287i
\(703\) 329.769 0.469089
\(704\) −646.058 + 373.002i −0.917696 + 0.529832i
\(705\) 246.992 137.507i 0.350343 0.195046i
\(706\) −1052.91 + 1823.69i −1.49137 + 2.58312i
\(707\) 855.497 + 493.921i 1.21004 + 0.698616i
\(708\) −73.0009 + 122.004i −0.103109 + 0.172322i
\(709\) 328.568 + 569.096i 0.463424 + 0.802674i 0.999129 0.0417311i \(-0.0132873\pi\)
−0.535705 + 0.844405i \(0.679954\pi\)
\(710\) 193.116i 0.271994i
\(711\) −724.345 22.6147i −1.01877 0.0318070i
\(712\) −647.277 −0.909096
\(713\) 816.684 471.513i 1.14542 0.661308i
\(714\) −2.41467 + 154.720i −0.00338189 + 0.216695i
\(715\) −24.6404 + 42.6784i −0.0344621 + 0.0596901i
\(716\) −1380.53 797.051i −1.92812 1.11320i
\(717\) 190.293 + 2.96984i 0.265401 + 0.00414203i
\(718\) −775.572 1343.33i −1.08018 1.87093i
\(719\) 217.226i 0.302122i −0.988524 0.151061i \(-0.951731\pi\)
0.988524 0.151061i \(-0.0482690\pi\)
\(720\) −742.223 459.987i −1.03086 0.638871i
\(721\) 1248.06 1.73101
\(722\) 991.751 572.588i 1.37362 0.793058i
\(723\) 355.858 + 212.927i 0.492197 + 0.294505i
\(724\) −151.093 + 261.701i −0.208692 + 0.361466i
\(725\) −71.0073 40.9961i −0.0979411 0.0565463i
\(726\) −351.973 632.218i −0.484812 0.870824i
\(727\) −304.437 527.300i −0.418757 0.725309i 0.577057 0.816704i \(-0.304201\pi\)
−0.995815 + 0.0913946i \(0.970868\pi\)
\(728\) 474.481i 0.651760i
\(729\) −725.807 68.1584i −0.995620 0.0934958i
\(730\) 866.874 1.18750
\(731\) −67.6840 + 39.0774i −0.0925910 + 0.0534574i
\(732\) 2008.65 1118.27i 2.74405 1.52769i
\(733\) 440.351 762.709i 0.600751 1.04053i −0.391957 0.919984i \(-0.628202\pi\)
0.992708 0.120548i \(-0.0384650\pi\)
\(734\) 2031.79 + 1173.05i 2.76810 + 1.59816i
\(735\) −12.8311 + 21.4441i −0.0174572 + 0.0291757i
\(736\) −1292.39 2238.49i −1.75597 3.04143i
\(737\) 629.950i 0.854749i
\(738\) −304.040 + 490.592i −0.411979 + 0.664758i
\(739\) −917.157 −1.24108 −0.620540 0.784175i \(-0.713086\pi\)
−0.620540 + 0.784175i \(0.713086\pi\)
\(740\) −861.556 + 497.419i −1.16426 + 0.672188i
\(741\) 1.01396 64.9698i 0.00136837 0.0876786i
\(742\) 1363.02 2360.82i 1.83695 3.18170i
\(743\) −956.492 552.231i −1.28734 0.743245i −0.309159 0.951010i \(-0.600048\pi\)
−0.978179 + 0.207765i \(0.933381\pi\)
\(744\) −1780.20 27.7830i −2.39274 0.0373427i
\(745\) 103.880 + 179.926i 0.139437 + 0.241511i
\(746\) 1460.74i 1.95810i
\(747\) −5.54662 + 177.657i −0.00742519 + 0.237827i
\(748\) −142.287 −0.190223
\(749\) −620.071 + 357.998i −0.827866 + 0.477968i
\(750\) −107.546 64.3498i −0.143394 0.0857998i
\(751\) −330.239 + 571.990i −0.439732 + 0.761638i −0.997669 0.0682453i \(-0.978260\pi\)
0.557936 + 0.829884i \(0.311593\pi\)
\(752\) −1583.51 914.241i −2.10573 1.21575i
\(753\) −272.121 488.787i −0.361383 0.649120i
\(754\) 89.8684 + 155.657i 0.119189 + 0.206441i
\(755\) 508.096i 0.672974i
\(756\) 91.4003 1950.89i 0.120900 2.58055i
\(757\) −353.728 −0.467276 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(758\) −169.702 + 97.9778i −0.223882 + 0.129258i
\(759\) −697.096 + 388.093i −0.918441 + 0.511321i
\(760\) 183.899 318.522i 0.241972 0.419108i
\(761\) 708.380 + 408.983i 0.930854 + 0.537429i 0.887081 0.461613i \(-0.152729\pi\)
0.0437722 + 0.999042i \(0.486062\pi\)
\(762\) −1111.18 + 1857.08i −1.45824 + 2.43711i
\(763\) 9.53584 + 16.5166i 0.0124978 + 0.0216469i
\(764\) 2875.00i 3.76309i
\(765\) −18.0859 33.7135i −0.0236417 0.0440700i
\(766\) 414.465 0.541078
\(767\) 12.0855 6.97756i 0.0157568 0.00909721i
\(768\) 4.78832 306.812i 0.00623479 0.399495i
\(769\) 500.408 866.732i 0.650725 1.12709i −0.332222 0.943201i \(-0.607798\pi\)
0.982947 0.183888i \(-0.0588684\pi\)
\(770\) −394.751 227.910i −0.512664 0.295987i
\(771\) 698.670 + 10.9039i 0.906187 + 0.0141426i
\(772\) −471.530 816.713i −0.610790 1.05792i
\(773\) 860.440i 1.11312i 0.830808 + 0.556559i \(0.187879\pi\)
−0.830808 + 0.556559i \(0.812121\pi\)
\(774\) 1218.28 653.558i 1.57401 0.844390i
\(775\) −133.206 −0.171879
\(776\) −1844.20 + 1064.75i −2.37655 + 1.37210i
\(777\) −834.850 499.531i −1.07445 0.642898i
\(778\) 197.633 342.310i 0.254027 0.439987i
\(779\) −109.748 63.3632i −0.140884 0.0813391i
\(780\) 95.3505 + 171.270i 0.122244 + 0.219577i
\(781\) −86.8283 150.391i −0.111176 0.192562i
\(782\) 251.442i 0.321538i
\(783\) 203.192 + 393.380i 0.259504 + 0.502401i
\(784\) 161.638 0.206171
\(785\) 3.06898 1.77187i 0.00390952 0.00225716i
\(786\) 2276.09 1267.16i 2.89579 1.61216i
\(787\) −463.491 + 802.789i −0.588933 + 1.02006i 0.405439 + 0.914122i \(0.367119\pi\)
−0.994372 + 0.105940i \(0.966215\pi\)
\(788\) −1119.42 646.297i −1.42058 0.820174i
\(789\) −16.6256 + 27.7858i −0.0210717 + 0.0352165i
\(790\) 336.387 + 582.640i 0.425807 + 0.737519i
\(791\) 19.8531i 0.0250987i
\(792\) 1505.58 + 47.0058i 1.90099 + 0.0593507i
\(793\) −225.651 −0.284553
\(794\) −323.236 + 186.620i −0.407098 + 0.235038i
\(795\) −10.5176 + 673.916i −0.0132297 + 0.847693i
\(796\) 679.534 1176.99i 0.853686 1.47863i
\(797\) −825.230 476.447i −1.03542 0.597800i −0.116888 0.993145i \(-0.537292\pi\)
−0.918533 + 0.395345i \(0.870625\pi\)
\(798\) 600.934 + 9.37859i 0.753050 + 0.0117526i
\(799\) −40.0564 69.3797i −0.0501332 0.0868332i
\(800\) 365.111i 0.456389i
\(801\) 222.283 + 137.758i 0.277507 + 0.171983i
\(802\) 587.129 0.732082
\(803\) −675.087 + 389.762i −0.840707 + 0.485382i
\(804\) −2150.21 1286.58i −2.67440 1.60022i
\(805\) 287.365 497.731i 0.356975 0.618299i
\(806\) 252.883 + 146.002i 0.313750 + 0.181144i
\(807\) −85.3094 153.234i −0.105712 0.189881i
\(808\) 1515.28 + 2624.55i 1.87535 + 3.24820i
\(809\) 1425.22i 1.76171i −0.473387 0.880855i \(-0.656969\pi\)
0.473387 0.880855i \(-0.343031\pi\)
\(810\) 301.164 + 606.066i 0.371807 + 0.748230i
\(811\) −473.774 −0.584185 −0.292093 0.956390i \(-0.594352\pi\)
−0.292093 + 0.956390i \(0.594352\pi\)
\(812\) −1027.26 + 593.087i −1.26509 + 0.730402i
\(813\) −171.947 + 95.7277i −0.211497 + 0.117746i
\(814\) 626.903 1085.83i 0.770151 1.33394i
\(815\) −80.7131 46.5997i −0.0990345 0.0571776i
\(816\) −127.060 + 212.351i −0.155711 + 0.260234i
\(817\) 151.777 + 262.885i 0.185773 + 0.321769i
\(818\) 2560.42i 3.13010i
\(819\) −100.983 + 162.943i −0.123300 + 0.198953i
\(820\) 382.305 0.466225
\(821\) −63.4905 + 36.6562i −0.0773331 + 0.0446483i −0.538168 0.842838i \(-0.680883\pi\)
0.460835 + 0.887486i \(0.347550\pi\)
\(822\) −31.1403 + 1995.32i −0.0378836 + 2.42740i
\(823\) −316.027 + 547.374i −0.383994 + 0.665096i −0.991629 0.129120i \(-0.958785\pi\)
0.607635 + 0.794216i \(0.292118\pi\)
\(824\) 3315.90 + 1914.44i 4.02416 + 2.32335i
\(825\) 112.685 + 1.75864i 0.136588 + 0.00213169i
\(826\) 64.5385 + 111.784i 0.0781338 + 0.135332i
\(827\) 226.153i 0.273462i 0.990608 + 0.136731i \(0.0436597\pi\)
−0.990608 + 0.136731i \(0.956340\pi\)
\(828\) −99.0338 + 3172.03i −0.119606 + 3.83095i
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) 142.901 82.5042i 0.172170 0.0994026i
\(831\) −690.588 413.212i −0.831032 0.497247i
\(832\) 145.629 252.236i 0.175034 0.303168i
\(833\) 6.13317 + 3.54099i 0.00736275 + 0.00425089i
\(834\) −174.859 314.084i −0.209663 0.376599i
\(835\) 10.3461 + 17.9200i 0.0123905 + 0.0214610i
\(836\) 552.642i 0.661055i
\(837\) 605.429 + 388.415i 0.723332 + 0.464057i
\(838\) 192.792 0.230061
\(839\) 511.329 295.216i 0.609450 0.351866i −0.163300 0.986576i \(-0.552214\pi\)
0.772750 + 0.634710i \(0.218881\pi\)
\(840\) −948.057 + 527.809i −1.12864 + 0.628344i
\(841\) −286.046 + 495.446i −0.340126 + 0.589115i
\(842\) 47.7379 + 27.5615i 0.0566959 + 0.0327334i
\(843\) 283.568 473.918i 0.336380 0.562180i
\(844\) 788.120 + 1365.06i 0.933791 + 1.61737i
\(845\) 358.655i 0.424444i
\(846\) 669.931 + 1248.80i 0.791881 + 1.47613i
\(847\) −468.718 −0.553386
\(848\) 3775.47 2179.77i 4.45220 2.57048i
\(849\) 21.6566 1387.65i 0.0255083 1.63445i
\(850\) −17.7586 + 30.7588i −0.0208925 + 0.0361868i
\(851\) 1369.09 + 790.444i 1.60880 + 0.928841i
\(852\) −690.666 10.7790i −0.810640 0.0126514i
\(853\) −693.749 1201.61i −0.813305 1.40869i −0.910538 0.413424i \(-0.864333\pi\)
0.0972332 0.995262i \(-0.469001\pi\)
\(854\) 2087.14i 2.44396i
\(855\) −130.944 + 70.2459i −0.153150 + 0.0821590i
\(856\) −2196.58 −2.56610
\(857\) −683.058 + 394.363i −0.797033 + 0.460167i −0.842433 0.538801i \(-0.818877\pi\)
0.0453994 + 0.998969i \(0.485544\pi\)
\(858\) −211.998 126.848i −0.247084 0.147842i
\(859\) −413.601 + 716.378i −0.481491 + 0.833968i −0.999774 0.0212416i \(-0.993238\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(860\) −793.065 457.876i −0.922169 0.532414i
\(861\) 181.859 + 326.657i 0.211218 + 0.379393i
\(862\) −72.2667 125.170i −0.0838361 0.145208i
\(863\) 1089.70i 1.26268i 0.775504 + 0.631342i \(0.217496\pi\)
−0.775504 + 0.631342i \(0.782504\pi\)
\(864\) 1064.63 1659.45i 1.23221 1.92066i
\(865\) −329.558 −0.380992
\(866\) 1762.45 1017.55i 2.03516 1.17500i
\(867\) 748.044 416.457i 0.862796 0.480342i
\(868\) −963.540 + 1668.90i −1.11007 + 1.92270i
\(869\) −523.930 302.491i −0.602912 0.348091i
\(870\) 211.047 352.716i 0.242583 0.405421i
\(871\) 122.974 + 212.996i 0.141187 + 0.244542i
\(872\) 58.5093i 0.0670979i
\(873\) 859.931 + 26.8479i 0.985029 + 0.0307536i
\(874\) −976.605 −1.11740
\(875\) −70.3064 + 40.5914i −0.0803502 + 0.0463902i
\(876\) −48.3856 + 3100.31i −0.0552347 + 3.53917i
\(877\) −213.875 + 370.443i −0.243872 + 0.422398i −0.961814 0.273705i \(-0.911751\pi\)
0.717942 + 0.696103i \(0.245084\pi\)
\(878\) 813.575 + 469.718i 0.926623 + 0.534986i
\(879\) 860.202 + 13.4249i 0.978614 + 0.0152729i
\(880\) −364.478 631.294i −0.414179 0.717379i
\(881\) 1113.87i 1.26432i −0.774837 0.632161i \(-0.782168\pi\)
0.774837 0.632161i \(-0.217832\pi\)
\(882\) −106.485 65.9932i −0.120731 0.0748222i
\(883\) −408.581 −0.462719 −0.231359 0.972868i \(-0.574317\pi\)
−0.231359 + 0.972868i \(0.574317\pi\)
\(884\) 48.1094 27.7760i 0.0544224 0.0314208i
\(885\) −27.3856 16.3861i −0.0309442 0.0185154i
\(886\) −1365.46 + 2365.05i −1.54116 + 2.66936i
\(887\) −755.098 435.956i −0.851294 0.491495i 0.00979311 0.999952i \(-0.496883\pi\)
−0.861087 + 0.508457i \(0.830216\pi\)
\(888\) −1451.82 2607.78i −1.63494 2.93669i
\(889\) 700.924 + 1214.04i 0.788441 + 1.36562i
\(890\) 242.773i 0.272778i
\(891\) −507.033 336.572i −0.569060 0.377746i
\(892\) 2054.60 2.30336
\(893\) −269.471 + 155.579i −0.301760 + 0.174221i
\(894\) −910.004 + 506.624i −1.01790 + 0.566693i
\(895\) 178.910 309.881i 0.199899 0.346236i
\(896\) 496.272 + 286.523i 0.553875 + 0.319780i
\(897\) 159.940 267.302i 0.178305 0.297995i
\(898\) −176.965 306.512i −0.197066 0.341328i
\(899\) 436.874i 0.485956i
\(900\) 236.145 381.038i 0.262384 0.423376i
\(901\) 191.008 0.211995
\(902\) −417.270 + 240.911i −0.462606 + 0.267085i
\(903\) 13.9748 895.436i 0.0154759 0.991623i
\(904\) −30.4533 + 52.7466i −0.0336872 + 0.0583480i
\(905\) −58.7427 33.9151i −0.0649091 0.0374753i
\(906\) −2546.82 39.7475i −2.81106 0.0438714i
\(907\) 843.097 + 1460.29i 0.929544 + 1.61002i 0.784085 + 0.620653i \(0.213133\pi\)
0.145459 + 0.989364i \(0.453534\pi\)
\(908\) 1467.33i 1.61600i
\(909\) 38.2081 1223.80i 0.0420332 1.34631i
\(910\) 177.963 0.195563
\(911\) −383.084 + 221.173i −0.420509 + 0.242781i −0.695295 0.718724i \(-0.744726\pi\)
0.274786 + 0.961505i \(0.411393\pi\)
\(912\) 824.773 + 493.502i 0.904356 + 0.541120i
\(913\) −74.1907 + 128.502i −0.0812603 + 0.140747i
\(914\) −1321.60 763.024i −1.44595 0.834819i
\(915\) 251.012 + 450.870i 0.274330 + 0.492755i
\(916\) −135.232 234.228i −0.147633 0.255708i
\(917\) 1687.46i 1.84020i
\(918\) 170.404 88.0182i 0.185625 0.0958804i
\(919\) −182.236 −0.198298 −0.0991489 0.995073i \(-0.531612\pi\)
−0.0991489 + 0.995073i \(0.531612\pi\)
\(920\) 1526.97 881.597i 1.65975 0.958258i
\(921\) −620.530 + 345.466i −0.673757 + 0.375099i
\(922\) 1103.96 1912.12i 1.19736 2.07388i
\(923\) 58.7162 + 33.8998i 0.0636145 + 0.0367279i
\(924\) 837.137 1399.08i 0.905992 1.51416i
\(925\) −111.653 193.389i −0.120706 0.209069i
\(926\) 2996.47i 3.23592i
\(927\) −731.279 1363.16i −0.788866 1.47050i
\(928\) −1197.45 −1.29035
\(929\) −1150.27 + 664.111i −1.23819 + 0.714867i −0.968723 0.248144i \(-0.920179\pi\)
−0.269463 + 0.963011i \(0.586846\pi\)
\(930\) 10.4205 667.694i 0.0112048 0.717951i
\(931\) 13.7532 23.8213i 0.0147725 0.0255868i
\(932\) 341.644 + 197.248i 0.366571 + 0.211640i
\(933\) 1553.79 + 24.2496i 1.66537 + 0.0259910i
\(934\) −38.5671 66.8003i −0.0412924 0.0715206i
\(935\) 31.9383i 0.0341587i
\(936\) −518.239 + 278.014i −0.553674 + 0.297024i
\(937\) −276.582 −0.295178 −0.147589 0.989049i \(-0.547151\pi\)
−0.147589 + 0.989049i \(0.547151\pi\)
\(938\) −1970.10 + 1137.44i −2.10032 + 1.21262i
\(939\) 1274.90 + 762.832i 1.35772 + 0.812388i
\(940\) 469.348 812.934i 0.499306 0.864823i
\(941\) 1083.50 + 625.557i 1.15143 + 0.664779i 0.949236 0.314566i \(-0.101859\pi\)
0.202196 + 0.979345i \(0.435192\pi\)
\(942\) 8.64142 + 15.5218i 0.00917348 + 0.0164775i
\(943\) −303.758 526.124i −0.322119 0.557926i
\(944\) 206.422i 0.218668i
\(945\) 437.907 + 20.5162i 0.463394 + 0.0217102i
\(946\) 1154.13 1.22001
\(947\) −935.323 + 540.009i −0.987670 + 0.570232i −0.904577 0.426310i \(-0.859813\pi\)
−0.0830930 + 0.996542i \(0.526480\pi\)
\(948\) −2102.55 + 1170.54i −2.21788 + 1.23475i
\(949\) 152.172 263.570i 0.160350 0.277734i
\(950\) 119.468 + 68.9746i 0.125755 + 0.0726048i
\(951\) −337.660 + 564.319i −0.355057 + 0.593396i
\(952\) 153.753 + 266.308i 0.161505 + 0.279735i
\(953\) 328.534i 0.344737i −0.985033 0.172369i \(-0.944858\pi\)
0.985033 0.172369i \(-0.0551420\pi\)
\(954\) −3377.18 105.439i −3.54002 0.110523i
\(955\) −645.336 −0.675745
\(956\) 547.294 315.980i 0.572483 0.330523i
\(957\) −5.76780 + 369.572i −0.00602696 + 0.386178i
\(958\) −939.239 + 1626.81i −0.980416 + 1.69813i
\(959\) 1119.47 + 646.328i 1.16733 + 0.673961i
\(960\) −665.987 10.3938i −0.693736 0.0108269i
\(961\) 125.623 + 217.585i 0.130721 + 0.226416i
\(962\) 489.515i 0.508851i
\(963\) 754.334 + 467.493i 0.783316 + 0.485454i
\(964\) 1377.04 1.42846
\(965\) 183.323 105.842i 0.189972 0.109681i
\(966\) 2472.39 + 1479.35i 2.55941 + 1.53142i
\(967\) 298.854 517.631i 0.309053 0.535296i −0.669102 0.743170i \(-0.733321\pi\)
0.978155 + 0.207875i \(0.0666546\pi\)
\(968\) −1245.31 718.981i −1.28648 0.742749i
\(969\) 20.4840 + 36.7936i 0.0211393 + 0.0379707i
\(970\) −399.354 691.701i −0.411705 0.713094i
\(971\) 711.597i 0.732850i −0.930448 0.366425i \(-0.880582\pi\)
0.930448 0.366425i \(-0.119418\pi\)
\(972\) −2184.36 + 1043.26i −2.24729 + 1.07332i
\(973\) −232.857 −0.239319
\(974\) −260.279 + 150.272i −0.267226 + 0.154283i
\(975\) −38.4440 + 21.4028i −0.0394298 + 0.0219516i
\(976\) 1668.90 2890.61i 1.70994 2.96169i
\(977\) 292.262 + 168.738i 0.299142 + 0.172710i 0.642058 0.766656i \(-0.278081\pi\)
−0.342915 + 0.939366i \(0.611414\pi\)
\(978\) 239.895 400.928i 0.245291 0.409947i
\(979\) 109.155 + 189.062i 0.111496 + 0.193117i
\(980\) 82.9807i 0.0846742i
\(981\) 12.4524 20.0928i 0.0126936 0.0204820i
\(982\) 1803.38 1.83643
\(983\) −274.504 + 158.485i −0.279252 + 0.161226i −0.633085 0.774083i \(-0.718211\pi\)
0.353833 + 0.935309i \(0.384878\pi\)
\(984\) −17.8983 + 1146.84i −0.0181894 + 1.16549i
\(985\) 145.071 251.270i 0.147280 0.255097i
\(986\) −100.879 58.2427i −0.102312 0.0590697i
\(987\) 917.869 + 14.3249i 0.929959 + 0.0145136i
\(988\) −107.882 186.857i −0.109193 0.189127i
\(989\) 1455.21i 1.47140i
\(990\) −17.6304 + 564.696i −0.0178084 + 0.570400i
\(991\) 685.922 0.692152 0.346076 0.938207i \(-0.387514\pi\)
0.346076 + 0.938207i \(0.387514\pi\)
\(992\) −1684.76 + 972.700i −1.69835 + 0.980544i
\(993\) 244.480 + 146.284i 0.246203 + 0.147315i
\(994\) −313.554 + 543.092i −0.315447 + 0.546370i
\(995\) 264.192 + 152.532i 0.265520 + 0.153298i
\(996\) 287.094 + 515.682i 0.288247 + 0.517753i
\(997\) −293.035 507.551i −0.293917 0.509078i 0.680816 0.732455i \(-0.261625\pi\)
−0.974732 + 0.223376i \(0.928292\pi\)
\(998\) 130.823i 0.131086i
\(999\) −56.4330 + 1204.53i −0.0564895 + 1.20574i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.i.a.41.1 yes 16
3.2 odd 2 135.3.i.a.71.8 16
4.3 odd 2 720.3.bs.c.401.2 16
5.2 odd 4 225.3.i.b.149.1 32
5.3 odd 4 225.3.i.b.149.16 32
5.4 even 2 225.3.j.b.176.8 16
9.2 odd 6 inner 45.3.i.a.11.1 16
9.4 even 3 405.3.c.a.161.1 16
9.5 odd 6 405.3.c.a.161.16 16
9.7 even 3 135.3.i.a.116.8 16
12.11 even 2 2160.3.bs.c.881.1 16
15.2 even 4 675.3.i.c.449.16 32
15.8 even 4 675.3.i.c.449.1 32
15.14 odd 2 675.3.j.b.476.1 16
36.7 odd 6 2160.3.bs.c.1601.1 16
36.11 even 6 720.3.bs.c.641.2 16
45.2 even 12 225.3.i.b.74.16 32
45.7 odd 12 675.3.i.c.224.1 32
45.29 odd 6 225.3.j.b.101.8 16
45.34 even 6 675.3.j.b.251.1 16
45.38 even 12 225.3.i.b.74.1 32
45.43 odd 12 675.3.i.c.224.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 9.2 odd 6 inner
45.3.i.a.41.1 yes 16 1.1 even 1 trivial
135.3.i.a.71.8 16 3.2 odd 2
135.3.i.a.116.8 16 9.7 even 3
225.3.i.b.74.1 32 45.38 even 12
225.3.i.b.74.16 32 45.2 even 12
225.3.i.b.149.1 32 5.2 odd 4
225.3.i.b.149.16 32 5.3 odd 4
225.3.j.b.101.8 16 45.29 odd 6
225.3.j.b.176.8 16 5.4 even 2
405.3.c.a.161.1 16 9.4 even 3
405.3.c.a.161.16 16 9.5 odd 6
675.3.i.c.224.1 32 45.7 odd 12
675.3.i.c.224.16 32 45.43 odd 12
675.3.i.c.449.1 32 15.8 even 4
675.3.i.c.449.16 32 15.2 even 4
675.3.j.b.251.1 16 45.34 even 6
675.3.j.b.476.1 16 15.14 odd 2
720.3.bs.c.401.2 16 4.3 odd 2
720.3.bs.c.641.2 16 36.11 even 6
2160.3.bs.c.881.1 16 12.11 even 2
2160.3.bs.c.1601.1 16 36.7 odd 6