Properties

Label 135.3.i.a.71.8
Level $135$
Weight $3$
Character 135.71
Analytic conductor $3.678$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(71,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.8
Root \(-3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 135.71
Dual form 135.3.i.a.116.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.23594 - 1.86827i) q^{2} +(4.98088 - 8.62715i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(3.63061 + 6.28840i) q^{7} -22.2764i q^{8} -8.35517 q^{10} +(-6.50668 + 3.75663i) q^{11} +(-1.46668 + 2.54036i) q^{13} +(23.4969 + 13.5659i) q^{14} +(-21.6949 - 37.5766i) q^{16} +1.90107i q^{17} -7.38378 q^{19} +(-19.2909 + 11.1376i) q^{20} +(-14.0368 + 24.3125i) q^{22} +(30.6549 + 17.6986i) q^{23} +(2.50000 + 4.33013i) q^{25} +10.9606i q^{26} +72.3346 q^{28} +(14.2015 - 8.19922i) q^{29} +(-13.3206 + 23.0720i) q^{31} +(-63.2391 - 36.5111i) q^{32} +(3.55172 + 6.15176i) q^{34} -16.2366i q^{35} -44.6613 q^{37} +(-23.8935 + 13.7949i) q^{38} +(-24.9058 + 43.1381i) q^{40} +(-14.8634 - 8.58140i) q^{41} +(-20.5554 - 35.6031i) q^{43} +74.8454i q^{44} +132.263 q^{46} +(-36.4950 + 21.0704i) q^{47} +(-1.86263 + 3.22616i) q^{49} +(16.1797 + 9.34136i) q^{50} +(14.6107 + 25.3065i) q^{52} -100.474i q^{53} +16.8002 q^{55} +(140.083 - 80.8770i) q^{56} +(30.6367 - 53.0644i) q^{58} +(4.12003 + 2.37870i) q^{59} +(38.4629 + 66.6197i) q^{61} +99.5461i q^{62} -99.2915 q^{64} +(5.68041 - 3.27959i) q^{65} +(41.9225 - 72.6119i) q^{67} +(16.4008 + 9.46903i) q^{68} +(-30.3343 - 52.5406i) q^{70} +23.1134i q^{71} -103.753 q^{73} +(-144.521 + 83.4395i) q^{74} +(-36.7778 + 63.7010i) q^{76} +(-47.2464 - 27.2777i) q^{77} +(-40.2610 - 69.7340i) q^{79} +97.0225i q^{80} -64.1296 q^{82} +(17.1034 - 9.87463i) q^{83} +(2.12546 - 3.68141i) q^{85} +(-133.032 - 76.8063i) q^{86} +(83.6843 + 144.945i) q^{88} -29.0566i q^{89} -21.2997 q^{91} +(305.377 - 176.310i) q^{92} +(-78.7306 + 136.365i) q^{94} +(14.2986 + 8.25532i) q^{95} +(47.7972 + 82.7872i) q^{97} +13.9196i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} + 2 q^{7} + 18 q^{11} - 10 q^{13} + 54 q^{14} - 32 q^{16} - 52 q^{19} - 24 q^{22} + 54 q^{23} + 40 q^{25} + 32 q^{28} + 54 q^{29} + 32 q^{31} - 216 q^{32} + 54 q^{34} + 44 q^{37} - 252 q^{38}+ \cdots - 142 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.23594 1.86827i 1.61797 0.934136i 0.630528 0.776167i \(-0.282839\pi\)
0.987444 0.157969i \(-0.0504947\pi\)
\(3\) 0 0
\(4\) 4.98088 8.62715i 1.24522 2.15679i
\(5\) −1.93649 1.11803i −0.387298 0.223607i
\(6\) 0 0
\(7\) 3.63061 + 6.28840i 0.518658 + 0.898342i 0.999765 + 0.0216804i \(0.00690163\pi\)
−0.481107 + 0.876662i \(0.659765\pi\)
\(8\) 22.2764i 2.78455i
\(9\) 0 0
\(10\) −8.35517 −0.835517
\(11\) −6.50668 + 3.75663i −0.591516 + 0.341512i −0.765697 0.643202i \(-0.777606\pi\)
0.174181 + 0.984714i \(0.444272\pi\)
\(12\) 0 0
\(13\) −1.46668 + 2.54036i −0.112821 + 0.195412i −0.916907 0.399102i \(-0.869322\pi\)
0.804085 + 0.594514i \(0.202655\pi\)
\(14\) 23.4969 + 13.5659i 1.67835 + 0.968995i
\(15\) 0 0
\(16\) −21.6949 37.5766i −1.35593 2.34854i
\(17\) 1.90107i 0.111828i 0.998436 + 0.0559139i \(0.0178072\pi\)
−0.998436 + 0.0559139i \(0.982193\pi\)
\(18\) 0 0
\(19\) −7.38378 −0.388620 −0.194310 0.980940i \(-0.562247\pi\)
−0.194310 + 0.980940i \(0.562247\pi\)
\(20\) −19.2909 + 11.1376i −0.964544 + 0.556880i
\(21\) 0 0
\(22\) −14.0368 + 24.3125i −0.638037 + 1.10511i
\(23\) 30.6549 + 17.6986i 1.33282 + 0.769506i 0.985731 0.168326i \(-0.0538360\pi\)
0.347091 + 0.937831i \(0.387169\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 10.9606i 0.421562i
\(27\) 0 0
\(28\) 72.3346 2.58338
\(29\) 14.2015 8.19922i 0.489705 0.282732i −0.234747 0.972057i \(-0.575426\pi\)
0.724452 + 0.689325i \(0.242093\pi\)
\(30\) 0 0
\(31\) −13.3206 + 23.0720i −0.429697 + 0.744257i −0.996846 0.0793581i \(-0.974713\pi\)
0.567149 + 0.823615i \(0.308046\pi\)
\(32\) −63.2391 36.5111i −1.97622 1.14097i
\(33\) 0 0
\(34\) 3.55172 + 6.15176i 0.104462 + 0.180934i
\(35\) 16.2366i 0.463902i
\(36\) 0 0
\(37\) −44.6613 −1.20706 −0.603531 0.797340i \(-0.706240\pi\)
−0.603531 + 0.797340i \(0.706240\pi\)
\(38\) −23.8935 + 13.7949i −0.628776 + 0.363024i
\(39\) 0 0
\(40\) −24.9058 + 43.1381i −0.622645 + 1.07845i
\(41\) −14.8634 8.58140i −0.362522 0.209302i 0.307664 0.951495i \(-0.400453\pi\)
−0.670187 + 0.742193i \(0.733786\pi\)
\(42\) 0 0
\(43\) −20.5554 35.6031i −0.478033 0.827978i 0.521650 0.853160i \(-0.325317\pi\)
−0.999683 + 0.0251818i \(0.991984\pi\)
\(44\) 74.8454i 1.70103i
\(45\) 0 0
\(46\) 132.263 2.87529
\(47\) −36.4950 + 21.0704i −0.776490 + 0.448307i −0.835185 0.549969i \(-0.814639\pi\)
0.0586949 + 0.998276i \(0.481306\pi\)
\(48\) 0 0
\(49\) −1.86263 + 3.22616i −0.0380128 + 0.0658401i
\(50\) 16.1797 + 9.34136i 0.323594 + 0.186827i
\(51\) 0 0
\(52\) 14.6107 + 25.3065i 0.280975 + 0.486663i
\(53\) 100.474i 1.89573i −0.318671 0.947865i \(-0.603236\pi\)
0.318671 0.947865i \(-0.396764\pi\)
\(54\) 0 0
\(55\) 16.8002 0.305458
\(56\) 140.083 80.8770i 2.50148 1.44423i
\(57\) 0 0
\(58\) 30.6367 53.0644i 0.528220 0.914903i
\(59\) 4.12003 + 2.37870i 0.0698310 + 0.0403169i 0.534509 0.845163i \(-0.320497\pi\)
−0.464678 + 0.885480i \(0.653830\pi\)
\(60\) 0 0
\(61\) 38.4629 + 66.6197i 0.630539 + 1.09213i 0.987442 + 0.157985i \(0.0504996\pi\)
−0.356902 + 0.934142i \(0.616167\pi\)
\(62\) 99.5461i 1.60558i
\(63\) 0 0
\(64\) −99.2915 −1.55143
\(65\) 5.68041 3.27959i 0.0873910 0.0504552i
\(66\) 0 0
\(67\) 41.9225 72.6119i 0.625709 1.08376i −0.362694 0.931908i \(-0.618143\pi\)
0.988403 0.151852i \(-0.0485237\pi\)
\(68\) 16.4008 + 9.46903i 0.241189 + 0.139250i
\(69\) 0 0
\(70\) −30.3343 52.5406i −0.433348 0.750580i
\(71\) 23.1134i 0.325540i 0.986664 + 0.162770i \(0.0520429\pi\)
−0.986664 + 0.162770i \(0.947957\pi\)
\(72\) 0 0
\(73\) −103.753 −1.42127 −0.710637 0.703559i \(-0.751593\pi\)
−0.710637 + 0.703559i \(0.751593\pi\)
\(74\) −144.521 + 83.4395i −1.95299 + 1.12756i
\(75\) 0 0
\(76\) −36.7778 + 63.7010i −0.483918 + 0.838171i
\(77\) −47.2464 27.2777i −0.613589 0.354256i
\(78\) 0 0
\(79\) −40.2610 69.7340i −0.509633 0.882709i −0.999938 0.0111586i \(-0.996448\pi\)
0.490305 0.871551i \(-0.336885\pi\)
\(80\) 97.0225i 1.21278i
\(81\) 0 0
\(82\) −64.1296 −0.782068
\(83\) 17.1034 9.87463i 0.206065 0.118971i −0.393417 0.919360i \(-0.628707\pi\)
0.599481 + 0.800389i \(0.295374\pi\)
\(84\) 0 0
\(85\) 2.12546 3.68141i 0.0250055 0.0433107i
\(86\) −133.032 76.8063i −1.54689 0.893097i
\(87\) 0 0
\(88\) 83.6843 + 144.945i 0.950958 + 1.64711i
\(89\) 29.0566i 0.326478i −0.986587 0.163239i \(-0.947806\pi\)
0.986587 0.163239i \(-0.0521942\pi\)
\(90\) 0 0
\(91\) −21.2997 −0.234063
\(92\) 305.377 176.310i 3.31932 1.91641i
\(93\) 0 0
\(94\) −78.7306 + 136.365i −0.837559 + 1.45070i
\(95\) 14.2986 + 8.25532i 0.150512 + 0.0868981i
\(96\) 0 0
\(97\) 47.7972 + 82.7872i 0.492755 + 0.853476i 0.999965 0.00834602i \(-0.00265665\pi\)
−0.507210 + 0.861822i \(0.669323\pi\)
\(98\) 13.9196i 0.142036i
\(99\) 0 0
\(100\) 49.8088 0.498088
\(101\) −117.817 + 68.0219i −1.16651 + 0.673484i −0.952855 0.303426i \(-0.901870\pi\)
−0.213653 + 0.976910i \(0.568536\pi\)
\(102\) 0 0
\(103\) 85.9401 148.853i 0.834370 1.44517i −0.0601721 0.998188i \(-0.519165\pi\)
0.894542 0.446983i \(-0.147502\pi\)
\(104\) 56.5901 + 32.6723i 0.544135 + 0.314157i
\(105\) 0 0
\(106\) −187.712 325.127i −1.77087 3.06724i
\(107\) 98.6056i 0.921548i −0.887518 0.460774i \(-0.847572\pi\)
0.887518 0.460774i \(-0.152428\pi\)
\(108\) 0 0
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) 54.3644 31.3873i 0.494222 0.285339i
\(111\) 0 0
\(112\) 157.531 272.852i 1.40653 2.43618i
\(113\) −2.36782 1.36706i −0.0209542 0.0120979i 0.489486 0.872011i \(-0.337184\pi\)
−0.510440 + 0.859913i \(0.670518\pi\)
\(114\) 0 0
\(115\) −39.5753 68.5465i −0.344133 0.596056i
\(116\) 163.357i 1.40825i
\(117\) 0 0
\(118\) 17.7762 0.150646
\(119\) −11.9547 + 6.90205i −0.100460 + 0.0580004i
\(120\) 0 0
\(121\) −32.2754 + 55.9027i −0.266739 + 0.462006i
\(122\) 248.928 + 143.718i 2.04039 + 1.17802i
\(123\) 0 0
\(124\) 132.697 + 229.838i 1.07014 + 1.85353i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 193.060 1.52015 0.760077 0.649833i \(-0.225161\pi\)
0.760077 + 0.649833i \(0.225161\pi\)
\(128\) −68.3455 + 39.4593i −0.533950 + 0.308276i
\(129\) 0 0
\(130\) 12.2543 21.2251i 0.0942641 0.163270i
\(131\) 201.259 + 116.197i 1.53633 + 0.886999i 0.999049 + 0.0435937i \(0.0138807\pi\)
0.537278 + 0.843405i \(0.319453\pi\)
\(132\) 0 0
\(133\) −26.8076 46.4322i −0.201561 0.349114i
\(134\) 313.291i 2.33799i
\(135\) 0 0
\(136\) 42.3491 0.311390
\(137\) −154.172 + 89.0111i −1.12534 + 0.649716i −0.942759 0.333475i \(-0.891779\pi\)
−0.182582 + 0.983191i \(0.558445\pi\)
\(138\) 0 0
\(139\) −16.0343 + 27.7722i −0.115355 + 0.199800i −0.917922 0.396762i \(-0.870134\pi\)
0.802567 + 0.596562i \(0.203467\pi\)
\(140\) −140.075 80.8725i −1.00054 0.577661i
\(141\) 0 0
\(142\) 43.1820 + 74.7935i 0.304099 + 0.526715i
\(143\) 22.0390i 0.154119i
\(144\) 0 0
\(145\) −36.6680 −0.252883
\(146\) −335.739 + 193.839i −2.29958 + 1.32766i
\(147\) 0 0
\(148\) −222.453 + 385.299i −1.50306 + 2.60337i
\(149\) −80.4653 46.4567i −0.540036 0.311790i 0.205058 0.978750i \(-0.434262\pi\)
−0.745093 + 0.666960i \(0.767595\pi\)
\(150\) 0 0
\(151\) 113.614 + 196.785i 0.752408 + 1.30321i 0.946653 + 0.322256i \(0.104441\pi\)
−0.194245 + 0.980953i \(0.562226\pi\)
\(152\) 164.484i 1.08213i
\(153\) 0 0
\(154\) −203.849 −1.32369
\(155\) 51.5905 29.7858i 0.332842 0.192166i
\(156\) 0 0
\(157\) 0.792406 1.37249i 0.00504717 0.00874196i −0.863491 0.504365i \(-0.831727\pi\)
0.868538 + 0.495623i \(0.165060\pi\)
\(158\) −260.564 150.437i −1.64914 0.952133i
\(159\) 0 0
\(160\) 81.6413 + 141.407i 0.510258 + 0.883793i
\(161\) 257.027i 1.59644i
\(162\) 0 0
\(163\) −41.6801 −0.255706 −0.127853 0.991793i \(-0.540809\pi\)
−0.127853 + 0.991793i \(0.540809\pi\)
\(164\) −148.066 + 85.4859i −0.902841 + 0.521256i
\(165\) 0 0
\(166\) 36.8970 63.9075i 0.222271 0.384985i
\(167\) −8.01405 4.62692i −0.0479884 0.0277061i 0.475814 0.879546i \(-0.342154\pi\)
−0.523802 + 0.851840i \(0.675487\pi\)
\(168\) 0 0
\(169\) 80.1977 + 138.907i 0.474543 + 0.821932i
\(170\) 15.8838i 0.0934340i
\(171\) 0 0
\(172\) −409.537 −2.38103
\(173\) 127.637 73.6913i 0.737787 0.425962i −0.0834771 0.996510i \(-0.526603\pi\)
0.821264 + 0.570548i \(0.193269\pi\)
\(174\) 0 0
\(175\) −18.1530 + 31.4420i −0.103732 + 0.179668i
\(176\) 282.323 + 162.999i 1.60411 + 0.926133i
\(177\) 0 0
\(178\) −54.2856 94.0254i −0.304975 0.528233i
\(179\) 160.022i 0.893977i 0.894540 + 0.446988i \(0.147504\pi\)
−0.894540 + 0.446988i \(0.852496\pi\)
\(180\) 0 0
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) −68.9246 + 39.7937i −0.378707 + 0.218646i
\(183\) 0 0
\(184\) 394.262 682.882i 2.14273 3.71132i
\(185\) 86.4862 + 49.9328i 0.467493 + 0.269907i
\(186\) 0 0
\(187\) −7.14163 12.3697i −0.0381905 0.0661480i
\(188\) 419.797i 2.23296i
\(189\) 0 0
\(190\) 61.6928 0.324699
\(191\) 249.938 144.302i 1.30857 0.755506i 0.326716 0.945122i \(-0.394058\pi\)
0.981858 + 0.189617i \(0.0607245\pi\)
\(192\) 0 0
\(193\) 47.3339 81.9847i 0.245253 0.424791i −0.716949 0.697125i \(-0.754462\pi\)
0.962203 + 0.272334i \(0.0877955\pi\)
\(194\) 309.338 + 178.596i 1.59453 + 0.920600i
\(195\) 0 0
\(196\) 18.5551 + 32.1383i 0.0946686 + 0.163971i
\(197\) 129.755i 0.658657i 0.944215 + 0.329329i \(0.106822\pi\)
−0.944215 + 0.329329i \(0.893178\pi\)
\(198\) 0 0
\(199\) 136.428 0.685570 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(200\) 96.4597 55.6911i 0.482299 0.278455i
\(201\) 0 0
\(202\) −254.167 + 440.230i −1.25825 + 2.17936i
\(203\) 103.120 + 59.5363i 0.507980 + 0.293282i
\(204\) 0 0
\(205\) 19.1886 + 33.2356i 0.0936029 + 0.162125i
\(206\) 642.238i 3.11766i
\(207\) 0 0
\(208\) 127.278 0.611911
\(209\) 48.0439 27.7382i 0.229875 0.132718i
\(210\) 0 0
\(211\) −79.1144 + 137.030i −0.374950 + 0.649432i −0.990320 0.138806i \(-0.955673\pi\)
0.615370 + 0.788239i \(0.289007\pi\)
\(212\) −866.802 500.448i −4.08869 2.36060i
\(213\) 0 0
\(214\) −184.222 319.082i −0.860851 1.49104i
\(215\) 91.9267i 0.427566i
\(216\) 0 0
\(217\) −193.448 −0.891463
\(218\) 8.49925 4.90704i 0.0389874 0.0225094i
\(219\) 0 0
\(220\) 83.6797 144.937i 0.380362 0.658807i
\(221\) −4.82941 2.78826i −0.0218525 0.0126166i
\(222\) 0 0
\(223\) 103.124 + 178.616i 0.462440 + 0.800969i 0.999082 0.0428406i \(-0.0136407\pi\)
−0.536642 + 0.843810i \(0.680307\pi\)
\(224\) 530.230i 2.36710i
\(225\) 0 0
\(226\) −10.2162 −0.0452044
\(227\) 127.562 73.6481i 0.561948 0.324441i −0.191979 0.981399i \(-0.561490\pi\)
0.753927 + 0.656958i \(0.228157\pi\)
\(228\) 0 0
\(229\) 13.5751 23.5127i 0.0592798 0.102676i −0.834863 0.550458i \(-0.814453\pi\)
0.894142 + 0.447783i \(0.147786\pi\)
\(230\) −256.127 147.875i −1.11360 0.642935i
\(231\) 0 0
\(232\) −182.649 316.358i −0.787281 1.36361i
\(233\) 39.6011i 0.169962i −0.996383 0.0849808i \(-0.972917\pi\)
0.996383 0.0849808i \(-0.0270829\pi\)
\(234\) 0 0
\(235\) 94.2298 0.400978
\(236\) 41.0428 23.6960i 0.173910 0.100407i
\(237\) 0 0
\(238\) −25.7898 + 44.6693i −0.108361 + 0.187686i
\(239\) −54.9394 31.7193i −0.229872 0.132717i 0.380641 0.924723i \(-0.375703\pi\)
−0.610513 + 0.792006i \(0.709037\pi\)
\(240\) 0 0
\(241\) 69.1161 + 119.713i 0.286789 + 0.496733i 0.973041 0.230630i \(-0.0740789\pi\)
−0.686253 + 0.727363i \(0.740746\pi\)
\(242\) 241.197i 0.996683i
\(243\) 0 0
\(244\) 766.317 3.14064
\(245\) 7.21392 4.16496i 0.0294446 0.0169998i
\(246\) 0 0
\(247\) 10.8296 18.7575i 0.0438446 0.0759411i
\(248\) 513.961 + 296.735i 2.07242 + 1.19651i
\(249\) 0 0
\(250\) −20.8879 36.1789i −0.0835517 0.144716i
\(251\) 186.477i 0.742936i 0.928446 + 0.371468i \(0.121145\pi\)
−0.928446 + 0.371468i \(0.878855\pi\)
\(252\) 0 0
\(253\) −265.949 −1.05118
\(254\) 624.730 360.688i 2.45957 1.42003i
\(255\) 0 0
\(256\) 51.1416 88.5798i 0.199772 0.346015i
\(257\) −201.713 116.459i −0.784877 0.453149i 0.0532790 0.998580i \(-0.483033\pi\)
−0.838156 + 0.545431i \(0.816366\pi\)
\(258\) 0 0
\(259\) −162.148 280.848i −0.626053 1.08435i
\(260\) 65.3410i 0.251312i
\(261\) 0 0
\(262\) 868.350 3.31431
\(263\) 9.34728 5.39665i 0.0355410 0.0205196i −0.482124 0.876103i \(-0.660135\pi\)
0.517665 + 0.855583i \(0.326801\pi\)
\(264\) 0 0
\(265\) −112.333 + 194.567i −0.423898 + 0.734213i
\(266\) −173.496 100.168i −0.652240 0.376571i
\(267\) 0 0
\(268\) −417.622 723.343i −1.55829 2.69904i
\(269\) 58.4601i 0.217324i 0.994079 + 0.108662i \(0.0346566\pi\)
−0.994079 + 0.108662i \(0.965343\pi\)
\(270\) 0 0
\(271\) −65.5995 −0.242065 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(272\) 71.4360 41.2436i 0.262632 0.151631i
\(273\) 0 0
\(274\) −332.594 + 576.069i −1.21385 + 2.10244i
\(275\) −32.5334 18.7832i −0.118303 0.0683024i
\(276\) 0 0
\(277\) −134.128 232.317i −0.484218 0.838690i 0.515618 0.856819i \(-0.327562\pi\)
−0.999836 + 0.0181286i \(0.994229\pi\)
\(278\) 119.826i 0.431028i
\(279\) 0 0
\(280\) −361.693 −1.29176
\(281\) −159.428 + 92.0461i −0.567361 + 0.327566i −0.756095 0.654462i \(-0.772895\pi\)
0.188734 + 0.982028i \(0.439562\pi\)
\(282\) 0 0
\(283\) 231.303 400.628i 0.817324 1.41565i −0.0903234 0.995912i \(-0.528790\pi\)
0.907647 0.419734i \(-0.137877\pi\)
\(284\) 199.402 + 115.125i 0.702121 + 0.405370i
\(285\) 0 0
\(286\) −41.1750 71.3171i −0.143968 0.249361i
\(287\) 124.623i 0.434226i
\(288\) 0 0
\(289\) 285.386 0.987495
\(290\) −118.656 + 68.5058i −0.409157 + 0.236227i
\(291\) 0 0
\(292\) −516.782 + 895.093i −1.76980 + 3.06539i
\(293\) −248.349 143.384i −0.847608 0.489367i 0.0122351 0.999925i \(-0.496105\pi\)
−0.859843 + 0.510559i \(0.829439\pi\)
\(294\) 0 0
\(295\) −5.31893 9.21266i −0.0180303 0.0312294i
\(296\) 994.894i 3.36113i
\(297\) 0 0
\(298\) −347.175 −1.16502
\(299\) −89.9217 + 51.9163i −0.300741 + 0.173633i
\(300\) 0 0
\(301\) 149.257 258.521i 0.495872 0.858875i
\(302\) 735.294 + 424.522i 2.43475 + 1.40570i
\(303\) 0 0
\(304\) 160.190 + 277.458i 0.526942 + 0.912690i
\(305\) 172.011i 0.563972i
\(306\) 0 0
\(307\) −236.738 −0.771133 −0.385567 0.922680i \(-0.625994\pi\)
−0.385567 + 0.922680i \(0.625994\pi\)
\(308\) −470.658 + 271.734i −1.52811 + 0.882254i
\(309\) 0 0
\(310\) 111.296 192.770i 0.359019 0.621839i
\(311\) −448.597 258.997i −1.44243 0.832789i −0.444421 0.895818i \(-0.646591\pi\)
−0.998012 + 0.0630292i \(0.979924\pi\)
\(312\) 0 0
\(313\) 247.615 + 428.882i 0.791102 + 1.37023i 0.925285 + 0.379272i \(0.123826\pi\)
−0.134183 + 0.990957i \(0.542841\pi\)
\(314\) 5.92172i 0.0188590i
\(315\) 0 0
\(316\) −802.141 −2.53842
\(317\) 189.840 109.604i 0.598864 0.345754i −0.169731 0.985491i \(-0.554290\pi\)
0.768595 + 0.639736i \(0.220956\pi\)
\(318\) 0 0
\(319\) −61.6029 + 106.699i −0.193112 + 0.334481i
\(320\) 192.277 + 111.011i 0.600866 + 0.346910i
\(321\) 0 0
\(322\) 480.197 + 831.725i 1.49129 + 2.58300i
\(323\) 14.0371i 0.0434586i
\(324\) 0 0
\(325\) −14.6668 −0.0451285
\(326\) −134.874 + 77.8697i −0.413725 + 0.238864i
\(327\) 0 0
\(328\) −191.163 + 331.104i −0.582813 + 1.00946i
\(329\) −264.998 152.997i −0.805466 0.465036i
\(330\) 0 0
\(331\) 47.4838 + 82.2443i 0.143455 + 0.248472i 0.928796 0.370592i \(-0.120845\pi\)
−0.785340 + 0.619064i \(0.787512\pi\)
\(332\) 196.738i 0.592583i
\(333\) 0 0
\(334\) −34.5774 −0.103525
\(335\) −162.365 + 93.7416i −0.484672 + 0.279826i
\(336\) 0 0
\(337\) 257.989 446.850i 0.765547 1.32597i −0.174411 0.984673i \(-0.555802\pi\)
0.939957 0.341293i \(-0.110865\pi\)
\(338\) 519.031 + 299.662i 1.53559 + 0.886575i
\(339\) 0 0
\(340\) −21.1734 36.6734i −0.0622747 0.107863i
\(341\) 200.162i 0.586986i
\(342\) 0 0
\(343\) 328.750 0.958454
\(344\) −793.109 + 457.902i −2.30555 + 1.33111i
\(345\) 0 0
\(346\) 275.351 476.922i 0.795812 1.37839i
\(347\) 96.4994 + 55.7140i 0.278096 + 0.160559i 0.632561 0.774510i \(-0.282004\pi\)
−0.354465 + 0.935069i \(0.615337\pi\)
\(348\) 0 0
\(349\) −310.131 537.162i −0.888627 1.53915i −0.841499 0.540258i \(-0.818327\pi\)
−0.0471279 0.998889i \(-0.515007\pi\)
\(350\) 135.659i 0.387598i
\(351\) 0 0
\(352\) 548.635 1.55862
\(353\) −488.067 + 281.786i −1.38263 + 0.798260i −0.992470 0.122488i \(-0.960913\pi\)
−0.390157 + 0.920748i \(0.627579\pi\)
\(354\) 0 0
\(355\) 25.8415 44.7588i 0.0727930 0.126081i
\(356\) −250.675 144.727i −0.704144 0.406538i
\(357\) 0 0
\(358\) 298.964 + 517.822i 0.835096 + 1.44643i
\(359\) 415.128i 1.15635i −0.815915 0.578173i \(-0.803766\pi\)
0.815915 0.578173i \(-0.196234\pi\)
\(360\) 0 0
\(361\) −306.480 −0.848974
\(362\) −98.1611 + 56.6733i −0.271163 + 0.156556i
\(363\) 0 0
\(364\) −106.091 + 183.756i −0.291460 + 0.504823i
\(365\) 200.917 + 115.999i 0.550457 + 0.317807i
\(366\) 0 0
\(367\) −313.940 543.761i −0.855423 1.48164i −0.876252 0.481853i \(-0.839964\pi\)
0.0208286 0.999783i \(-0.493370\pi\)
\(368\) 1535.88i 4.17358i
\(369\) 0 0
\(370\) 373.153 1.00852
\(371\) 631.819 364.781i 1.70302 0.983237i
\(372\) 0 0
\(373\) −195.467 + 338.559i −0.524040 + 0.907665i 0.475568 + 0.879679i \(0.342243\pi\)
−0.999608 + 0.0279857i \(0.991091\pi\)
\(374\) −46.2198 26.6850i −0.123582 0.0713503i
\(375\) 0 0
\(376\) 469.373 + 812.979i 1.24833 + 2.16218i
\(377\) 48.1024i 0.127593i
\(378\) 0 0
\(379\) 52.4430 0.138372 0.0691860 0.997604i \(-0.477960\pi\)
0.0691860 + 0.997604i \(0.477960\pi\)
\(380\) 142.440 82.2376i 0.374841 0.216415i
\(381\) 0 0
\(382\) 539.189 933.904i 1.41149 2.44477i
\(383\) 96.0614 + 55.4610i 0.250813 + 0.144807i 0.620136 0.784494i \(-0.287077\pi\)
−0.369324 + 0.929301i \(0.620411\pi\)
\(384\) 0 0
\(385\) 60.9948 + 105.646i 0.158428 + 0.274405i
\(386\) 353.731i 0.916400i
\(387\) 0 0
\(388\) 952.290 2.45435
\(389\) 91.6114 52.8918i 0.235505 0.135969i −0.377604 0.925967i \(-0.623252\pi\)
0.613109 + 0.789998i \(0.289919\pi\)
\(390\) 0 0
\(391\) −33.6464 + 58.2773i −0.0860521 + 0.149047i
\(392\) 71.8674 + 41.4926i 0.183335 + 0.105849i
\(393\) 0 0
\(394\) 242.419 + 419.881i 0.615276 + 1.06569i
\(395\) 180.053i 0.455829i
\(396\) 0 0
\(397\) 99.8892 0.251610 0.125805 0.992055i \(-0.459849\pi\)
0.125805 + 0.992055i \(0.459849\pi\)
\(398\) 441.475 254.885i 1.10923 0.640416i
\(399\) 0 0
\(400\) 108.474 187.883i 0.271186 0.469708i
\(401\) 136.080 + 78.5658i 0.339352 + 0.195925i 0.659985 0.751279i \(-0.270563\pi\)
−0.320634 + 0.947203i \(0.603896\pi\)
\(402\) 0 0
\(403\) −39.0740 67.6782i −0.0969579 0.167936i
\(404\) 1355.24i 3.35455i
\(405\) 0 0
\(406\) 444.920 1.09586
\(407\) 290.597 167.776i 0.713996 0.412226i
\(408\) 0 0
\(409\) −342.619 + 593.434i −0.837700 + 1.45094i 0.0541134 + 0.998535i \(0.482767\pi\)
−0.891813 + 0.452404i \(0.850567\pi\)
\(410\) 124.186 + 71.6990i 0.302894 + 0.174876i
\(411\) 0 0
\(412\) −856.116 1482.84i −2.07795 3.59912i
\(413\) 34.5445i 0.0836428i
\(414\) 0 0
\(415\) −44.1607 −0.106411
\(416\) 185.502 107.100i 0.445919 0.257452i
\(417\) 0 0
\(418\) 103.645 179.518i 0.247954 0.429469i
\(419\) 44.6836 + 25.7981i 0.106643 + 0.0615706i 0.552373 0.833597i \(-0.313722\pi\)
−0.445730 + 0.895168i \(0.647056\pi\)
\(420\) 0 0
\(421\) −7.37620 12.7760i −0.0175207 0.0303467i 0.857132 0.515097i \(-0.172244\pi\)
−0.874653 + 0.484750i \(0.838911\pi\)
\(422\) 591.229i 1.40102i
\(423\) 0 0
\(424\) −2238.20 −5.27876
\(425\) −8.23189 + 4.75268i −0.0193691 + 0.0111828i
\(426\) 0 0
\(427\) −279.287 + 483.740i −0.654069 + 1.13288i
\(428\) −850.685 491.143i −1.98758 1.14753i
\(429\) 0 0
\(430\) 171.744 + 297.470i 0.399405 + 0.691790i
\(431\) 38.6810i 0.0897472i −0.998993 0.0448736i \(-0.985711\pi\)
0.998993 0.0448736i \(-0.0142885\pi\)
\(432\) 0 0
\(433\) −544.647 −1.25784 −0.628922 0.777468i \(-0.716504\pi\)
−0.628922 + 0.777468i \(0.716504\pi\)
\(434\) −625.985 + 361.413i −1.44236 + 0.832748i
\(435\) 0 0
\(436\) 13.0824 22.6593i 0.0300054 0.0519709i
\(437\) −226.349 130.683i −0.517962 0.299045i
\(438\) 0 0
\(439\) −125.709 217.735i −0.286353 0.495978i 0.686583 0.727051i \(-0.259110\pi\)
−0.972936 + 0.231073i \(0.925776\pi\)
\(440\) 374.248i 0.850563i
\(441\) 0 0
\(442\) −20.8369 −0.0471423
\(443\) −632.952 + 365.435i −1.42878 + 0.824909i −0.997025 0.0770796i \(-0.975440\pi\)
−0.431760 + 0.901989i \(0.642107\pi\)
\(444\) 0 0
\(445\) −32.4862 + 56.2678i −0.0730028 + 0.126445i
\(446\) 667.407 + 385.328i 1.49643 + 0.863964i
\(447\) 0 0
\(448\) −360.489 624.385i −0.804662 1.39372i
\(449\) 94.7211i 0.210960i −0.994421 0.105480i \(-0.966362\pi\)
0.994421 0.105480i \(-0.0336379\pi\)
\(450\) 0 0
\(451\) 128.949 0.285917
\(452\) −23.5877 + 13.6184i −0.0521852 + 0.0301291i
\(453\) 0 0
\(454\) 275.190 476.642i 0.606144 1.04987i
\(455\) 41.2467 + 23.8138i 0.0906521 + 0.0523380i
\(456\) 0 0
\(457\) 204.206 + 353.695i 0.446840 + 0.773949i 0.998178 0.0603323i \(-0.0192160\pi\)
−0.551339 + 0.834282i \(0.685883\pi\)
\(458\) 101.448i 0.221502i
\(459\) 0 0
\(460\) −788.481 −1.71409
\(461\) 511.735 295.450i 1.11005 0.640890i 0.171211 0.985234i \(-0.445232\pi\)
0.938843 + 0.344344i \(0.111899\pi\)
\(462\) 0 0
\(463\) −400.967 + 694.496i −0.866020 + 1.49999i 1.04649e−5 1.00000i \(0.499997\pi\)
−0.866031 + 0.499991i \(0.833337\pi\)
\(464\) −616.198 355.762i −1.32801 0.766729i
\(465\) 0 0
\(466\) −73.9856 128.147i −0.158767 0.274993i
\(467\) 20.6432i 0.0442039i −0.999756 0.0221019i \(-0.992964\pi\)
0.999756 0.0221019i \(-0.00703584\pi\)
\(468\) 0 0
\(469\) 608.817 1.29812
\(470\) 304.922 176.047i 0.648771 0.374568i
\(471\) 0 0
\(472\) 52.9889 91.7795i 0.112265 0.194448i
\(473\) 267.495 + 154.438i 0.565529 + 0.326508i
\(474\) 0 0
\(475\) −18.4595 31.9727i −0.0388620 0.0673110i
\(476\) 137.513i 0.288893i
\(477\) 0 0
\(478\) −237.041 −0.495902
\(479\) −435.378 + 251.366i −0.908931 + 0.524771i −0.880087 0.474812i \(-0.842516\pi\)
−0.0288439 + 0.999584i \(0.509183\pi\)
\(480\) 0 0
\(481\) 65.5037 113.456i 0.136182 0.235875i
\(482\) 447.312 + 258.255i 0.928032 + 0.535800i
\(483\) 0 0
\(484\) 321.521 + 556.890i 0.664299 + 1.15060i
\(485\) 213.756i 0.440733i
\(486\) 0 0
\(487\) 80.4336 0.165161 0.0825807 0.996584i \(-0.473684\pi\)
0.0825807 + 0.996584i \(0.473684\pi\)
\(488\) 1484.05 856.816i 3.04108 1.75577i
\(489\) 0 0
\(490\) 15.5626 26.9551i 0.0317603 0.0550105i
\(491\) 417.972 + 241.316i 0.851267 + 0.491479i 0.861078 0.508473i \(-0.169790\pi\)
−0.00981129 + 0.999952i \(0.503123\pi\)
\(492\) 0 0
\(493\) 15.5873 + 26.9980i 0.0316173 + 0.0547627i
\(494\) 80.9307i 0.163827i
\(495\) 0 0
\(496\) 1155.96 2.33056
\(497\) −145.346 + 83.9155i −0.292447 + 0.168844i
\(498\) 0 0
\(499\) 17.5059 30.3212i 0.0350820 0.0607638i −0.847951 0.530074i \(-0.822164\pi\)
0.883033 + 0.469310i \(0.155497\pi\)
\(500\) −96.4544 55.6880i −0.192909 0.111376i
\(501\) 0 0
\(502\) 348.390 + 603.429i 0.694004 + 1.20205i
\(503\) 211.016i 0.419514i 0.977754 + 0.209757i \(0.0672673\pi\)
−0.977754 + 0.209757i \(0.932733\pi\)
\(504\) 0 0
\(505\) 304.203 0.602382
\(506\) −860.595 + 496.865i −1.70078 + 0.981947i
\(507\) 0 0
\(508\) 961.608 1665.55i 1.89293 3.27865i
\(509\) 732.292 + 422.789i 1.43869 + 0.830627i 0.997759 0.0669144i \(-0.0213154\pi\)
0.440930 + 0.897542i \(0.354649\pi\)
\(510\) 0 0
\(511\) −376.687 652.440i −0.737156 1.27679i
\(512\) 697.860i 1.36301i
\(513\) 0 0
\(514\) −870.311 −1.69321
\(515\) −332.845 + 192.168i −0.646300 + 0.373142i
\(516\) 0 0
\(517\) 158.308 274.197i 0.306204 0.530361i
\(518\) −1049.40 605.872i −2.02587 1.16964i
\(519\) 0 0
\(520\) −73.0575 126.539i −0.140495 0.243345i
\(521\) 260.960i 0.500883i 0.968132 + 0.250442i \(0.0805758\pi\)
−0.968132 + 0.250442i \(0.919424\pi\)
\(522\) 0 0
\(523\) 553.330 1.05799 0.528996 0.848624i \(-0.322569\pi\)
0.528996 + 0.848624i \(0.322569\pi\)
\(524\) 2004.89 1157.53i 3.82613 2.20902i
\(525\) 0 0
\(526\) 20.1648 34.9265i 0.0383362 0.0664003i
\(527\) −43.8615 25.3234i −0.0832286 0.0480521i
\(528\) 0 0
\(529\) 361.983 + 626.973i 0.684278 + 1.18520i
\(530\) 839.475i 1.58392i
\(531\) 0 0
\(532\) −534.103 −1.00395
\(533\) 43.5996 25.1723i 0.0818005 0.0472275i
\(534\) 0 0
\(535\) −110.244 + 190.949i −0.206064 + 0.356914i
\(536\) −1617.53 933.884i −3.01779 1.74232i
\(537\) 0 0
\(538\) 109.219 + 189.174i 0.203010 + 0.351624i
\(539\) 27.9888i 0.0519273i
\(540\) 0 0
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) −212.276 + 122.558i −0.391654 + 0.226121i
\(543\) 0 0
\(544\) 69.4102 120.222i 0.127592 0.220996i
\(545\) −5.08622 2.93653i −0.00933252 0.00538813i
\(546\) 0 0
\(547\) 303.604 + 525.858i 0.555035 + 0.961348i 0.997901 + 0.0647606i \(0.0206284\pi\)
−0.442866 + 0.896588i \(0.646038\pi\)
\(548\) 1773.42i 3.23616i
\(549\) 0 0
\(550\) −140.368 −0.255215
\(551\) −104.861 + 60.5412i −0.190309 + 0.109875i
\(552\) 0 0
\(553\) 292.344 506.354i 0.528650 0.915649i
\(554\) −868.064 501.177i −1.56690 0.904651i
\(555\) 0 0
\(556\) 159.730 + 276.661i 0.287284 + 0.497591i
\(557\) 686.808i 1.23305i −0.787336 0.616524i \(-0.788540\pi\)
0.787336 0.616524i \(-0.211460\pi\)
\(558\) 0 0
\(559\) 120.593 0.215729
\(560\) −610.116 + 352.251i −1.08949 + 0.629019i
\(561\) 0 0
\(562\) −343.934 + 595.712i −0.611983 + 1.05999i
\(563\) 208.976 + 120.652i 0.371182 + 0.214302i 0.673975 0.738754i \(-0.264586\pi\)
−0.302792 + 0.953057i \(0.597919\pi\)
\(564\) 0 0
\(565\) 3.05685 + 5.29461i 0.00541035 + 0.00937099i
\(566\) 1728.55i 3.05397i
\(567\) 0 0
\(568\) 514.883 0.906484
\(569\) 666.084 384.564i 1.17062 0.675859i 0.216796 0.976217i \(-0.430439\pi\)
0.953827 + 0.300358i \(0.0971061\pi\)
\(570\) 0 0
\(571\) −48.7253 + 84.3947i −0.0853333 + 0.147802i −0.905533 0.424275i \(-0.860529\pi\)
0.820200 + 0.572077i \(0.193862\pi\)
\(572\) −190.134 109.774i −0.332402 0.191913i
\(573\) 0 0
\(574\) −232.829 403.272i −0.405626 0.702565i
\(575\) 176.986i 0.307802i
\(576\) 0 0
\(577\) 277.283 0.480560 0.240280 0.970704i \(-0.422761\pi\)
0.240280 + 0.970704i \(0.422761\pi\)
\(578\) 923.493 533.179i 1.59774 0.922454i
\(579\) 0 0
\(580\) −182.639 + 316.340i −0.314895 + 0.545414i
\(581\) 124.191 + 71.7018i 0.213754 + 0.123411i
\(582\) 0 0
\(583\) 377.443 + 653.750i 0.647415 + 1.12136i
\(584\) 2311.25i 3.95761i
\(585\) 0 0
\(586\) −1071.52 −1.82854
\(587\) −405.017 + 233.836i −0.689977 + 0.398358i −0.803603 0.595165i \(-0.797087\pi\)
0.113626 + 0.993524i \(0.463753\pi\)
\(588\) 0 0
\(589\) 98.3565 170.358i 0.166989 0.289233i
\(590\) −34.4235 19.8744i −0.0583449 0.0336855i
\(591\) 0 0
\(592\) 968.922 + 1678.22i 1.63669 + 2.83483i
\(593\) 254.411i 0.429023i 0.976721 + 0.214512i \(0.0688160\pi\)
−0.976721 + 0.214512i \(0.931184\pi\)
\(594\) 0 0
\(595\) 30.8669 0.0518772
\(596\) −801.577 + 462.791i −1.34493 + 0.776495i
\(597\) 0 0
\(598\) −193.988 + 335.997i −0.324394 + 0.561867i
\(599\) −352.081 203.274i −0.587780 0.339355i 0.176439 0.984312i \(-0.443542\pi\)
−0.764219 + 0.644956i \(0.776876\pi\)
\(600\) 0 0
\(601\) −249.967 432.956i −0.415919 0.720393i 0.579605 0.814897i \(-0.303207\pi\)
−0.995524 + 0.0945042i \(0.969873\pi\)
\(602\) 1115.41i 1.85285i
\(603\) 0 0
\(604\) 2263.59 3.74766
\(605\) 125.002 72.1701i 0.206615 0.119289i
\(606\) 0 0
\(607\) −29.9627 + 51.8970i −0.0493620 + 0.0854975i −0.889651 0.456642i \(-0.849052\pi\)
0.840289 + 0.542139i \(0.182385\pi\)
\(608\) 466.944 + 269.590i 0.767999 + 0.443405i
\(609\) 0 0
\(610\) −321.364 556.619i −0.526826 0.912490i
\(611\) 123.614i 0.202314i
\(612\) 0 0
\(613\) −373.866 −0.609896 −0.304948 0.952369i \(-0.598639\pi\)
−0.304948 + 0.952369i \(0.598639\pi\)
\(614\) −766.071 + 442.291i −1.24767 + 0.720344i
\(615\) 0 0
\(616\) −607.650 + 1052.48i −0.986444 + 1.70857i
\(617\) 320.088 + 184.803i 0.518782 + 0.299519i 0.736436 0.676507i \(-0.236507\pi\)
−0.217654 + 0.976026i \(0.569841\pi\)
\(618\) 0 0
\(619\) −598.225 1036.16i −0.966438 1.67392i −0.705701 0.708510i \(-0.749368\pi\)
−0.260738 0.965410i \(-0.583966\pi\)
\(620\) 593.438i 0.957158i
\(621\) 0 0
\(622\) −1935.51 −3.11175
\(623\) 182.719 105.493i 0.293289 0.169331i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) 1602.54 + 925.224i 2.55996 + 1.47799i
\(627\) 0 0
\(628\) −7.89377 13.6724i −0.0125697 0.0217713i
\(629\) 84.9044i 0.134983i
\(630\) 0 0
\(631\) 628.525 0.996078 0.498039 0.867155i \(-0.334054\pi\)
0.498039 + 0.867155i \(0.334054\pi\)
\(632\) −1553.43 + 896.870i −2.45795 + 1.41910i
\(633\) 0 0
\(634\) 409.541 709.345i 0.645963 1.11884i
\(635\) −373.858 215.847i −0.588753 0.339917i
\(636\) 0 0
\(637\) −5.46374 9.46347i −0.00857730 0.0148563i
\(638\) 460.364i 0.721573i
\(639\) 0 0
\(640\) 176.467 0.275730
\(641\) −824.417 + 475.977i −1.28614 + 0.742554i −0.977964 0.208774i \(-0.933053\pi\)
−0.308178 + 0.951329i \(0.599719\pi\)
\(642\) 0 0
\(643\) 35.7759 61.9656i 0.0556390 0.0963696i −0.836864 0.547410i \(-0.815614\pi\)
0.892503 + 0.451041i \(0.148947\pi\)
\(644\) 2217.41 + 1280.22i 3.44318 + 1.98792i
\(645\) 0 0
\(646\) −26.2252 45.4233i −0.0405962 0.0703147i
\(647\) 900.292i 1.39149i 0.718290 + 0.695744i \(0.244925\pi\)
−0.718290 + 0.695744i \(0.755075\pi\)
\(648\) 0 0
\(649\) −35.7436 −0.0550748
\(650\) −47.4608 + 27.4015i −0.0730166 + 0.0421562i
\(651\) 0 0
\(652\) −207.604 + 359.580i −0.318410 + 0.551503i
\(653\) 222.825 + 128.648i 0.341233 + 0.197011i 0.660817 0.750547i \(-0.270210\pi\)
−0.319584 + 0.947558i \(0.603543\pi\)
\(654\) 0 0
\(655\) −259.824 450.029i −0.396678 0.687066i
\(656\) 744.690i 1.13520i
\(657\) 0 0
\(658\) −1143.36 −1.73763
\(659\) −477.967 + 275.954i −0.725291 + 0.418747i −0.816697 0.577067i \(-0.804197\pi\)
0.0914057 + 0.995814i \(0.470864\pi\)
\(660\) 0 0
\(661\) 523.413 906.578i 0.791851 1.37153i −0.132969 0.991120i \(-0.542451\pi\)
0.924820 0.380405i \(-0.124216\pi\)
\(662\) 307.309 + 177.425i 0.464214 + 0.268014i
\(663\) 0 0
\(664\) −219.971 381.002i −0.331282 0.573798i
\(665\) 119.887i 0.180282i
\(666\) 0 0
\(667\) 580.460 0.870254
\(668\) −79.8342 + 46.0923i −0.119512 + 0.0690004i
\(669\) 0 0
\(670\) −350.270 + 606.685i −0.522791 + 0.905500i
\(671\) −500.531 288.982i −0.745948 0.430673i
\(672\) 0 0
\(673\) −118.875 205.898i −0.176635 0.305940i 0.764091 0.645108i \(-0.223188\pi\)
−0.940726 + 0.339168i \(0.889854\pi\)
\(674\) 1927.98i 2.86050i
\(675\) 0 0
\(676\) 1597.82 2.36364
\(677\) 145.591 84.0570i 0.215053 0.124161i −0.388605 0.921405i \(-0.627043\pi\)
0.603658 + 0.797244i \(0.293709\pi\)
\(678\) 0 0
\(679\) −347.066 + 601.136i −0.511143 + 0.885325i
\(680\) −82.0087 47.3477i −0.120601 0.0696290i
\(681\) 0 0
\(682\) −373.958 647.714i −0.548325 0.949727i
\(683\) 995.446i 1.45746i −0.684800 0.728731i \(-0.740111\pi\)
0.684800 0.728731i \(-0.259889\pi\)
\(684\) 0 0
\(685\) 398.070 0.581123
\(686\) 1063.82 614.194i 1.55075 0.895327i
\(687\) 0 0
\(688\) −891.896 + 1544.81i −1.29636 + 2.24536i
\(689\) 255.239 + 147.362i 0.370449 + 0.213879i
\(690\) 0 0
\(691\) 298.570 + 517.138i 0.432084 + 0.748391i 0.997053 0.0767211i \(-0.0244451\pi\)
−0.564969 + 0.825112i \(0.691112\pi\)
\(692\) 1468.19i 2.12167i
\(693\) 0 0
\(694\) 416.355 0.599936
\(695\) 62.1006 35.8538i 0.0893534 0.0515882i
\(696\) 0 0
\(697\) 16.3139 28.2564i 0.0234058 0.0405401i
\(698\) −2007.13 1158.82i −2.87555 1.66020i
\(699\) 0 0
\(700\) 180.836 + 313.218i 0.258338 + 0.447454i
\(701\) 413.729i 0.590199i −0.955467 0.295099i \(-0.904647\pi\)
0.955467 0.295099i \(-0.0953528\pi\)
\(702\) 0 0
\(703\) 329.769 0.469089
\(704\) 646.058 373.002i 0.917696 0.529832i
\(705\) 0 0
\(706\) −1052.91 + 1823.69i −1.49137 + 2.58312i
\(707\) −855.497 493.921i −1.21004 0.698616i
\(708\) 0 0
\(709\) 328.568 + 569.096i 0.463424 + 0.802674i 0.999129 0.0417311i \(-0.0132873\pi\)
−0.535705 + 0.844405i \(0.679954\pi\)
\(710\) 193.116i 0.271994i
\(711\) 0 0
\(712\) −647.277 −0.909096
\(713\) −816.684 + 471.513i −1.14542 + 0.661308i
\(714\) 0 0
\(715\) −24.6404 + 42.6784i −0.0344621 + 0.0596901i
\(716\) 1380.53 + 797.051i 1.92812 + 1.11320i
\(717\) 0 0
\(718\) −775.572 1343.33i −1.08018 1.87093i
\(719\) 217.226i 0.302122i 0.988524 + 0.151061i \(0.0482690\pi\)
−0.988524 + 0.151061i \(0.951731\pi\)
\(720\) 0 0
\(721\) 1248.06 1.73101
\(722\) −991.751 + 572.588i −1.37362 + 0.793058i
\(723\) 0 0
\(724\) −151.093 + 261.701i −0.208692 + 0.361466i
\(725\) 71.0073 + 40.9961i 0.0979411 + 0.0565463i
\(726\) 0 0
\(727\) −304.437 527.300i −0.418757 0.725309i 0.577057 0.816704i \(-0.304201\pi\)
−0.995815 + 0.0913946i \(0.970868\pi\)
\(728\) 474.481i 0.651760i
\(729\) 0 0
\(730\) 866.874 1.18750
\(731\) 67.6840 39.0774i 0.0925910 0.0534574i
\(732\) 0 0
\(733\) 440.351 762.709i 0.600751 1.04053i −0.391957 0.919984i \(-0.628202\pi\)
0.992708 0.120548i \(-0.0384650\pi\)
\(734\) −2031.79 1173.05i −2.76810 1.59816i
\(735\) 0 0
\(736\) −1292.39 2238.49i −1.75597 3.04143i
\(737\) 629.950i 0.854749i
\(738\) 0 0
\(739\) −917.157 −1.24108 −0.620540 0.784175i \(-0.713086\pi\)
−0.620540 + 0.784175i \(0.713086\pi\)
\(740\) 861.556 497.419i 1.16426 0.672188i
\(741\) 0 0
\(742\) 1363.02 2360.82i 1.83695 3.18170i
\(743\) 956.492 + 552.231i 1.28734 + 0.743245i 0.978179 0.207765i \(-0.0666191\pi\)
0.309159 + 0.951010i \(0.399952\pi\)
\(744\) 0 0
\(745\) 103.880 + 179.926i 0.139437 + 0.241511i
\(746\) 1460.74i 1.95810i
\(747\) 0 0
\(748\) −142.287 −0.190223
\(749\) 620.071 357.998i 0.827866 0.477968i
\(750\) 0 0
\(751\) −330.239 + 571.990i −0.439732 + 0.761638i −0.997669 0.0682453i \(-0.978260\pi\)
0.557936 + 0.829884i \(0.311593\pi\)
\(752\) 1583.51 + 914.241i 2.10573 + 1.21575i
\(753\) 0 0
\(754\) 89.8684 + 155.657i 0.119189 + 0.206441i
\(755\) 508.096i 0.672974i
\(756\) 0 0
\(757\) −353.728 −0.467276 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(758\) 169.702 97.9778i 0.223882 0.129258i
\(759\) 0 0
\(760\) 183.899 318.522i 0.241972 0.419108i
\(761\) −708.380 408.983i −0.930854 0.537429i −0.0437722 0.999042i \(-0.513938\pi\)
−0.887081 + 0.461613i \(0.847271\pi\)
\(762\) 0 0
\(763\) 9.53584 + 16.5166i 0.0124978 + 0.0216469i
\(764\) 2875.00i 3.76309i
\(765\) 0 0
\(766\) 414.465 0.541078
\(767\) −12.0855 + 6.97756i −0.0157568 + 0.00909721i
\(768\) 0 0
\(769\) 500.408 866.732i 0.650725 1.12709i −0.332222 0.943201i \(-0.607798\pi\)
0.982947 0.183888i \(-0.0588684\pi\)
\(770\) 394.751 + 227.910i 0.512664 + 0.295987i
\(771\) 0 0
\(772\) −471.530 816.713i −0.610790 1.05792i
\(773\) 860.440i 1.11312i −0.830808 0.556559i \(-0.812121\pi\)
0.830808 0.556559i \(-0.187879\pi\)
\(774\) 0 0
\(775\) −133.206 −0.171879
\(776\) 1844.20 1064.75i 2.37655 1.37210i
\(777\) 0 0
\(778\) 197.633 342.310i 0.254027 0.439987i
\(779\) 109.748 + 63.3632i 0.140884 + 0.0813391i
\(780\) 0 0
\(781\) −86.8283 150.391i −0.111176 0.192562i
\(782\) 251.442i 0.321538i
\(783\) 0 0
\(784\) 161.638 0.206171
\(785\) −3.06898 + 1.77187i −0.00390952 + 0.00225716i
\(786\) 0 0
\(787\) −463.491 + 802.789i −0.588933 + 1.02006i 0.405439 + 0.914122i \(0.367119\pi\)
−0.994372 + 0.105940i \(0.966215\pi\)
\(788\) 1119.42 + 646.297i 1.42058 + 0.820174i
\(789\) 0 0
\(790\) 336.387 + 582.640i 0.425807 + 0.737519i
\(791\) 19.8531i 0.0250987i
\(792\) 0 0
\(793\) −225.651 −0.284553
\(794\) 323.236 186.620i 0.407098 0.235038i
\(795\) 0 0
\(796\) 679.534 1176.99i 0.853686 1.47863i
\(797\) 825.230 + 476.447i 1.03542 + 0.597800i 0.918533 0.395345i \(-0.129375\pi\)
0.116888 + 0.993145i \(0.462708\pi\)
\(798\) 0 0
\(799\) −40.0564 69.3797i −0.0501332 0.0868332i
\(800\) 365.111i 0.456389i
\(801\) 0 0
\(802\) 587.129 0.732082
\(803\) 675.087 389.762i 0.840707 0.485382i
\(804\) 0 0
\(805\) 287.365 497.731i 0.356975 0.618299i
\(806\) −252.883 146.002i −0.313750 0.181144i
\(807\) 0 0
\(808\) 1515.28 + 2624.55i 1.87535 + 3.24820i
\(809\) 1425.22i 1.76171i 0.473387 + 0.880855i \(0.343031\pi\)
−0.473387 + 0.880855i \(0.656969\pi\)
\(810\) 0 0
\(811\) −473.774 −0.584185 −0.292093 0.956390i \(-0.594352\pi\)
−0.292093 + 0.956390i \(0.594352\pi\)
\(812\) 1027.26 593.087i 1.26509 0.730402i
\(813\) 0 0
\(814\) 626.903 1085.83i 0.770151 1.33394i
\(815\) 80.7131 + 46.5997i 0.0990345 + 0.0571776i
\(816\) 0 0
\(817\) 151.777 + 262.885i 0.185773 + 0.321769i
\(818\) 2560.42i 3.13010i
\(819\) 0 0
\(820\) 382.305 0.466225
\(821\) 63.4905 36.6562i 0.0773331 0.0446483i −0.460835 0.887486i \(-0.652450\pi\)
0.538168 + 0.842838i \(0.319117\pi\)
\(822\) 0 0
\(823\) −316.027 + 547.374i −0.383994 + 0.665096i −0.991629 0.129120i \(-0.958785\pi\)
0.607635 + 0.794216i \(0.292118\pi\)
\(824\) −3315.90 1914.44i −4.02416 2.32335i
\(825\) 0 0
\(826\) 64.5385 + 111.784i 0.0781338 + 0.135332i
\(827\) 226.153i 0.273462i −0.990608 0.136731i \(-0.956340\pi\)
0.990608 0.136731i \(-0.0436597\pi\)
\(828\) 0 0
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) −142.901 + 82.5042i −0.172170 + 0.0994026i
\(831\) 0 0
\(832\) 145.629 252.236i 0.175034 0.303168i
\(833\) −6.13317 3.54099i −0.00736275 0.00425089i
\(834\) 0 0
\(835\) 10.3461 + 17.9200i 0.0123905 + 0.0214610i
\(836\) 552.642i 0.661055i
\(837\) 0 0
\(838\) 192.792 0.230061
\(839\) −511.329 + 295.216i −0.609450 + 0.351866i −0.772750 0.634710i \(-0.781119\pi\)
0.163300 + 0.986576i \(0.447786\pi\)
\(840\) 0 0
\(841\) −286.046 + 495.446i −0.340126 + 0.589115i
\(842\) −47.7379 27.5615i −0.0566959 0.0327334i
\(843\) 0 0
\(844\) 788.120 + 1365.06i 0.933791 + 1.61737i
\(845\) 358.655i 0.424444i
\(846\) 0 0
\(847\) −468.718 −0.553386
\(848\) −3775.47 + 2179.77i −4.45220 + 2.57048i
\(849\) 0 0
\(850\) −17.7586 + 30.7588i −0.0208925 + 0.0361868i
\(851\) −1369.09 790.444i −1.60880 0.928841i
\(852\) 0 0
\(853\) −693.749 1201.61i −0.813305 1.40869i −0.910538 0.413424i \(-0.864333\pi\)
0.0972332 0.995262i \(-0.469001\pi\)
\(854\) 2087.14i 2.44396i
\(855\) 0 0
\(856\) −2196.58 −2.56610
\(857\) 683.058 394.363i 0.797033 0.460167i −0.0453994 0.998969i \(-0.514456\pi\)
0.842433 + 0.538801i \(0.181123\pi\)
\(858\) 0 0
\(859\) −413.601 + 716.378i −0.481491 + 0.833968i −0.999774 0.0212416i \(-0.993238\pi\)
0.518283 + 0.855209i \(0.326571\pi\)
\(860\) 793.065 + 457.876i 0.922169 + 0.532414i
\(861\) 0 0
\(862\) −72.2667 125.170i −0.0838361 0.145208i
\(863\) 1089.70i 1.26268i −0.775504 0.631342i \(-0.782504\pi\)
0.775504 0.631342i \(-0.217496\pi\)
\(864\) 0 0
\(865\) −329.558 −0.380992
\(866\) −1762.45 + 1017.55i −2.03516 + 1.17500i
\(867\) 0 0
\(868\) −963.540 + 1668.90i −1.11007 + 1.92270i
\(869\) 523.930 + 302.491i 0.602912 + 0.348091i
\(870\) 0 0
\(871\) 122.974 + 212.996i 0.141187 + 0.244542i
\(872\) 58.5093i 0.0670979i
\(873\) 0 0
\(874\) −976.605 −1.11740
\(875\) 70.3064 40.5914i 0.0803502 0.0463902i
\(876\) 0 0
\(877\) −213.875 + 370.443i −0.243872 + 0.422398i −0.961814 0.273705i \(-0.911751\pi\)
0.717942 + 0.696103i \(0.245084\pi\)
\(878\) −813.575 469.718i −0.926623 0.534986i
\(879\) 0 0
\(880\) −364.478 631.294i −0.414179 0.717379i
\(881\) 1113.87i 1.26432i 0.774837 + 0.632161i \(0.217832\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(882\) 0 0
\(883\) −408.581 −0.462719 −0.231359 0.972868i \(-0.574317\pi\)
−0.231359 + 0.972868i \(0.574317\pi\)
\(884\) −48.1094 + 27.7760i −0.0544224 + 0.0314208i
\(885\) 0 0
\(886\) −1365.46 + 2365.05i −1.54116 + 2.66936i
\(887\) 755.098 + 435.956i 0.851294 + 0.491495i 0.861087 0.508457i \(-0.169784\pi\)
−0.00979311 + 0.999952i \(0.503117\pi\)
\(888\) 0 0
\(889\) 700.924 + 1214.04i 0.788441 + 1.36562i
\(890\) 242.773i 0.272778i
\(891\) 0 0
\(892\) 2054.60 2.30336
\(893\) 269.471 155.579i 0.301760 0.174221i
\(894\) 0 0
\(895\) 178.910 309.881i 0.199899 0.346236i
\(896\) −496.272 286.523i −0.553875 0.319780i
\(897\) 0 0
\(898\) −176.965 306.512i −0.197066 0.341328i
\(899\) 436.874i 0.485956i
\(900\) 0 0
\(901\) 191.008 0.211995
\(902\) 417.270 240.911i 0.462606 0.267085i
\(903\) 0 0
\(904\) −30.4533 + 52.7466i −0.0336872 + 0.0583480i
\(905\) 58.7427 + 33.9151i 0.0649091 + 0.0374753i
\(906\) 0 0
\(907\) 843.097 + 1460.29i 0.929544 + 1.61002i 0.784085 + 0.620653i \(0.213133\pi\)
0.145459 + 0.989364i \(0.453534\pi\)
\(908\) 1467.33i 1.61600i
\(909\) 0 0
\(910\) 177.963 0.195563
\(911\) 383.084 221.173i 0.420509 0.242781i −0.274786 0.961505i \(-0.588607\pi\)
0.695295 + 0.718724i \(0.255274\pi\)
\(912\) 0 0
\(913\) −74.1907 + 128.502i −0.0812603 + 0.140747i
\(914\) 1321.60 + 763.024i 1.44595 + 0.834819i
\(915\) 0 0
\(916\) −135.232 234.228i −0.147633 0.255708i
\(917\) 1687.46i 1.84020i
\(918\) 0 0
\(919\) −182.236 −0.198298 −0.0991489 0.995073i \(-0.531612\pi\)
−0.0991489 + 0.995073i \(0.531612\pi\)
\(920\) −1526.97 + 881.597i −1.65975 + 0.958258i
\(921\) 0 0
\(922\) 1103.96 1912.12i 1.19736 2.07388i
\(923\) −58.7162 33.8998i −0.0636145 0.0367279i
\(924\) 0 0
\(925\) −111.653 193.389i −0.120706 0.209069i
\(926\) 2996.47i 3.23592i
\(927\) 0 0
\(928\) −1197.45 −1.29035
\(929\) 1150.27 664.111i 1.23819 0.714867i 0.269463 0.963011i \(-0.413154\pi\)
0.968723 + 0.248144i \(0.0798205\pi\)
\(930\) 0 0
\(931\) 13.7532 23.8213i 0.0147725 0.0255868i
\(932\) −341.644 197.248i −0.366571 0.211640i
\(933\) 0 0
\(934\) −38.5671 66.8003i −0.0412924 0.0715206i
\(935\) 31.9383i 0.0341587i
\(936\) 0 0
\(937\) −276.582 −0.295178 −0.147589 0.989049i \(-0.547151\pi\)
−0.147589 + 0.989049i \(0.547151\pi\)
\(938\) 1970.10 1137.44i 2.10032 1.21262i
\(939\) 0 0
\(940\) 469.348 812.934i 0.499306 0.864823i
\(941\) −1083.50 625.557i −1.15143 0.664779i −0.202196 0.979345i \(-0.564808\pi\)
−0.949236 + 0.314566i \(0.898141\pi\)
\(942\) 0 0
\(943\) −303.758 526.124i −0.322119 0.557926i
\(944\) 206.422i 0.218668i
\(945\) 0 0
\(946\) 1154.13 1.22001
\(947\) 935.323 540.009i 0.987670 0.570232i 0.0830930 0.996542i \(-0.473520\pi\)
0.904577 + 0.426310i \(0.140187\pi\)
\(948\) 0 0
\(949\) 152.172 263.570i 0.160350 0.277734i
\(950\) −119.468 68.9746i −0.125755 0.0726048i
\(951\) 0 0
\(952\) 153.753 + 266.308i 0.161505 + 0.279735i
\(953\) 328.534i 0.344737i 0.985033 + 0.172369i \(0.0551420\pi\)
−0.985033 + 0.172369i \(0.944858\pi\)
\(954\) 0 0
\(955\) −645.336 −0.675745
\(956\) −547.294 + 315.980i −0.572483 + 0.330523i
\(957\) 0 0
\(958\) −939.239 + 1626.81i −0.980416 + 1.69813i
\(959\) −1119.47 646.328i −1.16733 0.673961i
\(960\) 0 0
\(961\) 125.623 + 217.585i 0.130721 + 0.226416i
\(962\) 489.515i 0.508851i
\(963\) 0 0
\(964\) 1377.04 1.42846
\(965\) −183.323 + 105.842i −0.189972 + 0.109681i
\(966\) 0 0
\(967\) 298.854 517.631i 0.309053 0.535296i −0.669102 0.743170i \(-0.733321\pi\)
0.978155 + 0.207875i \(0.0666546\pi\)
\(968\) 1245.31 + 718.981i 1.28648 + 0.742749i
\(969\) 0 0
\(970\) −399.354 691.701i −0.411705 0.713094i
\(971\) 711.597i 0.732850i 0.930448 + 0.366425i \(0.119418\pi\)
−0.930448 + 0.366425i \(0.880582\pi\)
\(972\) 0 0
\(973\) −232.857 −0.239319
\(974\) 260.279 150.272i 0.267226 0.154283i
\(975\) 0 0
\(976\) 1668.90 2890.61i 1.70994 2.96169i
\(977\) −292.262 168.738i −0.299142 0.172710i 0.342915 0.939366i \(-0.388586\pi\)
−0.642058 + 0.766656i \(0.721919\pi\)
\(978\) 0 0
\(979\) 109.155 + 189.062i 0.111496 + 0.193117i
\(980\) 82.9807i 0.0846742i
\(981\) 0 0
\(982\) 1803.38 1.83643
\(983\) 274.504 158.485i 0.279252 0.161226i −0.353833 0.935309i \(-0.615122\pi\)
0.633085 + 0.774083i \(0.281789\pi\)
\(984\) 0 0
\(985\) 145.071 251.270i 0.147280 0.255097i
\(986\) 100.879 + 58.2427i 0.102312 + 0.0590697i
\(987\) 0 0
\(988\) −107.882 186.857i −0.109193 0.189127i
\(989\) 1455.21i 1.47140i
\(990\) 0 0
\(991\) 685.922 0.692152 0.346076 0.938207i \(-0.387514\pi\)
0.346076 + 0.938207i \(0.387514\pi\)
\(992\) 1684.76 972.700i 1.69835 0.980544i
\(993\) 0 0
\(994\) −313.554 + 543.092i −0.315447 + 0.546370i
\(995\) −264.192 152.532i −0.265520 0.153298i
\(996\) 0 0
\(997\) −293.035 507.551i −0.293917 0.509078i 0.680816 0.732455i \(-0.261625\pi\)
−0.974732 + 0.223376i \(0.928292\pi\)
\(998\) 130.823i 0.131086i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.i.a.71.8 16
3.2 odd 2 45.3.i.a.41.1 yes 16
4.3 odd 2 2160.3.bs.c.881.1 16
5.2 odd 4 675.3.i.c.449.16 32
5.3 odd 4 675.3.i.c.449.1 32
5.4 even 2 675.3.j.b.476.1 16
9.2 odd 6 inner 135.3.i.a.116.8 16
9.4 even 3 405.3.c.a.161.16 16
9.5 odd 6 405.3.c.a.161.1 16
9.7 even 3 45.3.i.a.11.1 16
12.11 even 2 720.3.bs.c.401.2 16
15.2 even 4 225.3.i.b.149.1 32
15.8 even 4 225.3.i.b.149.16 32
15.14 odd 2 225.3.j.b.176.8 16
36.7 odd 6 720.3.bs.c.641.2 16
36.11 even 6 2160.3.bs.c.1601.1 16
45.2 even 12 675.3.i.c.224.1 32
45.7 odd 12 225.3.i.b.74.16 32
45.29 odd 6 675.3.j.b.251.1 16
45.34 even 6 225.3.j.b.101.8 16
45.38 even 12 675.3.i.c.224.16 32
45.43 odd 12 225.3.i.b.74.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 9.7 even 3
45.3.i.a.41.1 yes 16 3.2 odd 2
135.3.i.a.71.8 16 1.1 even 1 trivial
135.3.i.a.116.8 16 9.2 odd 6 inner
225.3.i.b.74.1 32 45.43 odd 12
225.3.i.b.74.16 32 45.7 odd 12
225.3.i.b.149.1 32 15.2 even 4
225.3.i.b.149.16 32 15.8 even 4
225.3.j.b.101.8 16 45.34 even 6
225.3.j.b.176.8 16 15.14 odd 2
405.3.c.a.161.1 16 9.5 odd 6
405.3.c.a.161.16 16 9.4 even 3
675.3.i.c.224.1 32 45.2 even 12
675.3.i.c.224.16 32 45.38 even 12
675.3.i.c.449.1 32 5.3 odd 4
675.3.i.c.449.16 32 5.2 odd 4
675.3.j.b.251.1 16 45.29 odd 6
675.3.j.b.476.1 16 5.4 even 2
720.3.bs.c.401.2 16 12.11 even 2
720.3.bs.c.641.2 16 36.7 odd 6
2160.3.bs.c.881.1 16 4.3 odd 2
2160.3.bs.c.1601.1 16 36.11 even 6