Properties

Label 675.3
Level 675
Weight 3
Dimension 23267
Nonzero newspaces 18
Sturm bound 97200
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(97200\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(675))\).

Total New Old
Modular forms 33240 23923 9317
Cusp forms 31560 23267 8293
Eisenstein series 1680 656 1024

Trace form

\( 23267 q - 51 q^{2} - 78 q^{3} - 97 q^{4} - 64 q^{5} - 138 q^{6} - 95 q^{7} - 89 q^{8} - 72 q^{9} - 144 q^{10} - 131 q^{11} - 87 q^{12} - 123 q^{13} - 77 q^{14} - 96 q^{15} - 89 q^{16} + 15 q^{17} - 9 q^{18}+ \cdots - 1959 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(675))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
675.3.c \(\chi_{675}(26, \cdot)\) 675.3.c.a 1 1
675.3.c.b 1
675.3.c.c 1
675.3.c.d 2
675.3.c.e 2
675.3.c.f 2
675.3.c.g 2
675.3.c.h 2
675.3.c.i 2
675.3.c.j 2
675.3.c.k 2
675.3.c.l 2
675.3.c.m 2
675.3.c.n 4
675.3.c.o 4
675.3.c.p 4
675.3.c.q 4
675.3.c.r 6
675.3.c.s 6
675.3.d \(\chi_{675}(674, \cdot)\) 675.3.d.a 2 1
675.3.d.b 2
675.3.d.c 2
675.3.d.d 2
675.3.d.e 4
675.3.d.f 4
675.3.d.g 4
675.3.d.h 4
675.3.d.i 4
675.3.d.j 6
675.3.d.k 6
675.3.d.l 8
675.3.g \(\chi_{675}(82, \cdot)\) 675.3.g.a 4 2
675.3.g.b 4
675.3.g.c 4
675.3.g.d 4
675.3.g.e 8
675.3.g.f 8
675.3.g.g 8
675.3.g.h 12
675.3.g.i 12
675.3.g.j 16
675.3.g.k 16
675.3.i \(\chi_{675}(224, \cdot)\) 675.3.i.a 4 2
675.3.i.b 32
675.3.i.c 32
675.3.j \(\chi_{675}(251, \cdot)\) 675.3.j.a 2 2
675.3.j.b 16
675.3.j.c 16
675.3.j.d 16
675.3.j.e 20
675.3.m \(\chi_{675}(134, \cdot)\) n/a 320 4
675.3.o \(\chi_{675}(161, \cdot)\) n/a 320 4
675.3.p \(\chi_{675}(118, \cdot)\) n/a 136 4
675.3.s \(\chi_{675}(74, \cdot)\) n/a 636 6
675.3.t \(\chi_{675}(101, \cdot)\) n/a 666 6
675.3.v \(\chi_{675}(28, \cdot)\) n/a 640 8
675.3.x \(\chi_{675}(71, \cdot)\) n/a 464 8
675.3.z \(\chi_{675}(44, \cdot)\) n/a 464 8
675.3.bb \(\chi_{675}(7, \cdot)\) n/a 1272 12
675.3.be \(\chi_{675}(37, \cdot)\) n/a 928 16
675.3.bf \(\chi_{675}(11, \cdot)\) n/a 4272 24
675.3.bh \(\chi_{675}(14, \cdot)\) n/a 4272 24
675.3.bj \(\chi_{675}(13, \cdot)\) n/a 8544 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(675))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(675)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 2}\)