Properties

Label 675.3.j.b.476.1
Level $675$
Weight $3$
Character 675.476
Analytic conductor $18.392$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(251,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,16,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 476.1
Root \(3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 675.476
Dual form 675.3.j.b.251.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.23594 + 1.86827i) q^{2} +(4.98088 - 8.62715i) q^{4} +(-3.63061 - 6.28840i) q^{7} +22.2764i q^{8} +(-6.50668 + 3.75663i) q^{11} +(1.46668 - 2.54036i) q^{13} +(23.4969 + 13.5659i) q^{14} +(-21.6949 - 37.5766i) q^{16} -1.90107i q^{17} -7.38378 q^{19} +(14.0368 - 24.3125i) q^{22} +(-30.6549 - 17.6986i) q^{23} +10.9606i q^{26} -72.3346 q^{28} +(14.2015 - 8.19922i) q^{29} +(-13.3206 + 23.0720i) q^{31} +(63.2391 + 36.5111i) q^{32} +(3.55172 + 6.15176i) q^{34} +44.6613 q^{37} +(23.8935 - 13.7949i) q^{38} +(-14.8634 - 8.58140i) q^{41} +(20.5554 + 35.6031i) q^{43} +74.8454i q^{44} +132.263 q^{46} +(36.4950 - 21.0704i) q^{47} +(-1.86263 + 3.22616i) q^{49} +(-14.6107 - 25.3065i) q^{52} +100.474i q^{53} +(140.083 - 80.8770i) q^{56} +(-30.6367 + 53.0644i) q^{58} +(4.12003 + 2.37870i) q^{59} +(38.4629 + 66.6197i) q^{61} -99.5461i q^{62} -99.2915 q^{64} +(-41.9225 + 72.6119i) q^{67} +(-16.4008 - 9.46903i) q^{68} +23.1134i q^{71} +103.753 q^{73} +(-144.521 + 83.4395i) q^{74} +(-36.7778 + 63.7010i) q^{76} +(47.2464 + 27.2777i) q^{77} +(-40.2610 - 69.7340i) q^{79} +64.1296 q^{82} +(-17.1034 + 9.87463i) q^{83} +(-133.032 - 76.8063i) q^{86} +(-83.6843 - 144.945i) q^{88} -29.0566i q^{89} -21.2997 q^{91} +(-305.377 + 176.310i) q^{92} +(-78.7306 + 136.365i) q^{94} +(-47.7972 - 82.7872i) q^{97} -13.9196i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} - 2 q^{7} + 18 q^{11} + 10 q^{13} + 54 q^{14} - 32 q^{16} - 52 q^{19} + 24 q^{22} - 54 q^{23} - 32 q^{28} + 54 q^{29} + 32 q^{31} + 216 q^{32} + 54 q^{34} - 44 q^{37} + 252 q^{38} - 144 q^{41}+ \cdots + 142 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.23594 + 1.86827i −1.61797 + 0.934136i −0.630528 + 0.776167i \(0.717161\pi\)
−0.987444 + 0.157969i \(0.949505\pi\)
\(3\) 0 0
\(4\) 4.98088 8.62715i 1.24522 2.15679i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.63061 6.28840i −0.518658 0.898342i −0.999765 0.0216804i \(-0.993098\pi\)
0.481107 0.876662i \(-0.340235\pi\)
\(8\) 22.2764i 2.78455i
\(9\) 0 0
\(10\) 0 0
\(11\) −6.50668 + 3.75663i −0.591516 + 0.341512i −0.765697 0.643202i \(-0.777606\pi\)
0.174181 + 0.984714i \(0.444272\pi\)
\(12\) 0 0
\(13\) 1.46668 2.54036i 0.112821 0.195412i −0.804085 0.594514i \(-0.797345\pi\)
0.916907 + 0.399102i \(0.130678\pi\)
\(14\) 23.4969 + 13.5659i 1.67835 + 0.968995i
\(15\) 0 0
\(16\) −21.6949 37.5766i −1.35593 2.34854i
\(17\) 1.90107i 0.111828i −0.998436 0.0559139i \(-0.982193\pi\)
0.998436 0.0559139i \(-0.0178072\pi\)
\(18\) 0 0
\(19\) −7.38378 −0.388620 −0.194310 0.980940i \(-0.562247\pi\)
−0.194310 + 0.980940i \(0.562247\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 14.0368 24.3125i 0.638037 1.10511i
\(23\) −30.6549 17.6986i −1.33282 0.769506i −0.347091 0.937831i \(-0.612831\pi\)
−0.985731 + 0.168326i \(0.946164\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.9606i 0.421562i
\(27\) 0 0
\(28\) −72.3346 −2.58338
\(29\) 14.2015 8.19922i 0.489705 0.282732i −0.234747 0.972057i \(-0.575426\pi\)
0.724452 + 0.689325i \(0.242093\pi\)
\(30\) 0 0
\(31\) −13.3206 + 23.0720i −0.429697 + 0.744257i −0.996846 0.0793581i \(-0.974713\pi\)
0.567149 + 0.823615i \(0.308046\pi\)
\(32\) 63.2391 + 36.5111i 1.97622 + 1.14097i
\(33\) 0 0
\(34\) 3.55172 + 6.15176i 0.104462 + 0.180934i
\(35\) 0 0
\(36\) 0 0
\(37\) 44.6613 1.20706 0.603531 0.797340i \(-0.293760\pi\)
0.603531 + 0.797340i \(0.293760\pi\)
\(38\) 23.8935 13.7949i 0.628776 0.363024i
\(39\) 0 0
\(40\) 0 0
\(41\) −14.8634 8.58140i −0.362522 0.209302i 0.307664 0.951495i \(-0.400453\pi\)
−0.670187 + 0.742193i \(0.733786\pi\)
\(42\) 0 0
\(43\) 20.5554 + 35.6031i 0.478033 + 0.827978i 0.999683 0.0251818i \(-0.00801646\pi\)
−0.521650 + 0.853160i \(0.674683\pi\)
\(44\) 74.8454i 1.70103i
\(45\) 0 0
\(46\) 132.263 2.87529
\(47\) 36.4950 21.0704i 0.776490 0.448307i −0.0586949 0.998276i \(-0.518694\pi\)
0.835185 + 0.549969i \(0.185361\pi\)
\(48\) 0 0
\(49\) −1.86263 + 3.22616i −0.0380128 + 0.0658401i
\(50\) 0 0
\(51\) 0 0
\(52\) −14.6107 25.3065i −0.280975 0.486663i
\(53\) 100.474i 1.89573i 0.318671 + 0.947865i \(0.396764\pi\)
−0.318671 + 0.947865i \(0.603236\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 140.083 80.8770i 2.50148 1.44423i
\(57\) 0 0
\(58\) −30.6367 + 53.0644i −0.528220 + 0.914903i
\(59\) 4.12003 + 2.37870i 0.0698310 + 0.0403169i 0.534509 0.845163i \(-0.320497\pi\)
−0.464678 + 0.885480i \(0.653830\pi\)
\(60\) 0 0
\(61\) 38.4629 + 66.6197i 0.630539 + 1.09213i 0.987442 + 0.157985i \(0.0504996\pi\)
−0.356902 + 0.934142i \(0.616167\pi\)
\(62\) 99.5461i 1.60558i
\(63\) 0 0
\(64\) −99.2915 −1.55143
\(65\) 0 0
\(66\) 0 0
\(67\) −41.9225 + 72.6119i −0.625709 + 1.08376i 0.362694 + 0.931908i \(0.381857\pi\)
−0.988403 + 0.151852i \(0.951476\pi\)
\(68\) −16.4008 9.46903i −0.241189 0.139250i
\(69\) 0 0
\(70\) 0 0
\(71\) 23.1134i 0.325540i 0.986664 + 0.162770i \(0.0520429\pi\)
−0.986664 + 0.162770i \(0.947957\pi\)
\(72\) 0 0
\(73\) 103.753 1.42127 0.710637 0.703559i \(-0.248407\pi\)
0.710637 + 0.703559i \(0.248407\pi\)
\(74\) −144.521 + 83.4395i −1.95299 + 1.12756i
\(75\) 0 0
\(76\) −36.7778 + 63.7010i −0.483918 + 0.838171i
\(77\) 47.2464 + 27.2777i 0.613589 + 0.354256i
\(78\) 0 0
\(79\) −40.2610 69.7340i −0.509633 0.882709i −0.999938 0.0111586i \(-0.996448\pi\)
0.490305 0.871551i \(-0.336885\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 64.1296 0.782068
\(83\) −17.1034 + 9.87463i −0.206065 + 0.118971i −0.599481 0.800389i \(-0.704626\pi\)
0.393417 + 0.919360i \(0.371293\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −133.032 76.8063i −1.54689 0.893097i
\(87\) 0 0
\(88\) −83.6843 144.945i −0.950958 1.64711i
\(89\) 29.0566i 0.326478i −0.986587 0.163239i \(-0.947806\pi\)
0.986587 0.163239i \(-0.0521942\pi\)
\(90\) 0 0
\(91\) −21.2997 −0.234063
\(92\) −305.377 + 176.310i −3.31932 + 1.91641i
\(93\) 0 0
\(94\) −78.7306 + 136.365i −0.837559 + 1.45070i
\(95\) 0 0
\(96\) 0 0
\(97\) −47.7972 82.7872i −0.492755 0.853476i 0.507210 0.861822i \(-0.330677\pi\)
−0.999965 + 0.00834602i \(0.997343\pi\)
\(98\) 13.9196i 0.142036i
\(99\) 0 0
\(100\) 0 0
\(101\) −117.817 + 68.0219i −1.16651 + 0.673484i −0.952855 0.303426i \(-0.901870\pi\)
−0.213653 + 0.976910i \(0.568536\pi\)
\(102\) 0 0
\(103\) −85.9401 + 148.853i −0.834370 + 1.44517i 0.0601721 + 0.998188i \(0.480835\pi\)
−0.894542 + 0.446983i \(0.852498\pi\)
\(104\) 56.5901 + 32.6723i 0.544135 + 0.314157i
\(105\) 0 0
\(106\) −187.712 325.127i −1.77087 3.06724i
\(107\) 98.6056i 0.921548i 0.887518 + 0.460774i \(0.152428\pi\)
−0.887518 + 0.460774i \(0.847572\pi\)
\(108\) 0 0
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −157.531 + 272.852i −1.40653 + 2.43618i
\(113\) 2.36782 + 1.36706i 0.0209542 + 0.0120979i 0.510440 0.859913i \(-0.329482\pi\)
−0.489486 + 0.872011i \(0.662816\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 163.357i 1.40825i
\(117\) 0 0
\(118\) −17.7762 −0.150646
\(119\) −11.9547 + 6.90205i −0.100460 + 0.0580004i
\(120\) 0 0
\(121\) −32.2754 + 55.9027i −0.266739 + 0.462006i
\(122\) −248.928 143.718i −2.04039 1.17802i
\(123\) 0 0
\(124\) 132.697 + 229.838i 1.07014 + 1.85353i
\(125\) 0 0
\(126\) 0 0
\(127\) −193.060 −1.52015 −0.760077 0.649833i \(-0.774839\pi\)
−0.760077 + 0.649833i \(0.774839\pi\)
\(128\) 68.3455 39.4593i 0.533950 0.308276i
\(129\) 0 0
\(130\) 0 0
\(131\) 201.259 + 116.197i 1.53633 + 0.886999i 0.999049 + 0.0435937i \(0.0138807\pi\)
0.537278 + 0.843405i \(0.319453\pi\)
\(132\) 0 0
\(133\) 26.8076 + 46.4322i 0.201561 + 0.349114i
\(134\) 313.291i 2.33799i
\(135\) 0 0
\(136\) 42.3491 0.311390
\(137\) 154.172 89.0111i 1.12534 0.649716i 0.182582 0.983191i \(-0.441555\pi\)
0.942759 + 0.333475i \(0.108221\pi\)
\(138\) 0 0
\(139\) −16.0343 + 27.7722i −0.115355 + 0.199800i −0.917922 0.396762i \(-0.870134\pi\)
0.802567 + 0.596562i \(0.203467\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −43.1820 74.7935i −0.304099 0.526715i
\(143\) 22.0390i 0.154119i
\(144\) 0 0
\(145\) 0 0
\(146\) −335.739 + 193.839i −2.29958 + 1.32766i
\(147\) 0 0
\(148\) 222.453 385.299i 1.50306 2.60337i
\(149\) −80.4653 46.4567i −0.540036 0.311790i 0.205058 0.978750i \(-0.434262\pi\)
−0.745093 + 0.666960i \(0.767595\pi\)
\(150\) 0 0
\(151\) 113.614 + 196.785i 0.752408 + 1.30321i 0.946653 + 0.322256i \(0.104441\pi\)
−0.194245 + 0.980953i \(0.562226\pi\)
\(152\) 164.484i 1.08213i
\(153\) 0 0
\(154\) −203.849 −1.32369
\(155\) 0 0
\(156\) 0 0
\(157\) −0.792406 + 1.37249i −0.00504717 + 0.00874196i −0.868538 0.495623i \(-0.834940\pi\)
0.863491 + 0.504365i \(0.168273\pi\)
\(158\) 260.564 + 150.437i 1.64914 + 0.952133i
\(159\) 0 0
\(160\) 0 0
\(161\) 257.027i 1.59644i
\(162\) 0 0
\(163\) 41.6801 0.255706 0.127853 0.991793i \(-0.459191\pi\)
0.127853 + 0.991793i \(0.459191\pi\)
\(164\) −148.066 + 85.4859i −0.902841 + 0.521256i
\(165\) 0 0
\(166\) 36.8970 63.9075i 0.222271 0.384985i
\(167\) 8.01405 + 4.62692i 0.0479884 + 0.0277061i 0.523802 0.851840i \(-0.324513\pi\)
−0.475814 + 0.879546i \(0.657846\pi\)
\(168\) 0 0
\(169\) 80.1977 + 138.907i 0.474543 + 0.821932i
\(170\) 0 0
\(171\) 0 0
\(172\) 409.537 2.38103
\(173\) −127.637 + 73.6913i −0.737787 + 0.425962i −0.821264 0.570548i \(-0.806731\pi\)
0.0834771 + 0.996510i \(0.473397\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 282.323 + 162.999i 1.60411 + 0.926133i
\(177\) 0 0
\(178\) 54.2856 + 94.0254i 0.304975 + 0.528233i
\(179\) 160.022i 0.893977i 0.894540 + 0.446988i \(0.147504\pi\)
−0.894540 + 0.446988i \(0.852496\pi\)
\(180\) 0 0
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) 68.9246 39.7937i 0.378707 0.218646i
\(183\) 0 0
\(184\) 394.262 682.882i 2.14273 3.71132i
\(185\) 0 0
\(186\) 0 0
\(187\) 7.14163 + 12.3697i 0.0381905 + 0.0661480i
\(188\) 419.797i 2.23296i
\(189\) 0 0
\(190\) 0 0
\(191\) 249.938 144.302i 1.30857 0.755506i 0.326716 0.945122i \(-0.394058\pi\)
0.981858 + 0.189617i \(0.0607245\pi\)
\(192\) 0 0
\(193\) −47.3339 + 81.9847i −0.245253 + 0.424791i −0.962203 0.272334i \(-0.912205\pi\)
0.716949 + 0.697125i \(0.245538\pi\)
\(194\) 309.338 + 178.596i 1.59453 + 0.920600i
\(195\) 0 0
\(196\) 18.5551 + 32.1383i 0.0946686 + 0.163971i
\(197\) 129.755i 0.658657i −0.944215 0.329329i \(-0.893178\pi\)
0.944215 0.329329i \(-0.106822\pi\)
\(198\) 0 0
\(199\) 136.428 0.685570 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 254.167 440.230i 1.25825 2.17936i
\(203\) −103.120 59.5363i −0.507980 0.293282i
\(204\) 0 0
\(205\) 0 0
\(206\) 642.238i 3.11766i
\(207\) 0 0
\(208\) −127.278 −0.611911
\(209\) 48.0439 27.7382i 0.229875 0.132718i
\(210\) 0 0
\(211\) −79.1144 + 137.030i −0.374950 + 0.649432i −0.990320 0.138806i \(-0.955673\pi\)
0.615370 + 0.788239i \(0.289007\pi\)
\(212\) 866.802 + 500.448i 4.08869 + 2.36060i
\(213\) 0 0
\(214\) −184.222 319.082i −0.860851 1.49104i
\(215\) 0 0
\(216\) 0 0
\(217\) 193.448 0.891463
\(218\) −8.49925 + 4.90704i −0.0389874 + 0.0225094i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.82941 2.78826i −0.0218525 0.0126166i
\(222\) 0 0
\(223\) −103.124 178.616i −0.462440 0.800969i 0.536642 0.843810i \(-0.319693\pi\)
−0.999082 + 0.0428406i \(0.986359\pi\)
\(224\) 530.230i 2.36710i
\(225\) 0 0
\(226\) −10.2162 −0.0452044
\(227\) −127.562 + 73.6481i −0.561948 + 0.324441i −0.753927 0.656958i \(-0.771843\pi\)
0.191979 + 0.981399i \(0.438510\pi\)
\(228\) 0 0
\(229\) 13.5751 23.5127i 0.0592798 0.102676i −0.834863 0.550458i \(-0.814453\pi\)
0.894142 + 0.447783i \(0.147786\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 182.649 + 316.358i 0.787281 + 1.36361i
\(233\) 39.6011i 0.169962i 0.996383 + 0.0849808i \(0.0270829\pi\)
−0.996383 + 0.0849808i \(0.972917\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 41.0428 23.6960i 0.173910 0.100407i
\(237\) 0 0
\(238\) 25.7898 44.6693i 0.108361 0.187686i
\(239\) −54.9394 31.7193i −0.229872 0.132717i 0.380641 0.924723i \(-0.375703\pi\)
−0.610513 + 0.792006i \(0.709037\pi\)
\(240\) 0 0
\(241\) 69.1161 + 119.713i 0.286789 + 0.496733i 0.973041 0.230630i \(-0.0740789\pi\)
−0.686253 + 0.727363i \(0.740746\pi\)
\(242\) 241.197i 0.996683i
\(243\) 0 0
\(244\) 766.317 3.14064
\(245\) 0 0
\(246\) 0 0
\(247\) −10.8296 + 18.7575i −0.0438446 + 0.0759411i
\(248\) −513.961 296.735i −2.07242 1.19651i
\(249\) 0 0
\(250\) 0 0
\(251\) 186.477i 0.742936i 0.928446 + 0.371468i \(0.121145\pi\)
−0.928446 + 0.371468i \(0.878855\pi\)
\(252\) 0 0
\(253\) 265.949 1.05118
\(254\) 624.730 360.688i 2.45957 1.42003i
\(255\) 0 0
\(256\) 51.1416 88.5798i 0.199772 0.346015i
\(257\) 201.713 + 116.459i 0.784877 + 0.453149i 0.838156 0.545431i \(-0.183634\pi\)
−0.0532790 + 0.998580i \(0.516967\pi\)
\(258\) 0 0
\(259\) −162.148 280.848i −0.626053 1.08435i
\(260\) 0 0
\(261\) 0 0
\(262\) −868.350 −3.31431
\(263\) −9.34728 + 5.39665i −0.0355410 + 0.0205196i −0.517665 0.855583i \(-0.673199\pi\)
0.482124 + 0.876103i \(0.339865\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −173.496 100.168i −0.652240 0.376571i
\(267\) 0 0
\(268\) 417.622 + 723.343i 1.55829 + 2.69904i
\(269\) 58.4601i 0.217324i 0.994079 + 0.108662i \(0.0346566\pi\)
−0.994079 + 0.108662i \(0.965343\pi\)
\(270\) 0 0
\(271\) −65.5995 −0.242065 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(272\) −71.4360 + 41.2436i −0.262632 + 0.151631i
\(273\) 0 0
\(274\) −332.594 + 576.069i −1.21385 + 2.10244i
\(275\) 0 0
\(276\) 0 0
\(277\) 134.128 + 232.317i 0.484218 + 0.838690i 0.999836 0.0181286i \(-0.00577084\pi\)
−0.515618 + 0.856819i \(0.672438\pi\)
\(278\) 119.826i 0.431028i
\(279\) 0 0
\(280\) 0 0
\(281\) −159.428 + 92.0461i −0.567361 + 0.327566i −0.756095 0.654462i \(-0.772895\pi\)
0.188734 + 0.982028i \(0.439562\pi\)
\(282\) 0 0
\(283\) −231.303 + 400.628i −0.817324 + 1.41565i 0.0903234 + 0.995912i \(0.471210\pi\)
−0.907647 + 0.419734i \(0.862123\pi\)
\(284\) 199.402 + 115.125i 0.702121 + 0.405370i
\(285\) 0 0
\(286\) −41.1750 71.3171i −0.143968 0.249361i
\(287\) 124.623i 0.434226i
\(288\) 0 0
\(289\) 285.386 0.987495
\(290\) 0 0
\(291\) 0 0
\(292\) 516.782 895.093i 1.76980 3.06539i
\(293\) 248.349 + 143.384i 0.847608 + 0.489367i 0.859843 0.510559i \(-0.170561\pi\)
−0.0122351 + 0.999925i \(0.503895\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 994.894i 3.36113i
\(297\) 0 0
\(298\) 347.175 1.16502
\(299\) −89.9217 + 51.9163i −0.300741 + 0.173633i
\(300\) 0 0
\(301\) 149.257 258.521i 0.495872 0.858875i
\(302\) −735.294 424.522i −2.43475 1.40570i
\(303\) 0 0
\(304\) 160.190 + 277.458i 0.526942 + 0.912690i
\(305\) 0 0
\(306\) 0 0
\(307\) 236.738 0.771133 0.385567 0.922680i \(-0.374006\pi\)
0.385567 + 0.922680i \(0.374006\pi\)
\(308\) 470.658 271.734i 1.52811 0.882254i
\(309\) 0 0
\(310\) 0 0
\(311\) −448.597 258.997i −1.44243 0.832789i −0.444421 0.895818i \(-0.646591\pi\)
−0.998012 + 0.0630292i \(0.979924\pi\)
\(312\) 0 0
\(313\) −247.615 428.882i −0.791102 1.37023i −0.925285 0.379272i \(-0.876174\pi\)
0.134183 0.990957i \(-0.457159\pi\)
\(314\) 5.92172i 0.0188590i
\(315\) 0 0
\(316\) −802.141 −2.53842
\(317\) −189.840 + 109.604i −0.598864 + 0.345754i −0.768595 0.639736i \(-0.779044\pi\)
0.169731 + 0.985491i \(0.445710\pi\)
\(318\) 0 0
\(319\) −61.6029 + 106.699i −0.193112 + 0.334481i
\(320\) 0 0
\(321\) 0 0
\(322\) −480.197 831.725i −1.49129 2.58300i
\(323\) 14.0371i 0.0434586i
\(324\) 0 0
\(325\) 0 0
\(326\) −134.874 + 77.8697i −0.413725 + 0.238864i
\(327\) 0 0
\(328\) 191.163 331.104i 0.582813 1.00946i
\(329\) −264.998 152.997i −0.805466 0.465036i
\(330\) 0 0
\(331\) 47.4838 + 82.2443i 0.143455 + 0.248472i 0.928796 0.370592i \(-0.120845\pi\)
−0.785340 + 0.619064i \(0.787512\pi\)
\(332\) 196.738i 0.592583i
\(333\) 0 0
\(334\) −34.5774 −0.103525
\(335\) 0 0
\(336\) 0 0
\(337\) −257.989 + 446.850i −0.765547 + 1.32597i 0.174411 + 0.984673i \(0.444198\pi\)
−0.939957 + 0.341293i \(0.889135\pi\)
\(338\) −519.031 299.662i −1.53559 0.886575i
\(339\) 0 0
\(340\) 0 0
\(341\) 200.162i 0.586986i
\(342\) 0 0
\(343\) −328.750 −0.958454
\(344\) −793.109 + 457.902i −2.30555 + 1.33111i
\(345\) 0 0
\(346\) 275.351 476.922i 0.795812 1.37839i
\(347\) −96.4994 55.7140i −0.278096 0.160559i 0.354465 0.935069i \(-0.384663\pi\)
−0.632561 + 0.774510i \(0.717996\pi\)
\(348\) 0 0
\(349\) −310.131 537.162i −0.888627 1.53915i −0.841499 0.540258i \(-0.818327\pi\)
−0.0471279 0.998889i \(-0.515007\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −548.635 −1.55862
\(353\) 488.067 281.786i 1.38263 0.798260i 0.390157 0.920748i \(-0.372421\pi\)
0.992470 + 0.122488i \(0.0390873\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −250.675 144.727i −0.704144 0.406538i
\(357\) 0 0
\(358\) −298.964 517.822i −0.835096 1.44643i
\(359\) 415.128i 1.15635i −0.815915 0.578173i \(-0.803766\pi\)
0.815915 0.578173i \(-0.196234\pi\)
\(360\) 0 0
\(361\) −306.480 −0.848974
\(362\) 98.1611 56.6733i 0.271163 0.156556i
\(363\) 0 0
\(364\) −106.091 + 183.756i −0.291460 + 0.504823i
\(365\) 0 0
\(366\) 0 0
\(367\) 313.940 + 543.761i 0.855423 + 1.48164i 0.876252 + 0.481853i \(0.160036\pi\)
−0.0208286 + 0.999783i \(0.506630\pi\)
\(368\) 1535.88i 4.17358i
\(369\) 0 0
\(370\) 0 0
\(371\) 631.819 364.781i 1.70302 0.983237i
\(372\) 0 0
\(373\) 195.467 338.559i 0.524040 0.907665i −0.475568 0.879679i \(-0.657757\pi\)
0.999608 0.0279857i \(-0.00890929\pi\)
\(374\) −46.2198 26.6850i −0.123582 0.0713503i
\(375\) 0 0
\(376\) 469.373 + 812.979i 1.24833 + 2.16218i
\(377\) 48.1024i 0.127593i
\(378\) 0 0
\(379\) 52.4430 0.138372 0.0691860 0.997604i \(-0.477960\pi\)
0.0691860 + 0.997604i \(0.477960\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −539.189 + 933.904i −1.41149 + 2.44477i
\(383\) −96.0614 55.4610i −0.250813 0.144807i 0.369324 0.929301i \(-0.379589\pi\)
−0.620136 + 0.784494i \(0.712923\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 353.731i 0.916400i
\(387\) 0 0
\(388\) −952.290 −2.45435
\(389\) 91.6114 52.8918i 0.235505 0.135969i −0.377604 0.925967i \(-0.623252\pi\)
0.613109 + 0.789998i \(0.289919\pi\)
\(390\) 0 0
\(391\) −33.6464 + 58.2773i −0.0860521 + 0.149047i
\(392\) −71.8674 41.4926i −0.183335 0.105849i
\(393\) 0 0
\(394\) 242.419 + 419.881i 0.615276 + 1.06569i
\(395\) 0 0
\(396\) 0 0
\(397\) −99.8892 −0.251610 −0.125805 0.992055i \(-0.540151\pi\)
−0.125805 + 0.992055i \(0.540151\pi\)
\(398\) −441.475 + 254.885i −1.10923 + 0.640416i
\(399\) 0 0
\(400\) 0 0
\(401\) 136.080 + 78.5658i 0.339352 + 0.195925i 0.659985 0.751279i \(-0.270563\pi\)
−0.320634 + 0.947203i \(0.603896\pi\)
\(402\) 0 0
\(403\) 39.0740 + 67.6782i 0.0969579 + 0.167936i
\(404\) 1355.24i 3.35455i
\(405\) 0 0
\(406\) 444.920 1.09586
\(407\) −290.597 + 167.776i −0.713996 + 0.412226i
\(408\) 0 0
\(409\) −342.619 + 593.434i −0.837700 + 1.45094i 0.0541134 + 0.998535i \(0.482767\pi\)
−0.891813 + 0.452404i \(0.850567\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 856.116 + 1482.84i 2.07795 + 3.59912i
\(413\) 34.5445i 0.0836428i
\(414\) 0 0
\(415\) 0 0
\(416\) 185.502 107.100i 0.445919 0.257452i
\(417\) 0 0
\(418\) −103.645 + 179.518i −0.247954 + 0.429469i
\(419\) 44.6836 + 25.7981i 0.106643 + 0.0615706i 0.552373 0.833597i \(-0.313722\pi\)
−0.445730 + 0.895168i \(0.647056\pi\)
\(420\) 0 0
\(421\) −7.37620 12.7760i −0.0175207 0.0303467i 0.857132 0.515097i \(-0.172244\pi\)
−0.874653 + 0.484750i \(0.838911\pi\)
\(422\) 591.229i 1.40102i
\(423\) 0 0
\(424\) −2238.20 −5.27876
\(425\) 0 0
\(426\) 0 0
\(427\) 279.287 483.740i 0.654069 1.13288i
\(428\) 850.685 + 491.143i 1.98758 + 1.14753i
\(429\) 0 0
\(430\) 0 0
\(431\) 38.6810i 0.0897472i −0.998993 0.0448736i \(-0.985711\pi\)
0.998993 0.0448736i \(-0.0142885\pi\)
\(432\) 0 0
\(433\) 544.647 1.25784 0.628922 0.777468i \(-0.283496\pi\)
0.628922 + 0.777468i \(0.283496\pi\)
\(434\) −625.985 + 361.413i −1.44236 + 0.832748i
\(435\) 0 0
\(436\) 13.0824 22.6593i 0.0300054 0.0519709i
\(437\) 226.349 + 130.683i 0.517962 + 0.299045i
\(438\) 0 0
\(439\) −125.709 217.735i −0.286353 0.495978i 0.686583 0.727051i \(-0.259110\pi\)
−0.972936 + 0.231073i \(0.925776\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 20.8369 0.0471423
\(443\) 632.952 365.435i 1.42878 0.824909i 0.431760 0.901989i \(-0.357893\pi\)
0.997025 + 0.0770796i \(0.0245596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 667.407 + 385.328i 1.49643 + 0.863964i
\(447\) 0 0
\(448\) 360.489 + 624.385i 0.804662 + 1.39372i
\(449\) 94.7211i 0.210960i −0.994421 0.105480i \(-0.966362\pi\)
0.994421 0.105480i \(-0.0336379\pi\)
\(450\) 0 0
\(451\) 128.949 0.285917
\(452\) 23.5877 13.6184i 0.0521852 0.0301291i
\(453\) 0 0
\(454\) 275.190 476.642i 0.606144 1.04987i
\(455\) 0 0
\(456\) 0 0
\(457\) −204.206 353.695i −0.446840 0.773949i 0.551339 0.834282i \(-0.314117\pi\)
−0.998178 + 0.0603323i \(0.980784\pi\)
\(458\) 101.448i 0.221502i
\(459\) 0 0
\(460\) 0 0
\(461\) 511.735 295.450i 1.11005 0.640890i 0.171211 0.985234i \(-0.445232\pi\)
0.938843 + 0.344344i \(0.111899\pi\)
\(462\) 0 0
\(463\) 400.967 694.496i 0.866020 1.49999i −1.04649e−5 1.00000i \(-0.500003\pi\)
0.866031 0.499991i \(-0.166663\pi\)
\(464\) −616.198 355.762i −1.32801 0.766729i
\(465\) 0 0
\(466\) −73.9856 128.147i −0.158767 0.274993i
\(467\) 20.6432i 0.0442039i 0.999756 + 0.0221019i \(0.00703584\pi\)
−0.999756 + 0.0221019i \(0.992964\pi\)
\(468\) 0 0
\(469\) 608.817 1.29812
\(470\) 0 0
\(471\) 0 0
\(472\) −52.9889 + 91.7795i −0.112265 + 0.194448i
\(473\) −267.495 154.438i −0.565529 0.326508i
\(474\) 0 0
\(475\) 0 0
\(476\) 137.513i 0.288893i
\(477\) 0 0
\(478\) 237.041 0.495902
\(479\) −435.378 + 251.366i −0.908931 + 0.524771i −0.880087 0.474812i \(-0.842516\pi\)
−0.0288439 + 0.999584i \(0.509183\pi\)
\(480\) 0 0
\(481\) 65.5037 113.456i 0.136182 0.235875i
\(482\) −447.312 258.255i −0.928032 0.535800i
\(483\) 0 0
\(484\) 321.521 + 556.890i 0.664299 + 1.15060i
\(485\) 0 0
\(486\) 0 0
\(487\) −80.4336 −0.165161 −0.0825807 0.996584i \(-0.526316\pi\)
−0.0825807 + 0.996584i \(0.526316\pi\)
\(488\) −1484.05 + 856.816i −3.04108 + 1.75577i
\(489\) 0 0
\(490\) 0 0
\(491\) 417.972 + 241.316i 0.851267 + 0.491479i 0.861078 0.508473i \(-0.169790\pi\)
−0.00981129 + 0.999952i \(0.503123\pi\)
\(492\) 0 0
\(493\) −15.5873 26.9980i −0.0316173 0.0547627i
\(494\) 80.9307i 0.163827i
\(495\) 0 0
\(496\) 1155.96 2.33056
\(497\) 145.346 83.9155i 0.292447 0.168844i
\(498\) 0 0
\(499\) 17.5059 30.3212i 0.0350820 0.0607638i −0.847951 0.530074i \(-0.822164\pi\)
0.883033 + 0.469310i \(0.155497\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −348.390 603.429i −0.694004 1.20205i
\(503\) 211.016i 0.419514i −0.977754 0.209757i \(-0.932733\pi\)
0.977754 0.209757i \(-0.0672673\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −860.595 + 496.865i −1.70078 + 0.981947i
\(507\) 0 0
\(508\) −961.608 + 1665.55i −1.89293 + 3.27865i
\(509\) 732.292 + 422.789i 1.43869 + 0.830627i 0.997759 0.0669144i \(-0.0213154\pi\)
0.440930 + 0.897542i \(0.354649\pi\)
\(510\) 0 0
\(511\) −376.687 652.440i −0.737156 1.27679i
\(512\) 697.860i 1.36301i
\(513\) 0 0
\(514\) −870.311 −1.69321
\(515\) 0 0
\(516\) 0 0
\(517\) −158.308 + 274.197i −0.306204 + 0.530361i
\(518\) 1049.40 + 605.872i 2.02587 + 1.16964i
\(519\) 0 0
\(520\) 0 0
\(521\) 260.960i 0.500883i 0.968132 + 0.250442i \(0.0805758\pi\)
−0.968132 + 0.250442i \(0.919424\pi\)
\(522\) 0 0
\(523\) −553.330 −1.05799 −0.528996 0.848624i \(-0.677431\pi\)
−0.528996 + 0.848624i \(0.677431\pi\)
\(524\) 2004.89 1157.53i 3.82613 2.20902i
\(525\) 0 0
\(526\) 20.1648 34.9265i 0.0383362 0.0664003i
\(527\) 43.8615 + 25.3234i 0.0832286 + 0.0480521i
\(528\) 0 0
\(529\) 361.983 + 626.973i 0.684278 + 1.18520i
\(530\) 0 0
\(531\) 0 0
\(532\) 534.103 1.00395
\(533\) −43.5996 + 25.1723i −0.0818005 + 0.0472275i
\(534\) 0 0
\(535\) 0 0
\(536\) −1617.53 933.884i −3.01779 1.74232i
\(537\) 0 0
\(538\) −109.219 189.174i −0.203010 0.351624i
\(539\) 27.9888i 0.0519273i
\(540\) 0 0
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) 212.276 122.558i 0.391654 0.226121i
\(543\) 0 0
\(544\) 69.4102 120.222i 0.127592 0.220996i
\(545\) 0 0
\(546\) 0 0
\(547\) −303.604 525.858i −0.555035 0.961348i −0.997901 0.0647606i \(-0.979372\pi\)
0.442866 0.896588i \(-0.353962\pi\)
\(548\) 1773.42i 3.23616i
\(549\) 0 0
\(550\) 0 0
\(551\) −104.861 + 60.5412i −0.190309 + 0.109875i
\(552\) 0 0
\(553\) −292.344 + 506.354i −0.528650 + 0.915649i
\(554\) −868.064 501.177i −1.56690 0.904651i
\(555\) 0 0
\(556\) 159.730 + 276.661i 0.287284 + 0.497591i
\(557\) 686.808i 1.23305i 0.787336 + 0.616524i \(0.211460\pi\)
−0.787336 + 0.616524i \(0.788540\pi\)
\(558\) 0 0
\(559\) 120.593 0.215729
\(560\) 0 0
\(561\) 0 0
\(562\) 343.934 595.712i 0.611983 1.05999i
\(563\) −208.976 120.652i −0.371182 0.214302i 0.302792 0.953057i \(-0.402081\pi\)
−0.673975 + 0.738754i \(0.735414\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1728.55i 3.05397i
\(567\) 0 0
\(568\) −514.883 −0.906484
\(569\) 666.084 384.564i 1.17062 0.675859i 0.216796 0.976217i \(-0.430439\pi\)
0.953827 + 0.300358i \(0.0971061\pi\)
\(570\) 0 0
\(571\) −48.7253 + 84.3947i −0.0853333 + 0.147802i −0.905533 0.424275i \(-0.860529\pi\)
0.820200 + 0.572077i \(0.193862\pi\)
\(572\) 190.134 + 109.774i 0.332402 + 0.191913i
\(573\) 0 0
\(574\) −232.829 403.272i −0.405626 0.702565i
\(575\) 0 0
\(576\) 0 0
\(577\) −277.283 −0.480560 −0.240280 0.970704i \(-0.577239\pi\)
−0.240280 + 0.970704i \(0.577239\pi\)
\(578\) −923.493 + 533.179i −1.59774 + 0.922454i
\(579\) 0 0
\(580\) 0 0
\(581\) 124.191 + 71.7018i 0.213754 + 0.123411i
\(582\) 0 0
\(583\) −377.443 653.750i −0.647415 1.12136i
\(584\) 2311.25i 3.95761i
\(585\) 0 0
\(586\) −1071.52 −1.82854
\(587\) 405.017 233.836i 0.689977 0.398358i −0.113626 0.993524i \(-0.536247\pi\)
0.803603 + 0.595165i \(0.202913\pi\)
\(588\) 0 0
\(589\) 98.3565 170.358i 0.166989 0.289233i
\(590\) 0 0
\(591\) 0 0
\(592\) −968.922 1678.22i −1.63669 2.83483i
\(593\) 254.411i 0.429023i −0.976721 0.214512i \(-0.931184\pi\)
0.976721 0.214512i \(-0.0688160\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −801.577 + 462.791i −1.34493 + 0.776495i
\(597\) 0 0
\(598\) 193.988 335.997i 0.324394 0.561867i
\(599\) −352.081 203.274i −0.587780 0.339355i 0.176439 0.984312i \(-0.443542\pi\)
−0.764219 + 0.644956i \(0.776876\pi\)
\(600\) 0 0
\(601\) −249.967 432.956i −0.415919 0.720393i 0.579605 0.814897i \(-0.303207\pi\)
−0.995524 + 0.0945042i \(0.969873\pi\)
\(602\) 1115.41i 1.85285i
\(603\) 0 0
\(604\) 2263.59 3.74766
\(605\) 0 0
\(606\) 0 0
\(607\) 29.9627 51.8970i 0.0493620 0.0854975i −0.840289 0.542139i \(-0.817615\pi\)
0.889651 + 0.456642i \(0.150948\pi\)
\(608\) −466.944 269.590i −0.767999 0.443405i
\(609\) 0 0
\(610\) 0 0
\(611\) 123.614i 0.202314i
\(612\) 0 0
\(613\) 373.866 0.609896 0.304948 0.952369i \(-0.401361\pi\)
0.304948 + 0.952369i \(0.401361\pi\)
\(614\) −766.071 + 442.291i −1.24767 + 0.720344i
\(615\) 0 0
\(616\) −607.650 + 1052.48i −0.986444 + 1.70857i
\(617\) −320.088 184.803i −0.518782 0.299519i 0.217654 0.976026i \(-0.430159\pi\)
−0.736436 + 0.676507i \(0.763493\pi\)
\(618\) 0 0
\(619\) −598.225 1036.16i −0.966438 1.67392i −0.705701 0.708510i \(-0.749368\pi\)
−0.260738 0.965410i \(-0.583966\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1935.51 3.11175
\(623\) −182.719 + 105.493i −0.293289 + 0.169331i
\(624\) 0 0
\(625\) 0 0
\(626\) 1602.54 + 925.224i 2.55996 + 1.47799i
\(627\) 0 0
\(628\) 7.89377 + 13.6724i 0.0125697 + 0.0217713i
\(629\) 84.9044i 0.134983i
\(630\) 0 0
\(631\) 628.525 0.996078 0.498039 0.867155i \(-0.334054\pi\)
0.498039 + 0.867155i \(0.334054\pi\)
\(632\) 1553.43 896.870i 2.45795 1.41910i
\(633\) 0 0
\(634\) 409.541 709.345i 0.645963 1.11884i
\(635\) 0 0
\(636\) 0 0
\(637\) 5.46374 + 9.46347i 0.00857730 + 0.0148563i
\(638\) 460.364i 0.721573i
\(639\) 0 0
\(640\) 0 0
\(641\) −824.417 + 475.977i −1.28614 + 0.742554i −0.977964 0.208774i \(-0.933053\pi\)
−0.308178 + 0.951329i \(0.599719\pi\)
\(642\) 0 0
\(643\) −35.7759 + 61.9656i −0.0556390 + 0.0963696i −0.892503 0.451041i \(-0.851053\pi\)
0.836864 + 0.547410i \(0.184386\pi\)
\(644\) 2217.41 + 1280.22i 3.44318 + 1.98792i
\(645\) 0 0
\(646\) −26.2252 45.4233i −0.0405962 0.0703147i
\(647\) 900.292i 1.39149i −0.718290 0.695744i \(-0.755075\pi\)
0.718290 0.695744i \(-0.244925\pi\)
\(648\) 0 0
\(649\) −35.7436 −0.0550748
\(650\) 0 0
\(651\) 0 0
\(652\) 207.604 359.580i 0.318410 0.551503i
\(653\) −222.825 128.648i −0.341233 0.197011i 0.319584 0.947558i \(-0.396457\pi\)
−0.660817 + 0.750547i \(0.729790\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 744.690i 1.13520i
\(657\) 0 0
\(658\) 1143.36 1.73763
\(659\) −477.967 + 275.954i −0.725291 + 0.418747i −0.816697 0.577067i \(-0.804197\pi\)
0.0914057 + 0.995814i \(0.470864\pi\)
\(660\) 0 0
\(661\) 523.413 906.578i 0.791851 1.37153i −0.132969 0.991120i \(-0.542451\pi\)
0.924820 0.380405i \(-0.124216\pi\)
\(662\) −307.309 177.425i −0.464214 0.268014i
\(663\) 0 0
\(664\) −219.971 381.002i −0.331282 0.573798i
\(665\) 0 0
\(666\) 0 0
\(667\) −580.460 −0.870254
\(668\) 79.8342 46.0923i 0.119512 0.0690004i
\(669\) 0 0
\(670\) 0 0
\(671\) −500.531 288.982i −0.745948 0.430673i
\(672\) 0 0
\(673\) 118.875 + 205.898i 0.176635 + 0.305940i 0.940726 0.339168i \(-0.110146\pi\)
−0.764091 + 0.645108i \(0.776812\pi\)
\(674\) 1927.98i 2.86050i
\(675\) 0 0
\(676\) 1597.82 2.36364
\(677\) −145.591 + 84.0570i −0.215053 + 0.124161i −0.603658 0.797244i \(-0.706291\pi\)
0.388605 + 0.921405i \(0.372957\pi\)
\(678\) 0 0
\(679\) −347.066 + 601.136i −0.511143 + 0.885325i
\(680\) 0 0
\(681\) 0 0
\(682\) 373.958 + 647.714i 0.548325 + 0.949727i
\(683\) 995.446i 1.45746i 0.684800 + 0.728731i \(0.259889\pi\)
−0.684800 + 0.728731i \(0.740111\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1063.82 614.194i 1.55075 0.895327i
\(687\) 0 0
\(688\) 891.896 1544.81i 1.29636 2.24536i
\(689\) 255.239 + 147.362i 0.370449 + 0.213879i
\(690\) 0 0
\(691\) 298.570 + 517.138i 0.432084 + 0.748391i 0.997053 0.0767211i \(-0.0244451\pi\)
−0.564969 + 0.825112i \(0.691112\pi\)
\(692\) 1468.19i 2.12167i
\(693\) 0 0
\(694\) 416.355 0.599936
\(695\) 0 0
\(696\) 0 0
\(697\) −16.3139 + 28.2564i −0.0234058 + 0.0405401i
\(698\) 2007.13 + 1158.82i 2.87555 + 1.66020i
\(699\) 0 0
\(700\) 0 0
\(701\) 413.729i 0.590199i −0.955467 0.295099i \(-0.904647\pi\)
0.955467 0.295099i \(-0.0953528\pi\)
\(702\) 0 0
\(703\) −329.769 −0.469089
\(704\) 646.058 373.002i 0.917696 0.529832i
\(705\) 0 0
\(706\) −1052.91 + 1823.69i −1.49137 + 2.58312i
\(707\) 855.497 + 493.921i 1.21004 + 0.698616i
\(708\) 0 0
\(709\) 328.568 + 569.096i 0.463424 + 0.802674i 0.999129 0.0417311i \(-0.0132873\pi\)
−0.535705 + 0.844405i \(0.679954\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 647.277 0.909096
\(713\) 816.684 471.513i 1.14542 0.661308i
\(714\) 0 0
\(715\) 0 0
\(716\) 1380.53 + 797.051i 1.92812 + 1.11320i
\(717\) 0 0
\(718\) 775.572 + 1343.33i 1.08018 + 1.87093i
\(719\) 217.226i 0.302122i 0.988524 + 0.151061i \(0.0482690\pi\)
−0.988524 + 0.151061i \(0.951731\pi\)
\(720\) 0 0
\(721\) 1248.06 1.73101
\(722\) 991.751 572.588i 1.37362 0.793058i
\(723\) 0 0
\(724\) −151.093 + 261.701i −0.208692 + 0.361466i
\(725\) 0 0
\(726\) 0 0
\(727\) 304.437 + 527.300i 0.418757 + 0.725309i 0.995815 0.0913946i \(-0.0291325\pi\)
−0.577057 + 0.816704i \(0.695799\pi\)
\(728\) 474.481i 0.651760i
\(729\) 0 0
\(730\) 0 0
\(731\) 67.6840 39.0774i 0.0925910 0.0534574i
\(732\) 0 0
\(733\) −440.351 + 762.709i −0.600751 + 1.04053i 0.391957 + 0.919984i \(0.371798\pi\)
−0.992708 + 0.120548i \(0.961535\pi\)
\(734\) −2031.79 1173.05i −2.76810 1.59816i
\(735\) 0 0
\(736\) −1292.39 2238.49i −1.75597 3.04143i
\(737\) 629.950i 0.854749i
\(738\) 0 0
\(739\) −917.157 −1.24108 −0.620540 0.784175i \(-0.713086\pi\)
−0.620540 + 0.784175i \(0.713086\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1363.02 + 2360.82i −1.83695 + 3.18170i
\(743\) −956.492 552.231i −1.28734 0.743245i −0.309159 0.951010i \(-0.600048\pi\)
−0.978179 + 0.207765i \(0.933381\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1460.74i 1.95810i
\(747\) 0 0
\(748\) 142.287 0.190223
\(749\) 620.071 357.998i 0.827866 0.477968i
\(750\) 0 0
\(751\) −330.239 + 571.990i −0.439732 + 0.761638i −0.997669 0.0682453i \(-0.978260\pi\)
0.557936 + 0.829884i \(0.311593\pi\)
\(752\) −1583.51 914.241i −2.10573 1.21575i
\(753\) 0 0
\(754\) 89.8684 + 155.657i 0.119189 + 0.206441i
\(755\) 0 0
\(756\) 0 0
\(757\) 353.728 0.467276 0.233638 0.972324i \(-0.424937\pi\)
0.233638 + 0.972324i \(0.424937\pi\)
\(758\) −169.702 + 97.9778i −0.223882 + 0.129258i
\(759\) 0 0
\(760\) 0 0
\(761\) −708.380 408.983i −0.930854 0.537429i −0.0437722 0.999042i \(-0.513938\pi\)
−0.887081 + 0.461613i \(0.847271\pi\)
\(762\) 0 0
\(763\) −9.53584 16.5166i −0.0124978 0.0216469i
\(764\) 2875.00i 3.76309i
\(765\) 0 0
\(766\) 414.465 0.541078
\(767\) 12.0855 6.97756i 0.0157568 0.00909721i
\(768\) 0 0
\(769\) 500.408 866.732i 0.650725 1.12709i −0.332222 0.943201i \(-0.607798\pi\)
0.982947 0.183888i \(-0.0588684\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 471.530 + 816.713i 0.610790 + 1.05792i
\(773\) 860.440i 1.11312i 0.830808 + 0.556559i \(0.187879\pi\)
−0.830808 + 0.556559i \(0.812121\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1844.20 1064.75i 2.37655 1.37210i
\(777\) 0 0
\(778\) −197.633 + 342.310i −0.254027 + 0.439987i
\(779\) 109.748 + 63.3632i 0.140884 + 0.0813391i
\(780\) 0 0
\(781\) −86.8283 150.391i −0.111176 0.192562i
\(782\) 251.442i 0.321538i
\(783\) 0 0
\(784\) 161.638 0.206171
\(785\) 0 0
\(786\) 0 0
\(787\) 463.491 802.789i 0.588933 1.02006i −0.405439 0.914122i \(-0.632881\pi\)
0.994372 0.105940i \(-0.0337853\pi\)
\(788\) −1119.42 646.297i −1.42058 0.820174i
\(789\) 0 0
\(790\) 0 0
\(791\) 19.8531i 0.0250987i
\(792\) 0 0
\(793\) 225.651 0.284553
\(794\) 323.236 186.620i 0.407098 0.235038i
\(795\) 0 0
\(796\) 679.534 1176.99i 0.853686 1.47863i
\(797\) −825.230 476.447i −1.03542 0.597800i −0.116888 0.993145i \(-0.537292\pi\)
−0.918533 + 0.395345i \(0.870625\pi\)
\(798\) 0 0
\(799\) −40.0564 69.3797i −0.0501332 0.0868332i
\(800\) 0 0
\(801\) 0 0
\(802\) −587.129 −0.732082
\(803\) −675.087 + 389.762i −0.840707 + 0.485382i
\(804\) 0 0
\(805\) 0 0
\(806\) −252.883 146.002i −0.313750 0.181144i
\(807\) 0 0
\(808\) −1515.28 2624.55i −1.87535 3.24820i
\(809\) 1425.22i 1.76171i 0.473387 + 0.880855i \(0.343031\pi\)
−0.473387 + 0.880855i \(0.656969\pi\)
\(810\) 0 0
\(811\) −473.774 −0.584185 −0.292093 0.956390i \(-0.594352\pi\)
−0.292093 + 0.956390i \(0.594352\pi\)
\(812\) −1027.26 + 593.087i −1.26509 + 0.730402i
\(813\) 0 0
\(814\) 626.903 1085.83i 0.770151 1.33394i
\(815\) 0 0
\(816\) 0 0
\(817\) −151.777 262.885i −0.185773 0.321769i
\(818\) 2560.42i 3.13010i
\(819\) 0 0
\(820\) 0 0
\(821\) 63.4905 36.6562i 0.0773331 0.0446483i −0.460835 0.887486i \(-0.652450\pi\)
0.538168 + 0.842838i \(0.319117\pi\)
\(822\) 0 0
\(823\) 316.027 547.374i 0.383994 0.665096i −0.607635 0.794216i \(-0.707882\pi\)
0.991629 + 0.129120i \(0.0412151\pi\)
\(824\) −3315.90 1914.44i −4.02416 2.32335i
\(825\) 0 0
\(826\) 64.5385 + 111.784i 0.0781338 + 0.135332i
\(827\) 226.153i 0.273462i 0.990608 + 0.136731i \(0.0436597\pi\)
−0.990608 + 0.136731i \(0.956340\pi\)
\(828\) 0 0
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −145.629 + 252.236i −0.175034 + 0.303168i
\(833\) 6.13317 + 3.54099i 0.00736275 + 0.00425089i
\(834\) 0 0
\(835\) 0 0
\(836\) 552.642i 0.661055i
\(837\) 0 0
\(838\) −192.792 −0.230061
\(839\) −511.329 + 295.216i −0.609450 + 0.351866i −0.772750 0.634710i \(-0.781119\pi\)
0.163300 + 0.986576i \(0.447786\pi\)
\(840\) 0 0
\(841\) −286.046 + 495.446i −0.340126 + 0.589115i
\(842\) 47.7379 + 27.5615i 0.0566959 + 0.0327334i
\(843\) 0 0
\(844\) 788.120 + 1365.06i 0.933791 + 1.61737i
\(845\) 0 0
\(846\) 0 0
\(847\) 468.718 0.553386
\(848\) 3775.47 2179.77i 4.45220 2.57048i
\(849\) 0 0
\(850\) 0 0
\(851\) −1369.09 790.444i −1.60880 0.928841i
\(852\) 0 0
\(853\) 693.749 + 1201.61i 0.813305 + 1.40869i 0.910538 + 0.413424i \(0.135667\pi\)
−0.0972332 + 0.995262i \(0.530999\pi\)
\(854\) 2087.14i 2.44396i
\(855\) 0 0
\(856\) −2196.58 −2.56610
\(857\) −683.058 + 394.363i −0.797033 + 0.460167i −0.842433 0.538801i \(-0.818877\pi\)
0.0453994 + 0.998969i \(0.485544\pi\)
\(858\) 0 0
\(859\) −413.601 + 716.378i −0.481491 + 0.833968i −0.999774 0.0212416i \(-0.993238\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 72.2667 + 125.170i 0.0838361 + 0.145208i
\(863\) 1089.70i 1.26268i 0.775504 + 0.631342i \(0.217496\pi\)
−0.775504 + 0.631342i \(0.782504\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1762.45 + 1017.55i −2.03516 + 1.17500i
\(867\) 0 0
\(868\) 963.540 1668.90i 1.11007 1.92270i
\(869\) 523.930 + 302.491i 0.602912 + 0.348091i
\(870\) 0 0
\(871\) 122.974 + 212.996i 0.141187 + 0.244542i
\(872\) 58.5093i 0.0670979i
\(873\) 0 0
\(874\) −976.605 −1.11740
\(875\) 0 0
\(876\) 0 0
\(877\) 213.875 370.443i 0.243872 0.422398i −0.717942 0.696103i \(-0.754916\pi\)
0.961814 + 0.273705i \(0.0882491\pi\)
\(878\) 813.575 + 469.718i 0.926623 + 0.534986i
\(879\) 0 0
\(880\) 0 0
\(881\) 1113.87i 1.26432i 0.774837 + 0.632161i \(0.217832\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(882\) 0 0
\(883\) 408.581 0.462719 0.231359 0.972868i \(-0.425683\pi\)
0.231359 + 0.972868i \(0.425683\pi\)
\(884\) −48.1094 + 27.7760i −0.0544224 + 0.0314208i
\(885\) 0 0
\(886\) −1365.46 + 2365.05i −1.54116 + 2.66936i
\(887\) −755.098 435.956i −0.851294 0.491495i 0.00979311 0.999952i \(-0.496883\pi\)
−0.861087 + 0.508457i \(0.830216\pi\)
\(888\) 0 0
\(889\) 700.924 + 1214.04i 0.788441 + 1.36562i
\(890\) 0 0
\(891\) 0 0
\(892\) −2054.60 −2.30336
\(893\) −269.471 + 155.579i −0.301760 + 0.174221i
\(894\) 0 0
\(895\) 0 0
\(896\) −496.272 286.523i −0.553875 0.319780i
\(897\) 0 0
\(898\) 176.965 + 306.512i 0.197066 + 0.341328i
\(899\) 436.874i 0.485956i
\(900\) 0 0
\(901\) 191.008 0.211995
\(902\) −417.270 + 240.911i −0.462606 + 0.267085i
\(903\) 0 0
\(904\) −30.4533 + 52.7466i −0.0336872 + 0.0583480i
\(905\) 0 0
\(906\) 0 0
\(907\) −843.097 1460.29i −0.929544 1.61002i −0.784085 0.620653i \(-0.786867\pi\)
−0.145459 0.989364i \(-0.546466\pi\)
\(908\) 1467.33i 1.61600i
\(909\) 0 0
\(910\) 0 0
\(911\) 383.084 221.173i 0.420509 0.242781i −0.274786 0.961505i \(-0.588607\pi\)
0.695295 + 0.718724i \(0.255274\pi\)
\(912\) 0 0
\(913\) 74.1907 128.502i 0.0812603 0.140747i
\(914\) 1321.60 + 763.024i 1.44595 + 0.834819i
\(915\) 0 0
\(916\) −135.232 234.228i −0.147633 0.255708i
\(917\) 1687.46i 1.84020i
\(918\) 0 0
\(919\) −182.236 −0.198298 −0.0991489 0.995073i \(-0.531612\pi\)
−0.0991489 + 0.995073i \(0.531612\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1103.96 + 1912.12i −1.19736 + 2.07388i
\(923\) 58.7162 + 33.8998i 0.0636145 + 0.0367279i
\(924\) 0 0
\(925\) 0 0
\(926\) 2996.47i 3.23592i
\(927\) 0 0
\(928\) 1197.45 1.29035
\(929\) 1150.27 664.111i 1.23819 0.714867i 0.269463 0.963011i \(-0.413154\pi\)
0.968723 + 0.248144i \(0.0798205\pi\)
\(930\) 0 0
\(931\) 13.7532 23.8213i 0.0147725 0.0255868i
\(932\) 341.644 + 197.248i 0.366571 + 0.211640i
\(933\) 0 0
\(934\) −38.5671 66.8003i −0.0412924 0.0715206i
\(935\) 0 0
\(936\) 0 0
\(937\) 276.582 0.295178 0.147589 0.989049i \(-0.452849\pi\)
0.147589 + 0.989049i \(0.452849\pi\)
\(938\) −1970.10 + 1137.44i −2.10032 + 1.21262i
\(939\) 0 0
\(940\) 0 0
\(941\) −1083.50 625.557i −1.15143 0.664779i −0.202196 0.979345i \(-0.564808\pi\)
−0.949236 + 0.314566i \(0.898141\pi\)
\(942\) 0 0
\(943\) 303.758 + 526.124i 0.322119 + 0.557926i
\(944\) 206.422i 0.218668i
\(945\) 0 0
\(946\) 1154.13 1.22001
\(947\) −935.323 + 540.009i −0.987670 + 0.570232i −0.904577 0.426310i \(-0.859813\pi\)
−0.0830930 + 0.996542i \(0.526480\pi\)
\(948\) 0 0
\(949\) 152.172 263.570i 0.160350 0.277734i
\(950\) 0 0
\(951\) 0 0
\(952\) −153.753 266.308i −0.161505 0.279735i
\(953\) 328.534i 0.344737i −0.985033 0.172369i \(-0.944858\pi\)
0.985033 0.172369i \(-0.0551420\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −547.294 + 315.980i −0.572483 + 0.330523i
\(957\) 0 0
\(958\) 939.239 1626.81i 0.980416 1.69813i
\(959\) −1119.47 646.328i −1.16733 0.673961i
\(960\) 0 0
\(961\) 125.623 + 217.585i 0.130721 + 0.226416i
\(962\) 489.515i 0.508851i
\(963\) 0 0
\(964\) 1377.04 1.42846
\(965\) 0 0
\(966\) 0 0
\(967\) −298.854 + 517.631i −0.309053 + 0.535296i −0.978155 0.207875i \(-0.933345\pi\)
0.669102 + 0.743170i \(0.266679\pi\)
\(968\) −1245.31 718.981i −1.28648 0.742749i
\(969\) 0 0
\(970\) 0 0
\(971\) 711.597i 0.732850i 0.930448 + 0.366425i \(0.119418\pi\)
−0.930448 + 0.366425i \(0.880582\pi\)
\(972\) 0 0
\(973\) 232.857 0.239319
\(974\) 260.279 150.272i 0.267226 0.154283i
\(975\) 0 0
\(976\) 1668.90 2890.61i 1.70994 2.96169i
\(977\) 292.262 + 168.738i 0.299142 + 0.172710i 0.642058 0.766656i \(-0.278081\pi\)
−0.342915 + 0.939366i \(0.611414\pi\)
\(978\) 0 0
\(979\) 109.155 + 189.062i 0.111496 + 0.193117i
\(980\) 0 0
\(981\) 0 0
\(982\) −1803.38 −1.83643
\(983\) −274.504 + 158.485i −0.279252 + 0.161226i −0.633085 0.774083i \(-0.718211\pi\)
0.353833 + 0.935309i \(0.384878\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 100.879 + 58.2427i 0.102312 + 0.0590697i
\(987\) 0 0
\(988\) 107.882 + 186.857i 0.109193 + 0.189127i
\(989\) 1455.21i 1.47140i
\(990\) 0 0
\(991\) 685.922 0.692152 0.346076 0.938207i \(-0.387514\pi\)
0.346076 + 0.938207i \(0.387514\pi\)
\(992\) −1684.76 + 972.700i −1.69835 + 0.980544i
\(993\) 0 0
\(994\) −313.554 + 543.092i −0.315447 + 0.546370i
\(995\) 0 0
\(996\) 0 0
\(997\) 293.035 + 507.551i 0.293917 + 0.509078i 0.974732 0.223376i \(-0.0717079\pi\)
−0.680816 + 0.732455i \(0.738375\pi\)
\(998\) 130.823i 0.131086i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.j.b.476.1 16
3.2 odd 2 225.3.j.b.176.8 16
5.2 odd 4 675.3.i.c.449.1 32
5.3 odd 4 675.3.i.c.449.16 32
5.4 even 2 135.3.i.a.71.8 16
9.2 odd 6 inner 675.3.j.b.251.1 16
9.7 even 3 225.3.j.b.101.8 16
15.2 even 4 225.3.i.b.149.16 32
15.8 even 4 225.3.i.b.149.1 32
15.14 odd 2 45.3.i.a.41.1 yes 16
20.19 odd 2 2160.3.bs.c.881.1 16
45.2 even 12 675.3.i.c.224.16 32
45.4 even 6 405.3.c.a.161.16 16
45.7 odd 12 225.3.i.b.74.1 32
45.14 odd 6 405.3.c.a.161.1 16
45.29 odd 6 135.3.i.a.116.8 16
45.34 even 6 45.3.i.a.11.1 16
45.38 even 12 675.3.i.c.224.1 32
45.43 odd 12 225.3.i.b.74.16 32
60.59 even 2 720.3.bs.c.401.2 16
180.79 odd 6 720.3.bs.c.641.2 16
180.119 even 6 2160.3.bs.c.1601.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 45.34 even 6
45.3.i.a.41.1 yes 16 15.14 odd 2
135.3.i.a.71.8 16 5.4 even 2
135.3.i.a.116.8 16 45.29 odd 6
225.3.i.b.74.1 32 45.7 odd 12
225.3.i.b.74.16 32 45.43 odd 12
225.3.i.b.149.1 32 15.8 even 4
225.3.i.b.149.16 32 15.2 even 4
225.3.j.b.101.8 16 9.7 even 3
225.3.j.b.176.8 16 3.2 odd 2
405.3.c.a.161.1 16 45.14 odd 6
405.3.c.a.161.16 16 45.4 even 6
675.3.i.c.224.1 32 45.38 even 12
675.3.i.c.224.16 32 45.2 even 12
675.3.i.c.449.1 32 5.2 odd 4
675.3.i.c.449.16 32 5.3 odd 4
675.3.j.b.251.1 16 9.2 odd 6 inner
675.3.j.b.476.1 16 1.1 even 1 trivial
720.3.bs.c.401.2 16 60.59 even 2
720.3.bs.c.641.2 16 180.79 odd 6
2160.3.bs.c.881.1 16 20.19 odd 2
2160.3.bs.c.1601.1 16 180.119 even 6