Properties

Label 225.3.j.b.101.8
Level $225$
Weight $3$
Character 225.101
Analytic conductor $6.131$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,3,Mod(101,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.101"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.8
Root \(3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 225.101
Dual form 225.3.j.b.176.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.23594 + 1.86827i) q^{2} +(-2.62117 - 1.45927i) q^{3} +(4.98088 + 8.62715i) q^{4} +(-5.75562 - 9.61919i) q^{6} +(-3.63061 + 6.28840i) q^{7} +22.2764i q^{8} +(4.74103 + 7.65001i) q^{9} +(6.50668 + 3.75663i) q^{11} +(-0.466354 - 29.8817i) q^{12} +(1.46668 + 2.54036i) q^{13} +(-23.4969 + 13.5659i) q^{14} +(-21.6949 + 37.5766i) q^{16} -1.90107i q^{17} +(1.04942 + 33.6125i) q^{18} -7.38378 q^{19} +(18.6929 - 11.1849i) q^{21} +(14.0368 + 24.3125i) q^{22} +(30.6549 - 17.6986i) q^{23} +(32.5074 - 58.3902i) q^{24} +10.9606i q^{26} +(-1.26358 - 26.9704i) q^{27} -72.3346 q^{28} +(-14.2015 - 8.19922i) q^{29} +(-13.3206 - 23.0720i) q^{31} +(-63.2391 + 36.5111i) q^{32} +(-11.5731 - 19.3418i) q^{33} +(3.55172 - 6.15176i) q^{34} +(-42.3832 + 79.0054i) q^{36} +44.6613 q^{37} +(-23.8935 - 13.7949i) q^{38} +(-0.137323 - 8.79899i) q^{39} +(14.8634 - 8.58140i) q^{41} +(81.3857 - 1.27016i) q^{42} +(20.5554 - 35.6031i) q^{43} +74.8454i q^{44} +132.263 q^{46} +(-36.4950 - 21.0704i) q^{47} +(111.701 - 66.8359i) q^{48} +(-1.86263 - 3.22616i) q^{49} +(-2.77419 + 4.98303i) q^{51} +(-14.6107 + 25.3065i) q^{52} +100.474i q^{53} +(46.2992 - 89.6354i) q^{54} +(-140.083 - 80.8770i) q^{56} +(19.3541 + 10.7750i) q^{57} +(-30.6367 - 53.0644i) q^{58} +(-4.12003 + 2.37870i) q^{59} +(38.4629 - 66.6197i) q^{61} -99.5461i q^{62} +(-65.3191 + 2.03933i) q^{63} -99.2915 q^{64} +(-1.31425 - 84.2107i) q^{66} +(-41.9225 - 72.6119i) q^{67} +(16.4008 - 9.46903i) q^{68} +(-106.179 + 1.65710i) q^{69} +23.1134i q^{71} +(-170.415 + 105.613i) q^{72} +103.753 q^{73} +(144.521 + 83.4395i) q^{74} +(-36.7778 - 63.7010i) q^{76} +(-47.2464 + 27.2777i) q^{77} +(15.9945 - 28.7296i) q^{78} +(-40.2610 + 69.7340i) q^{79} +(-36.0452 + 72.5379i) q^{81} +64.1296 q^{82} +(17.1034 + 9.87463i) q^{83} +(189.601 + 105.556i) q^{84} +(133.032 - 76.8063i) q^{86} +(25.2595 + 42.2153i) q^{87} +(-83.6843 + 144.945i) q^{88} -29.0566i q^{89} -21.2997 q^{91} +(305.377 + 176.310i) q^{92} +(1.24719 + 79.9139i) q^{93} +(-78.7306 - 136.365i) q^{94} +(219.040 - 3.41849i) q^{96} +(-47.7972 + 82.7872i) q^{97} -13.9196i q^{98} +(2.11011 + 67.5864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} + 16 q^{4} - 22 q^{6} - 2 q^{7} + 8 q^{9} - 18 q^{11} + 22 q^{12} + 10 q^{13} - 54 q^{14} - 32 q^{16} + 8 q^{18} - 52 q^{19} + 72 q^{21} + 24 q^{22} + 54 q^{23} + 108 q^{24} - 34 q^{27} - 32 q^{28}+ \cdots - 824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.23594 + 1.86827i 1.61797 + 0.934136i 0.987444 + 0.157969i \(0.0504947\pi\)
0.630528 + 0.776167i \(0.282839\pi\)
\(3\) −2.62117 1.45927i −0.873722 0.486425i
\(4\) 4.98088 + 8.62715i 1.24522 + 2.15679i
\(5\) 0 0
\(6\) −5.75562 9.61919i −0.959271 1.60320i
\(7\) −3.63061 + 6.28840i −0.518658 + 0.898342i 0.481107 + 0.876662i \(0.340235\pi\)
−0.999765 + 0.0216804i \(0.993098\pi\)
\(8\) 22.2764i 2.78455i
\(9\) 4.74103 + 7.65001i 0.526781 + 0.850001i
\(10\) 0 0
\(11\) 6.50668 + 3.75663i 0.591516 + 0.341512i 0.765697 0.643202i \(-0.222394\pi\)
−0.174181 + 0.984714i \(0.555728\pi\)
\(12\) −0.466354 29.8817i −0.0388628 2.49014i
\(13\) 1.46668 + 2.54036i 0.112821 + 0.195412i 0.916907 0.399102i \(-0.130678\pi\)
−0.804085 + 0.594514i \(0.797345\pi\)
\(14\) −23.4969 + 13.5659i −1.67835 + 0.968995i
\(15\) 0 0
\(16\) −21.6949 + 37.5766i −1.35593 + 2.34854i
\(17\) 1.90107i 0.111828i −0.998436 0.0559139i \(-0.982193\pi\)
0.998436 0.0559139i \(-0.0178072\pi\)
\(18\) 1.04942 + 33.6125i 0.0583009 + 1.86736i
\(19\) −7.38378 −0.388620 −0.194310 0.980940i \(-0.562247\pi\)
−0.194310 + 0.980940i \(0.562247\pi\)
\(20\) 0 0
\(21\) 18.6929 11.1849i 0.890140 0.532614i
\(22\) 14.0368 + 24.3125i 0.638037 + 1.10511i
\(23\) 30.6549 17.6986i 1.33282 0.769506i 0.347091 0.937831i \(-0.387169\pi\)
0.985731 + 0.168326i \(0.0538360\pi\)
\(24\) 32.5074 58.3902i 1.35448 2.43293i
\(25\) 0 0
\(26\) 10.9606i 0.421562i
\(27\) −1.26358 26.9704i −0.0467992 0.998904i
\(28\) −72.3346 −2.58338
\(29\) −14.2015 8.19922i −0.489705 0.282732i 0.234747 0.972057i \(-0.424574\pi\)
−0.724452 + 0.689325i \(0.757907\pi\)
\(30\) 0 0
\(31\) −13.3206 23.0720i −0.429697 0.744257i 0.567149 0.823615i \(-0.308046\pi\)
−0.996846 + 0.0793581i \(0.974713\pi\)
\(32\) −63.2391 + 36.5111i −1.97622 + 1.14097i
\(33\) −11.5731 19.3418i −0.350701 0.586115i
\(34\) 3.55172 6.15176i 0.104462 0.180934i
\(35\) 0 0
\(36\) −42.3832 + 79.0054i −1.17731 + 2.19459i
\(37\) 44.6613 1.20706 0.603531 0.797340i \(-0.293760\pi\)
0.603531 + 0.797340i \(0.293760\pi\)
\(38\) −23.8935 13.7949i −0.628776 0.363024i
\(39\) −0.137323 8.79899i −0.00352110 0.225615i
\(40\) 0 0
\(41\) 14.8634 8.58140i 0.362522 0.209302i −0.307664 0.951495i \(-0.599547\pi\)
0.670187 + 0.742193i \(0.266214\pi\)
\(42\) 81.3857 1.27016i 1.93775 0.0302419i
\(43\) 20.5554 35.6031i 0.478033 0.827978i −0.521650 0.853160i \(-0.674683\pi\)
0.999683 + 0.0251818i \(0.00801646\pi\)
\(44\) 74.8454i 1.70103i
\(45\) 0 0
\(46\) 132.263 2.87529
\(47\) −36.4950 21.0704i −0.776490 0.448307i 0.0586949 0.998276i \(-0.481306\pi\)
−0.835185 + 0.549969i \(0.814639\pi\)
\(48\) 111.701 66.8359i 2.32710 1.39241i
\(49\) −1.86263 3.22616i −0.0380128 0.0658401i
\(50\) 0 0
\(51\) −2.77419 + 4.98303i −0.0543959 + 0.0977065i
\(52\) −14.6107 + 25.3065i −0.280975 + 0.486663i
\(53\) 100.474i 1.89573i 0.318671 + 0.947865i \(0.396764\pi\)
−0.318671 + 0.947865i \(0.603236\pi\)
\(54\) 46.2992 89.6354i 0.857393 1.65992i
\(55\) 0 0
\(56\) −140.083 80.8770i −2.50148 1.44423i
\(57\) 19.3541 + 10.7750i 0.339546 + 0.189035i
\(58\) −30.6367 53.0644i −0.528220 0.914903i
\(59\) −4.12003 + 2.37870i −0.0698310 + 0.0403169i −0.534509 0.845163i \(-0.679503\pi\)
0.464678 + 0.885480i \(0.346170\pi\)
\(60\) 0 0
\(61\) 38.4629 66.6197i 0.630539 1.09213i −0.356902 0.934142i \(-0.616167\pi\)
0.987442 0.157985i \(-0.0504996\pi\)
\(62\) 99.5461i 1.60558i
\(63\) −65.3191 + 2.03933i −1.03681 + 0.0323703i
\(64\) −99.2915 −1.55143
\(65\) 0 0
\(66\) −1.31425 84.2107i −0.0199129 1.27592i
\(67\) −41.9225 72.6119i −0.625709 1.08376i −0.988403 0.151852i \(-0.951476\pi\)
0.362694 0.931908i \(-0.381857\pi\)
\(68\) 16.4008 9.46903i 0.241189 0.139250i
\(69\) −106.179 + 1.65710i −1.53882 + 0.0240159i
\(70\) 0 0
\(71\) 23.1134i 0.325540i 0.986664 + 0.162770i \(0.0520429\pi\)
−0.986664 + 0.162770i \(0.947957\pi\)
\(72\) −170.415 + 105.613i −2.36687 + 1.46685i
\(73\) 103.753 1.42127 0.710637 0.703559i \(-0.248407\pi\)
0.710637 + 0.703559i \(0.248407\pi\)
\(74\) 144.521 + 83.4395i 1.95299 + 1.12756i
\(75\) 0 0
\(76\) −36.7778 63.7010i −0.483918 0.838171i
\(77\) −47.2464 + 27.2777i −0.613589 + 0.354256i
\(78\) 15.9945 28.7296i 0.205058 0.368328i
\(79\) −40.2610 + 69.7340i −0.509633 + 0.882709i 0.490305 + 0.871551i \(0.336885\pi\)
−0.999938 + 0.0111586i \(0.996448\pi\)
\(80\) 0 0
\(81\) −36.0452 + 72.5379i −0.445003 + 0.895529i
\(82\) 64.1296 0.782068
\(83\) 17.1034 + 9.87463i 0.206065 + 0.118971i 0.599481 0.800389i \(-0.295374\pi\)
−0.393417 + 0.919360i \(0.628707\pi\)
\(84\) 189.601 + 105.556i 2.25715 + 1.25662i
\(85\) 0 0
\(86\) 133.032 76.8063i 1.54689 0.893097i
\(87\) 25.2595 + 42.2153i 0.290339 + 0.485234i
\(88\) −83.6843 + 144.945i −0.950958 + 1.64711i
\(89\) 29.0566i 0.326478i −0.986587 0.163239i \(-0.947806\pi\)
0.986587 0.163239i \(-0.0521942\pi\)
\(90\) 0 0
\(91\) −21.2997 −0.234063
\(92\) 305.377 + 176.310i 3.31932 + 1.91641i
\(93\) 1.24719 + 79.9139i 0.0134107 + 0.859289i
\(94\) −78.7306 136.365i −0.837559 1.45070i
\(95\) 0 0
\(96\) 219.040 3.41849i 2.28167 0.0356092i
\(97\) −47.7972 + 82.7872i −0.492755 + 0.853476i −0.999965 0.00834602i \(-0.997343\pi\)
0.507210 + 0.861822i \(0.330677\pi\)
\(98\) 13.9196i 0.142036i
\(99\) 2.11011 + 67.5864i 0.0213143 + 0.682691i
\(100\) 0 0
\(101\) 117.817 + 68.0219i 1.16651 + 0.673484i 0.952855 0.303426i \(-0.0981305\pi\)
0.213653 + 0.976910i \(0.431464\pi\)
\(102\) −18.2868 + 10.9419i −0.179282 + 0.107273i
\(103\) −85.9401 148.853i −0.834370 1.44517i −0.894542 0.446983i \(-0.852498\pi\)
0.0601721 0.998188i \(-0.480835\pi\)
\(104\) −56.5901 + 32.6723i −0.544135 + 0.314157i
\(105\) 0 0
\(106\) −187.712 + 325.127i −1.77087 + 3.06724i
\(107\) 98.6056i 0.921548i 0.887518 + 0.460774i \(0.152428\pi\)
−0.887518 + 0.460774i \(0.847572\pi\)
\(108\) 226.384 145.238i 2.09615 1.34479i
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) 0 0
\(111\) −117.065 65.1731i −1.05464 0.587145i
\(112\) −157.531 272.852i −1.40653 2.43618i
\(113\) −2.36782 + 1.36706i −0.0209542 + 0.0120979i −0.510440 0.859913i \(-0.670518\pi\)
0.489486 + 0.872011i \(0.337184\pi\)
\(114\) 42.4983 + 71.0260i 0.372792 + 0.623035i
\(115\) 0 0
\(116\) 163.357i 1.40825i
\(117\) −12.4802 + 23.2640i −0.106668 + 0.198838i
\(118\) −17.7762 −0.150646
\(119\) 11.9547 + 6.90205i 0.100460 + 0.0580004i
\(120\) 0 0
\(121\) −32.2754 55.9027i −0.266739 0.462006i
\(122\) 248.928 143.718i 2.04039 1.17802i
\(123\) −51.4821 + 0.803465i −0.418554 + 0.00653224i
\(124\) 132.697 229.838i 1.07014 1.85353i
\(125\) 0 0
\(126\) −215.179 115.435i −1.70777 0.916149i
\(127\) −193.060 −1.52015 −0.760077 0.649833i \(-0.774839\pi\)
−0.760077 + 0.649833i \(0.774839\pi\)
\(128\) −68.3455 39.4593i −0.533950 0.308276i
\(129\) −105.834 + 63.3255i −0.820418 + 0.490896i
\(130\) 0 0
\(131\) −201.259 + 116.197i −1.53633 + 0.886999i −0.537278 + 0.843405i \(0.680547\pi\)
−0.999049 + 0.0435937i \(0.986119\pi\)
\(132\) 109.220 196.182i 0.827424 1.48623i
\(133\) 26.8076 46.4322i 0.201561 0.349114i
\(134\) 313.291i 2.33799i
\(135\) 0 0
\(136\) 42.3491 0.311390
\(137\) −154.172 89.0111i −1.12534 0.649716i −0.182582 0.983191i \(-0.558445\pi\)
−0.942759 + 0.333475i \(0.891779\pi\)
\(138\) −346.685 193.009i −2.51221 1.39861i
\(139\) −16.0343 27.7722i −0.115355 0.199800i 0.802567 0.596562i \(-0.203467\pi\)
−0.917922 + 0.396762i \(0.870134\pi\)
\(140\) 0 0
\(141\) 64.9120 + 108.485i 0.460369 + 0.769400i
\(142\) −43.1820 + 74.7935i −0.304099 + 0.526715i
\(143\) 22.0390i 0.154119i
\(144\) −390.318 + 12.1861i −2.71054 + 0.0846257i
\(145\) 0 0
\(146\) 335.739 + 193.839i 2.29958 + 1.32766i
\(147\) 0.174395 + 11.1744i 0.00118636 + 0.0760163i
\(148\) 222.453 + 385.299i 1.50306 + 2.60337i
\(149\) 80.4653 46.4567i 0.540036 0.311790i −0.205058 0.978750i \(-0.565738\pi\)
0.745093 + 0.666960i \(0.232405\pi\)
\(150\) 0 0
\(151\) 113.614 196.785i 0.752408 1.30321i −0.194245 0.980953i \(-0.562226\pi\)
0.946653 0.322256i \(-0.104441\pi\)
\(152\) 164.484i 1.08213i
\(153\) 14.5432 9.01305i 0.0950537 0.0589088i
\(154\) −203.849 −1.32369
\(155\) 0 0
\(156\) 75.2261 45.0114i 0.482219 0.288535i
\(157\) −0.792406 1.37249i −0.00504717 0.00874196i 0.863491 0.504365i \(-0.168273\pi\)
−0.868538 + 0.495623i \(0.834940\pi\)
\(158\) −260.564 + 150.437i −1.64914 + 0.952133i
\(159\) 146.619 263.358i 0.922131 1.65634i
\(160\) 0 0
\(161\) 257.027i 1.59644i
\(162\) −252.161 + 167.386i −1.55655 + 1.03325i
\(163\) 41.6801 0.255706 0.127853 0.991793i \(-0.459191\pi\)
0.127853 + 0.991793i \(0.459191\pi\)
\(164\) 148.066 + 85.4859i 0.902841 + 0.521256i
\(165\) 0 0
\(166\) 36.8970 + 63.9075i 0.222271 + 0.384985i
\(167\) −8.01405 + 4.62692i −0.0479884 + 0.0277061i −0.523802 0.851840i \(-0.675487\pi\)
0.475814 + 0.879546i \(0.342154\pi\)
\(168\) 249.159 + 416.412i 1.48309 + 2.47864i
\(169\) 80.1977 138.907i 0.474543 0.821932i
\(170\) 0 0
\(171\) −35.0068 56.4860i −0.204718 0.330327i
\(172\) 409.537 2.38103
\(173\) 127.637 + 73.6913i 0.737787 + 0.425962i 0.821264 0.570548i \(-0.193269\pi\)
−0.0834771 + 0.996510i \(0.526603\pi\)
\(174\) 2.86848 + 183.798i 0.0164855 + 1.05631i
\(175\) 0 0
\(176\) −282.323 + 162.999i −1.60411 + 0.926133i
\(177\) 14.2705 0.222714i 0.0806240 0.00125827i
\(178\) 54.2856 94.0254i 0.304975 0.528233i
\(179\) 160.022i 0.893977i 0.894540 + 0.446988i \(0.147504\pi\)
−0.894540 + 0.446988i \(0.852496\pi\)
\(180\) 0 0
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) −68.9246 39.7937i −0.378707 0.218646i
\(183\) −198.034 + 118.493i −1.08215 + 0.647505i
\(184\) 394.262 + 682.882i 2.14273 + 3.71132i
\(185\) 0 0
\(186\) −145.265 + 260.927i −0.780995 + 1.40283i
\(187\) 7.14163 12.3697i 0.0381905 0.0661480i
\(188\) 419.797i 2.23296i
\(189\) 174.188 + 89.9731i 0.921631 + 0.476048i
\(190\) 0 0
\(191\) −249.938 144.302i −1.30857 0.755506i −0.326716 0.945122i \(-0.605942\pi\)
−0.981858 + 0.189617i \(0.939275\pi\)
\(192\) 260.260 + 144.894i 1.35552 + 0.754654i
\(193\) −47.3339 81.9847i −0.245253 0.424791i 0.716949 0.697125i \(-0.245538\pi\)
−0.962203 + 0.272334i \(0.912205\pi\)
\(194\) −309.338 + 178.596i −1.59453 + 0.920600i
\(195\) 0 0
\(196\) 18.5551 32.1383i 0.0946686 0.163971i
\(197\) 129.755i 0.658657i −0.944215 0.329329i \(-0.893178\pi\)
0.944215 0.329329i \(-0.106822\pi\)
\(198\) −119.442 + 222.648i −0.603241 + 1.12449i
\(199\) 136.428 0.685570 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(200\) 0 0
\(201\) 3.92515 + 251.504i 0.0195281 + 1.25127i
\(202\) 254.167 + 440.230i 1.25825 + 2.17936i
\(203\) 103.120 59.5363i 0.507980 0.293282i
\(204\) −56.8072 + 0.886573i −0.278467 + 0.00434594i
\(205\) 0 0
\(206\) 642.238i 3.11766i
\(207\) 280.731 + 150.601i 1.35619 + 0.727539i
\(208\) −127.278 −0.611911
\(209\) −48.0439 27.7382i −0.229875 0.132718i
\(210\) 0 0
\(211\) −79.1144 137.030i −0.374950 0.649432i 0.615370 0.788239i \(-0.289007\pi\)
−0.990320 + 0.138806i \(0.955673\pi\)
\(212\) −866.802 + 500.448i −4.08869 + 2.36060i
\(213\) 33.7287 60.5840i 0.158351 0.284432i
\(214\) −184.222 + 319.082i −0.860851 + 1.49104i
\(215\) 0 0
\(216\) 600.804 28.1480i 2.78150 0.130315i
\(217\) 193.448 0.891463
\(218\) 8.49925 + 4.90704i 0.0389874 + 0.0225094i
\(219\) −271.954 151.404i −1.24180 0.691343i
\(220\) 0 0
\(221\) 4.82941 2.78826i 0.0218525 0.0126166i
\(222\) −257.054 429.605i −1.15790 1.93516i
\(223\) −103.124 + 178.616i −0.462440 + 0.800969i −0.999082 0.0428406i \(-0.986359\pi\)
0.536642 + 0.843810i \(0.319693\pi\)
\(224\) 530.230i 2.36710i
\(225\) 0 0
\(226\) −10.2162 −0.0452044
\(227\) 127.562 + 73.6481i 0.561948 + 0.324441i 0.753927 0.656958i \(-0.228157\pi\)
−0.191979 + 0.981399i \(0.561490\pi\)
\(228\) 3.44346 + 220.640i 0.0151029 + 0.967718i
\(229\) 13.5751 + 23.5127i 0.0592798 + 0.102676i 0.894142 0.447783i \(-0.147786\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(230\) 0 0
\(231\) 163.646 2.55398i 0.708426 0.0110562i
\(232\) 182.649 316.358i 0.787281 1.36361i
\(233\) 39.6011i 0.169962i 0.996383 + 0.0849808i \(0.0270829\pi\)
−0.996383 + 0.0849808i \(0.972917\pi\)
\(234\) −83.8487 + 51.9646i −0.358328 + 0.222071i
\(235\) 0 0
\(236\) −41.0428 23.6960i −0.173910 0.100407i
\(237\) 207.292 124.033i 0.874649 0.523345i
\(238\) 25.7898 + 44.6693i 0.108361 + 0.187686i
\(239\) 54.9394 31.7193i 0.229872 0.132717i −0.380641 0.924723i \(-0.624297\pi\)
0.610513 + 0.792006i \(0.290963\pi\)
\(240\) 0 0
\(241\) 69.1161 119.713i 0.286789 0.496733i −0.686253 0.727363i \(-0.740746\pi\)
0.973041 + 0.230630i \(0.0740789\pi\)
\(242\) 241.197i 0.996683i
\(243\) 200.333 137.534i 0.824416 0.565984i
\(244\) 766.317 3.14064
\(245\) 0 0
\(246\) −168.094 93.5827i −0.683310 0.380417i
\(247\) −10.8296 18.7575i −0.0438446 0.0759411i
\(248\) 513.961 296.735i 2.07242 1.19651i
\(249\) −30.4210 50.8415i −0.122173 0.204183i
\(250\) 0 0
\(251\) 186.477i 0.742936i 0.928446 + 0.371468i \(0.121145\pi\)
−0.928446 + 0.371468i \(0.878855\pi\)
\(252\) −342.941 553.360i −1.36088 2.19587i
\(253\) 265.949 1.05118
\(254\) −624.730 360.688i −2.45957 1.42003i
\(255\) 0 0
\(256\) 51.1416 + 88.5798i 0.199772 + 0.346015i
\(257\) −201.713 + 116.459i −0.784877 + 0.453149i −0.838156 0.545431i \(-0.816366\pi\)
0.0532790 + 0.998580i \(0.483033\pi\)
\(258\) −460.782 + 7.19128i −1.78598 + 0.0278732i
\(259\) −162.148 + 280.848i −0.626053 + 1.08435i
\(260\) 0 0
\(261\) −4.60553 147.514i −0.0176457 0.565188i
\(262\) −868.350 −3.31431
\(263\) 9.34728 + 5.39665i 0.0355410 + 0.0205196i 0.517665 0.855583i \(-0.326801\pi\)
−0.482124 + 0.876103i \(0.660135\pi\)
\(264\) 430.866 257.808i 1.63207 0.976545i
\(265\) 0 0
\(266\) 173.496 100.168i 0.652240 0.376571i
\(267\) −42.4015 + 76.1622i −0.158807 + 0.285252i
\(268\) 417.622 723.343i 1.55829 2.69904i
\(269\) 58.4601i 0.217324i 0.994079 + 0.108662i \(0.0346566\pi\)
−0.994079 + 0.108662i \(0.965343\pi\)
\(270\) 0 0
\(271\) −65.5995 −0.242065 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(272\) 71.4360 + 41.2436i 0.262632 + 0.151631i
\(273\) 55.8301 + 31.0821i 0.204506 + 0.113854i
\(274\) −332.594 576.069i −1.21385 2.10244i
\(275\) 0 0
\(276\) −543.161 907.767i −1.96797 3.28901i
\(277\) 134.128 232.317i 0.484218 0.838690i −0.515618 0.856819i \(-0.672438\pi\)
0.999836 + 0.0181286i \(0.00577084\pi\)
\(278\) 119.826i 0.431028i
\(279\) 113.347 211.288i 0.406263 0.757303i
\(280\) 0 0
\(281\) 159.428 + 92.0461i 0.567361 + 0.327566i 0.756095 0.654462i \(-0.227105\pi\)
−0.188734 + 0.982028i \(0.560438\pi\)
\(282\) 7.37144 + 472.326i 0.0261399 + 1.67491i
\(283\) −231.303 400.628i −0.817324 1.41565i −0.907647 0.419734i \(-0.862123\pi\)
0.0903234 0.995912i \(-0.471210\pi\)
\(284\) −199.402 + 115.125i −0.702121 + 0.405370i
\(285\) 0 0
\(286\) −41.1750 + 71.3171i −0.143968 + 0.249361i
\(287\) 124.623i 0.434226i
\(288\) −579.129 310.679i −2.01086 1.07875i
\(289\) 285.386 0.987495
\(290\) 0 0
\(291\) 246.094 147.250i 0.845683 0.506013i
\(292\) 516.782 + 895.093i 1.76980 + 3.06539i
\(293\) −248.349 + 143.384i −0.847608 + 0.489367i −0.859843 0.510559i \(-0.829439\pi\)
0.0122351 + 0.999925i \(0.496105\pi\)
\(294\) −20.3125 + 36.4855i −0.0690901 + 0.124100i
\(295\) 0 0
\(296\) 994.894i 3.36113i
\(297\) 93.0962 180.235i 0.313455 0.606850i
\(298\) 347.175 1.16502
\(299\) 89.9217 + 51.9163i 0.300741 + 0.173633i
\(300\) 0 0
\(301\) 149.257 + 258.521i 0.495872 + 0.858875i
\(302\) 735.294 424.522i 2.43475 1.40570i
\(303\) −209.556 350.225i −0.691605 1.15586i
\(304\) 160.190 277.458i 0.526942 0.912690i
\(305\) 0 0
\(306\) 63.8999 1.99502i 0.208823 0.00651966i
\(307\) 236.738 0.771133 0.385567 0.922680i \(-0.374006\pi\)
0.385567 + 0.922680i \(0.374006\pi\)
\(308\) −470.658 271.734i −1.52811 0.882254i
\(309\) 8.04646 + 515.578i 0.0260403 + 1.66854i
\(310\) 0 0
\(311\) 448.597 258.997i 1.44243 0.832789i 0.444421 0.895818i \(-0.353409\pi\)
0.998012 + 0.0630292i \(0.0200761\pi\)
\(312\) 196.010 3.05907i 0.628237 0.00980470i
\(313\) −247.615 + 428.882i −0.791102 + 1.37023i 0.134183 + 0.990957i \(0.457159\pi\)
−0.925285 + 0.379272i \(0.876174\pi\)
\(314\) 5.92172i 0.0188590i
\(315\) 0 0
\(316\) −802.141 −2.53842
\(317\) 189.840 + 109.604i 0.598864 + 0.345754i 0.768595 0.639736i \(-0.220956\pi\)
−0.169731 + 0.985491i \(0.554290\pi\)
\(318\) 966.475 578.289i 3.03923 1.81852i
\(319\) −61.6029 106.699i −0.193112 0.334481i
\(320\) 0 0
\(321\) 143.893 258.462i 0.448264 0.805177i
\(322\) −480.197 + 831.725i −1.49129 + 2.58300i
\(323\) 14.0371i 0.0434586i
\(324\) −805.332 + 50.3356i −2.48559 + 0.155357i
\(325\) 0 0
\(326\) 134.874 + 77.8697i 0.413725 + 0.238864i
\(327\) −6.88453 3.83281i −0.0210536 0.0117211i
\(328\) 191.163 + 331.104i 0.582813 + 1.00946i
\(329\) 264.998 152.997i 0.805466 0.465036i
\(330\) 0 0
\(331\) 47.4838 82.2443i 0.143455 0.248472i −0.785340 0.619064i \(-0.787512\pi\)
0.928796 + 0.370592i \(0.120845\pi\)
\(332\) 196.738i 0.592583i
\(333\) 211.741 + 341.659i 0.635858 + 1.02600i
\(334\) −34.5774 −0.103525
\(335\) 0 0
\(336\) 14.7494 + 945.072i 0.0438972 + 2.81272i
\(337\) −257.989 446.850i −0.765547 1.32597i −0.939957 0.341293i \(-0.889135\pi\)
0.174411 0.984673i \(-0.444198\pi\)
\(338\) 519.031 299.662i 1.53559 0.886575i
\(339\) 8.20138 0.127996i 0.0241929 0.000377570i
\(340\) 0 0
\(341\) 200.162i 0.586986i
\(342\) −7.74866 248.188i −0.0226569 0.725695i
\(343\) −328.750 −0.958454
\(344\) 793.109 + 457.902i 2.30555 + 1.33111i
\(345\) 0 0
\(346\) 275.351 + 476.922i 0.795812 + 1.37839i
\(347\) 96.4994 55.7140i 0.278096 0.160559i −0.354465 0.935069i \(-0.615337\pi\)
0.632561 + 0.774510i \(0.282004\pi\)
\(348\) −238.383 + 428.187i −0.685010 + 1.23042i
\(349\) −310.131 + 537.162i −0.888627 + 1.53915i −0.0471279 + 0.998889i \(0.515007\pi\)
−0.841499 + 0.540258i \(0.818327\pi\)
\(350\) 0 0
\(351\) 66.6613 42.7668i 0.189918 0.121843i
\(352\) −548.635 −1.55862
\(353\) −488.067 281.786i −1.38263 0.798260i −0.390157 0.920748i \(-0.627579\pi\)
−0.992470 + 0.122488i \(0.960913\pi\)
\(354\) 46.5945 + 25.9404i 0.131623 + 0.0732780i
\(355\) 0 0
\(356\) 250.675 144.727i 0.704144 0.406538i
\(357\) −21.2633 35.5366i −0.0595610 0.0995424i
\(358\) −298.964 + 517.822i −0.835096 + 1.44643i
\(359\) 415.128i 1.15635i −0.815915 0.578173i \(-0.803766\pi\)
0.815915 0.578173i \(-0.196234\pi\)
\(360\) 0 0
\(361\) −306.480 −0.848974
\(362\) −98.1611 56.6733i −0.271163 0.156556i
\(363\) 3.02191 + 193.629i 0.00832482 + 0.533413i
\(364\) −106.091 183.756i −0.291460 0.504823i
\(365\) 0 0
\(366\) −862.205 + 13.4562i −2.35575 + 0.0367655i
\(367\) 313.940 543.761i 0.855423 1.48164i −0.0208286 0.999783i \(-0.506630\pi\)
0.876252 0.481853i \(-0.160036\pi\)
\(368\) 1535.88i 4.17358i
\(369\) 136.116 + 73.0205i 0.368877 + 0.197888i
\(370\) 0 0
\(371\) −631.819 364.781i −1.70302 0.983237i
\(372\) −683.217 + 408.802i −1.83660 + 1.09893i
\(373\) 195.467 + 338.559i 0.524040 + 0.907665i 0.999608 + 0.0279857i \(0.00890929\pi\)
−0.475568 + 0.879679i \(0.657757\pi\)
\(374\) 46.2198 26.6850i 0.123582 0.0713503i
\(375\) 0 0
\(376\) 469.373 812.979i 1.24833 2.16218i
\(377\) 48.1024i 0.127593i
\(378\) 395.569 + 616.579i 1.04648 + 1.63116i
\(379\) 52.4430 0.138372 0.0691860 0.997604i \(-0.477960\pi\)
0.0691860 + 0.997604i \(0.477960\pi\)
\(380\) 0 0
\(381\) 506.042 + 281.727i 1.32819 + 0.739441i
\(382\) −539.189 933.904i −1.41149 2.44477i
\(383\) 96.0614 55.4610i 0.250813 0.144807i −0.369324 0.929301i \(-0.620411\pi\)
0.620136 + 0.784494i \(0.287077\pi\)
\(384\) 121.563 + 203.164i 0.316571 + 0.529074i
\(385\) 0 0
\(386\) 353.731i 0.916400i
\(387\) 369.818 11.5461i 0.955601 0.0298348i
\(388\) −952.290 −2.45435
\(389\) −91.6114 52.8918i −0.235505 0.135969i 0.377604 0.925967i \(-0.376748\pi\)
−0.613109 + 0.789998i \(0.710081\pi\)
\(390\) 0 0
\(391\) −33.6464 58.2773i −0.0860521 0.149047i
\(392\) 71.8674 41.4926i 0.183335 0.105849i
\(393\) 697.096 10.8794i 1.77378 0.0276829i
\(394\) 242.419 419.881i 0.615276 1.06569i
\(395\) 0 0
\(396\) −572.568 + 354.844i −1.44588 + 0.896072i
\(397\) −99.8892 −0.251610 −0.125805 0.992055i \(-0.540151\pi\)
−0.125805 + 0.992055i \(0.540151\pi\)
\(398\) 441.475 + 254.885i 1.10923 + 0.640416i
\(399\) −138.025 + 82.5868i −0.345926 + 0.206984i
\(400\) 0 0
\(401\) −136.080 + 78.5658i −0.339352 + 0.195925i −0.659985 0.751279i \(-0.729437\pi\)
0.320634 + 0.947203i \(0.396104\pi\)
\(402\) −457.177 + 821.187i −1.13726 + 2.04275i
\(403\) 39.0740 67.6782i 0.0969579 0.167936i
\(404\) 1355.24i 3.35455i
\(405\) 0 0
\(406\) 444.920 1.09586
\(407\) 290.597 + 167.776i 0.713996 + 0.412226i
\(408\) −111.004 61.7990i −0.272069 0.151468i
\(409\) −342.619 593.434i −0.837700 1.45094i −0.891813 0.452404i \(-0.850567\pi\)
0.0541134 0.998535i \(-0.482767\pi\)
\(410\) 0 0
\(411\) 274.218 + 458.292i 0.667197 + 1.11506i
\(412\) 856.116 1482.84i 2.07795 3.59912i
\(413\) 34.5445i 0.0836428i
\(414\) 627.065 + 1011.82i 1.51465 + 2.44400i
\(415\) 0 0
\(416\) −185.502 107.100i −0.445919 0.257452i
\(417\) 1.50127 + 96.1942i 0.00360017 + 0.230681i
\(418\) −103.645 179.518i −0.247954 0.429469i
\(419\) −44.6836 + 25.7981i −0.106643 + 0.0615706i −0.552373 0.833597i \(-0.686278\pi\)
0.445730 + 0.895168i \(0.352944\pi\)
\(420\) 0 0
\(421\) −7.37620 + 12.7760i −0.0175207 + 0.0303467i −0.874653 0.484750i \(-0.838911\pi\)
0.857132 + 0.515097i \(0.172244\pi\)
\(422\) 591.229i 1.40102i
\(423\) −11.8353 379.083i −0.0279795 0.896177i
\(424\) −2238.20 −5.27876
\(425\) 0 0
\(426\) 222.332 133.032i 0.521905 0.312281i
\(427\) 279.287 + 483.740i 0.654069 + 1.13288i
\(428\) −850.685 + 491.143i −1.98758 + 1.14753i
\(429\) 32.1610 57.7680i 0.0749674 0.134657i
\(430\) 0 0
\(431\) 38.6810i 0.0897472i −0.998993 0.0448736i \(-0.985711\pi\)
0.998993 0.0448736i \(-0.0142885\pi\)
\(432\) 1040.87 + 537.639i 2.40942 + 1.24454i
\(433\) 544.647 1.25784 0.628922 0.777468i \(-0.283496\pi\)
0.628922 + 0.777468i \(0.283496\pi\)
\(434\) 625.985 + 361.413i 1.44236 + 0.832748i
\(435\) 0 0
\(436\) 13.0824 + 22.6593i 0.0300054 + 0.0519709i
\(437\) −226.349 + 130.683i −0.517962 + 0.299045i
\(438\) −597.163 998.020i −1.36339 2.27858i
\(439\) −125.709 + 217.735i −0.286353 + 0.495978i −0.972936 0.231073i \(-0.925776\pi\)
0.686583 + 0.727051i \(0.259110\pi\)
\(440\) 0 0
\(441\) 15.8494 29.5444i 0.0359397 0.0669942i
\(442\) 20.8369 0.0471423
\(443\) −632.952 365.435i −1.42878 0.824909i −0.431760 0.901989i \(-0.642107\pi\)
−0.997025 + 0.0770796i \(0.975440\pi\)
\(444\) −20.8280 1334.55i −0.0469098 3.00575i
\(445\) 0 0
\(446\) −667.407 + 385.328i −1.49643 + 0.863964i
\(447\) −278.706 + 4.34968i −0.623504 + 0.00973083i
\(448\) 360.489 624.385i 0.804662 1.39372i
\(449\) 94.7211i 0.210960i −0.994421 0.105480i \(-0.966362\pi\)
0.994421 0.105480i \(-0.0336379\pi\)
\(450\) 0 0
\(451\) 128.949 0.285917
\(452\) −23.5877 13.6184i −0.0521852 0.0301291i
\(453\) −584.963 + 350.012i −1.29131 + 0.772653i
\(454\) 275.190 + 476.642i 0.606144 + 1.04987i
\(455\) 0 0
\(456\) −240.028 + 431.141i −0.526377 + 0.945484i
\(457\) −204.206 + 353.695i −0.446840 + 0.773949i −0.998178 0.0603323i \(-0.980784\pi\)
0.551339 + 0.834282i \(0.314117\pi\)
\(458\) 101.448i 0.221502i
\(459\) −51.2727 + 2.40215i −0.111705 + 0.00523345i
\(460\) 0 0
\(461\) −511.735 295.450i −1.11005 0.640890i −0.171211 0.985234i \(-0.554768\pi\)
−0.938843 + 0.344344i \(0.888101\pi\)
\(462\) 534.322 + 297.471i 1.15654 + 0.643878i
\(463\) 400.967 + 694.496i 0.866020 + 1.49999i 0.866031 + 0.499991i \(0.166663\pi\)
−1.04649e−5 1.00000i \(0.500003\pi\)
\(464\) 616.198 355.762i 1.32801 0.766729i
\(465\) 0 0
\(466\) −73.9856 + 128.147i −0.158767 + 0.274993i
\(467\) 20.6432i 0.0442039i 0.999756 + 0.0221019i \(0.00703584\pi\)
−0.999756 + 0.0221019i \(0.992964\pi\)
\(468\) −262.864 + 8.20688i −0.561676 + 0.0175361i
\(469\) 608.817 1.29812
\(470\) 0 0
\(471\) 0.0741920 + 4.75386i 0.000157520 + 0.0100931i
\(472\) −52.9889 91.7795i −0.112265 0.194448i
\(473\) 267.495 154.438i 0.565529 0.326508i
\(474\) 902.512 14.0852i 1.90403 0.0297156i
\(475\) 0 0
\(476\) 137.513i 0.288893i
\(477\) −768.625 + 476.349i −1.61137 + 0.998636i
\(478\) 237.041 0.495902
\(479\) 435.378 + 251.366i 0.908931 + 0.524771i 0.880087 0.474812i \(-0.157484\pi\)
0.0288439 + 0.999584i \(0.490817\pi\)
\(480\) 0 0
\(481\) 65.5037 + 113.456i 0.136182 + 0.235875i
\(482\) 447.312 258.255i 0.928032 0.535800i
\(483\) 375.073 673.711i 0.776549 1.39485i
\(484\) 321.521 556.890i 0.664299 1.15060i
\(485\) 0 0
\(486\) 905.218 70.7752i 1.86259 0.145628i
\(487\) −80.4336 −0.165161 −0.0825807 0.996584i \(-0.526316\pi\)
−0.0825807 + 0.996584i \(0.526316\pi\)
\(488\) 1484.05 + 856.816i 3.04108 + 1.75577i
\(489\) −109.250 60.8227i −0.223416 0.124382i
\(490\) 0 0
\(491\) −417.972 + 241.316i −0.851267 + 0.491479i −0.861078 0.508473i \(-0.830210\pi\)
0.00981129 + 0.999952i \(0.496877\pi\)
\(492\) −263.358 440.142i −0.535281 0.894597i
\(493\) −15.5873 + 26.9980i −0.0316173 + 0.0547627i
\(494\) 80.9307i 0.163827i
\(495\) 0 0
\(496\) 1155.96 2.33056
\(497\) −145.346 83.9155i −0.292447 0.168844i
\(498\) −3.45462 221.355i −0.00693698 0.444488i
\(499\) 17.5059 + 30.3212i 0.0350820 + 0.0607638i 0.883033 0.469310i \(-0.155497\pi\)
−0.847951 + 0.530074i \(0.822164\pi\)
\(500\) 0 0
\(501\) 27.7581 0.433212i 0.0554054 0.000864695i
\(502\) −348.390 + 603.429i −0.694004 + 1.20205i
\(503\) 211.016i 0.419514i −0.977754 0.209757i \(-0.932733\pi\)
0.977754 0.209757i \(-0.0672673\pi\)
\(504\) −45.4289 1455.08i −0.0901367 2.88706i
\(505\) 0 0
\(506\) 860.595 + 496.865i 1.70078 + 0.981947i
\(507\) −412.914 + 247.067i −0.814427 + 0.487311i
\(508\) −961.608 1665.55i −1.89293 3.27865i
\(509\) −732.292 + 422.789i −1.43869 + 0.830627i −0.997759 0.0669144i \(-0.978685\pi\)
−0.440930 + 0.897542i \(0.645351\pi\)
\(510\) 0 0
\(511\) −376.687 + 652.440i −0.737156 + 1.27679i
\(512\) 697.860i 1.36301i
\(513\) 9.32998 + 199.144i 0.0181871 + 0.388194i
\(514\) −870.311 −1.69321
\(515\) 0 0
\(516\) −1073.46 597.627i −2.08036 1.15819i
\(517\) −158.308 274.197i −0.306204 0.530361i
\(518\) −1049.40 + 605.872i −2.02587 + 1.16964i
\(519\) −227.022 379.415i −0.437423 0.731050i
\(520\) 0 0
\(521\) 260.960i 0.500883i 0.968132 + 0.250442i \(0.0805758\pi\)
−0.968132 + 0.250442i \(0.919424\pi\)
\(522\) 260.693 485.951i 0.499412 0.930941i
\(523\) −553.330 −1.05799 −0.528996 0.848624i \(-0.677431\pi\)
−0.528996 + 0.848624i \(0.677431\pi\)
\(524\) −2004.89 1157.53i −3.82613 2.20902i
\(525\) 0 0
\(526\) 20.1648 + 34.9265i 0.0383362 + 0.0664003i
\(527\) −43.8615 + 25.3234i −0.0832286 + 0.0480521i
\(528\) 977.877 15.2614i 1.85204 0.0289042i
\(529\) 361.983 626.973i 0.684278 1.18520i
\(530\) 0 0
\(531\) −37.7302 20.2407i −0.0710551 0.0381182i
\(532\) 534.103 1.00395
\(533\) 43.5996 + 25.1723i 0.0818005 + 0.0472275i
\(534\) −279.501 + 167.239i −0.523409 + 0.313181i
\(535\) 0 0
\(536\) 1617.53 933.884i 3.01779 1.74232i
\(537\) 233.516 419.444i 0.434853 0.781088i
\(538\) −109.219 + 189.174i −0.203010 + 0.351624i
\(539\) 27.9888i 0.0519273i
\(540\) 0 0
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) −212.276 122.558i −0.391654 0.226121i
\(543\) 79.5121 + 44.2665i 0.146431 + 0.0815222i
\(544\) 69.4102 + 120.222i 0.127592 + 0.220996i
\(545\) 0 0
\(546\) 122.593 + 204.886i 0.224529 + 0.375249i
\(547\) −303.604 + 525.858i −0.555035 + 0.961348i 0.442866 + 0.896588i \(0.353962\pi\)
−0.997901 + 0.0647606i \(0.979372\pi\)
\(548\) 1773.42i 3.23616i
\(549\) 691.995 21.6048i 1.26046 0.0393529i
\(550\) 0 0
\(551\) 104.861 + 60.5412i 0.190309 + 0.109875i
\(552\) −36.9143 2365.28i −0.0668736 4.28494i
\(553\) −292.344 506.354i −0.528650 0.915649i
\(554\) 868.064 501.177i 1.56690 0.904651i
\(555\) 0 0
\(556\) 159.730 276.661i 0.287284 0.497591i
\(557\) 686.808i 1.23305i 0.787336 + 0.616524i \(0.211460\pi\)
−0.787336 + 0.616524i \(0.788540\pi\)
\(558\) 761.528 471.951i 1.36475 0.845791i
\(559\) 120.593 0.215729
\(560\) 0 0
\(561\) −36.7702 + 22.0014i −0.0655439 + 0.0392181i
\(562\) 343.934 + 595.712i 0.611983 + 1.05999i
\(563\) 208.976 120.652i 0.371182 0.214302i −0.302792 0.953057i \(-0.597919\pi\)
0.673975 + 0.738754i \(0.264586\pi\)
\(564\) −612.600 + 1100.36i −1.08617 + 1.95099i
\(565\) 0 0
\(566\) 1728.55i 3.05397i
\(567\) −325.281 490.023i −0.573688 0.864238i
\(568\) −514.883 −0.906484
\(569\) −666.084 384.564i −1.17062 0.675859i −0.216796 0.976217i \(-0.569561\pi\)
−0.953827 + 0.300358i \(0.902894\pi\)
\(570\) 0 0
\(571\) −48.7253 84.3947i −0.0853333 0.147802i 0.820200 0.572077i \(-0.193862\pi\)
−0.905533 + 0.424275i \(0.860529\pi\)
\(572\) −190.134 + 109.774i −0.332402 + 0.191913i
\(573\) 444.553 + 742.966i 0.775834 + 1.29663i
\(574\) −232.829 + 403.272i −0.405626 + 0.702565i
\(575\) 0 0
\(576\) −470.745 759.581i −0.817265 1.31872i
\(577\) −277.283 −0.480560 −0.240280 0.970704i \(-0.577239\pi\)
−0.240280 + 0.970704i \(0.577239\pi\)
\(578\) 923.493 + 533.179i 1.59774 + 0.922454i
\(579\) 4.43181 + 283.969i 0.00765425 + 0.490447i
\(580\) 0 0
\(581\) −124.191 + 71.7018i −0.213754 + 0.123411i
\(582\) 1071.45 16.7218i 1.84098 0.0287315i
\(583\) −377.443 + 653.750i −0.647415 + 1.12136i
\(584\) 2311.25i 3.95761i
\(585\) 0 0
\(586\) −1071.52 −1.82854
\(587\) −405.017 233.836i −0.689977 0.398358i 0.113626 0.993524i \(-0.463753\pi\)
−0.803603 + 0.595165i \(0.797087\pi\)
\(588\) −95.5345 + 57.1629i −0.162474 + 0.0972158i
\(589\) 98.3565 + 170.358i 0.166989 + 0.289233i
\(590\) 0 0
\(591\) −189.349 + 340.111i −0.320387 + 0.575483i
\(592\) −968.922 + 1678.22i −1.63669 + 2.83483i
\(593\) 254.411i 0.429023i −0.976721 0.214512i \(-0.931184\pi\)
0.976721 0.214512i \(-0.0688160\pi\)
\(594\) 637.981 409.300i 1.07404 0.689057i
\(595\) 0 0
\(596\) 801.577 + 462.791i 1.34493 + 0.776495i
\(597\) −357.602 199.087i −0.598998 0.333478i
\(598\) 193.988 + 335.997i 0.324394 + 0.561867i
\(599\) 352.081 203.274i 0.587780 0.339355i −0.176439 0.984312i \(-0.556458\pi\)
0.764219 + 0.644956i \(0.223124\pi\)
\(600\) 0 0
\(601\) −249.967 + 432.956i −0.415919 + 0.720393i −0.995524 0.0945042i \(-0.969873\pi\)
0.579605 + 0.814897i \(0.303207\pi\)
\(602\) 1115.41i 1.85285i
\(603\) 356.726 664.963i 0.591585 1.10276i
\(604\) 2263.59 3.74766
\(605\) 0 0
\(606\) −23.7973 1524.81i −0.0392695 2.51620i
\(607\) 29.9627 + 51.8970i 0.0493620 + 0.0854975i 0.889651 0.456642i \(-0.150948\pi\)
−0.840289 + 0.542139i \(0.817615\pi\)
\(608\) 466.944 269.590i 0.767999 0.443405i
\(609\) −357.174 + 5.57430i −0.586493 + 0.00915321i
\(610\) 0 0
\(611\) 123.614i 0.202314i
\(612\) 150.195 + 80.5735i 0.245417 + 0.131656i
\(613\) 373.866 0.609896 0.304948 0.952369i \(-0.401361\pi\)
0.304948 + 0.952369i \(0.401361\pi\)
\(614\) 766.071 + 442.291i 1.24767 + 0.720344i
\(615\) 0 0
\(616\) −607.650 1052.48i −0.986444 1.70857i
\(617\) 320.088 184.803i 0.518782 0.299519i −0.217654 0.976026i \(-0.569841\pi\)
0.736436 + 0.676507i \(0.236507\pi\)
\(618\) −937.202 + 1683.41i −1.51651 + 2.72397i
\(619\) −598.225 + 1036.16i −0.966438 + 1.67392i −0.260738 + 0.965410i \(0.583966\pi\)
−0.705701 + 0.708510i \(0.749368\pi\)
\(620\) 0 0
\(621\) −516.074 804.413i −0.831037 1.29535i
\(622\) 1935.51 3.11175
\(623\) 182.719 + 105.493i 0.293289 + 0.169331i
\(624\) 333.616 + 185.733i 0.534640 + 0.297649i
\(625\) 0 0
\(626\) −1602.54 + 925.224i −2.55996 + 1.47799i
\(627\) 85.4535 + 142.816i 0.136289 + 0.227776i
\(628\) 7.89377 13.6724i 0.0125697 0.0217713i
\(629\) 84.9044i 0.134983i
\(630\) 0 0
\(631\) 628.525 0.996078 0.498039 0.867155i \(-0.334054\pi\)
0.498039 + 0.867155i \(0.334054\pi\)
\(632\) −1553.43 896.870i −2.45795 1.41910i
\(633\) 7.40738 + 474.629i 0.0117020 + 0.749808i
\(634\) 409.541 + 709.345i 0.645963 + 1.11884i
\(635\) 0 0
\(636\) 3002.32 46.8563i 4.72063 0.0736734i
\(637\) 5.46374 9.46347i 0.00857730 0.0148563i
\(638\) 460.364i 0.721573i
\(639\) −176.817 + 109.581i −0.276709 + 0.171489i
\(640\) 0 0
\(641\) 824.417 + 475.977i 1.28614 + 0.742554i 0.977964 0.208774i \(-0.0669474\pi\)
0.308178 + 0.951329i \(0.400281\pi\)
\(642\) 948.506 567.537i 1.47742 0.884014i
\(643\) −35.7759 61.9656i −0.0556390 0.0963696i 0.836864 0.547410i \(-0.184386\pi\)
−0.892503 + 0.451041i \(0.851053\pi\)
\(644\) −2217.41 + 1280.22i −3.44318 + 1.98792i
\(645\) 0 0
\(646\) −26.2252 + 45.4233i −0.0405962 + 0.0703147i
\(647\) 900.292i 1.39149i −0.718290 0.695744i \(-0.755075\pi\)
0.718290 0.695744i \(-0.244925\pi\)
\(648\) −1615.88 802.958i −2.49365 1.23913i
\(649\) −35.7436 −0.0550748
\(650\) 0 0
\(651\) −507.058 282.293i −0.778892 0.433630i
\(652\) 207.604 + 359.580i 0.318410 + 0.551503i
\(653\) 222.825 128.648i 0.341233 0.197011i −0.319584 0.947558i \(-0.603543\pi\)
0.660817 + 0.750547i \(0.270210\pi\)
\(654\) −15.1172 25.2649i −0.0231150 0.0386314i
\(655\) 0 0
\(656\) 744.690i 1.13520i
\(657\) 491.897 + 793.711i 0.748701 + 1.20808i
\(658\) 1143.36 1.73763
\(659\) 477.967 + 275.954i 0.725291 + 0.418747i 0.816697 0.577067i \(-0.195803\pi\)
−0.0914057 + 0.995814i \(0.529136\pi\)
\(660\) 0 0
\(661\) 523.413 + 906.578i 0.791851 + 1.37153i 0.924820 + 0.380405i \(0.124216\pi\)
−0.132969 + 0.991120i \(0.542451\pi\)
\(662\) 307.309 177.425i 0.464214 0.268014i
\(663\) −16.7275 + 0.261061i −0.0252300 + 0.000393757i
\(664\) −219.971 + 381.002i −0.331282 + 0.573798i
\(665\) 0 0
\(666\) 46.8683 + 1501.18i 0.0703728 + 2.25402i
\(667\) −580.460 −0.870254
\(668\) −79.8342 46.0923i −0.119512 0.0690004i
\(669\) 530.956 317.696i 0.793656 0.474883i
\(670\) 0 0
\(671\) 500.531 288.982i 0.745948 0.430673i
\(672\) −773.751 + 1389.82i −1.15142 + 2.06819i
\(673\) 118.875 205.898i 0.176635 0.305940i −0.764091 0.645108i \(-0.776812\pi\)
0.940726 + 0.339168i \(0.110146\pi\)
\(674\) 1927.98i 2.86050i
\(675\) 0 0
\(676\) 1597.82 2.36364
\(677\) 145.591 + 84.0570i 0.215053 + 0.124161i 0.603658 0.797244i \(-0.293709\pi\)
−0.388605 + 0.921405i \(0.627043\pi\)
\(678\) 26.7783 + 14.9082i 0.0394961 + 0.0219885i
\(679\) −347.066 601.136i −0.511143 0.885325i
\(680\) 0 0
\(681\) −226.889 379.192i −0.333171 0.556817i
\(682\) 373.958 647.714i 0.548325 0.949727i
\(683\) 995.446i 1.45746i 0.684800 + 0.728731i \(0.259889\pi\)
−0.684800 + 0.728731i \(0.740111\pi\)
\(684\) 312.948 583.359i 0.457527 0.852864i
\(685\) 0 0
\(686\) −1063.82 614.194i −1.55075 0.895327i
\(687\) −1.27102 81.4405i −0.00185010 0.118545i
\(688\) 891.896 + 1544.81i 1.29636 + 2.24536i
\(689\) −255.239 + 147.362i −0.370449 + 0.213879i
\(690\) 0 0
\(691\) 298.570 517.138i 0.432084 0.748391i −0.564969 0.825112i \(-0.691112\pi\)
0.997053 + 0.0767211i \(0.0244451\pi\)
\(692\) 1468.19i 2.12167i
\(693\) −432.671 232.111i −0.624345 0.334936i
\(694\) 416.355 0.599936
\(695\) 0 0
\(696\) −940.407 + 562.691i −1.35116 + 0.808464i
\(697\) −16.3139 28.2564i −0.0234058 0.0405401i
\(698\) −2007.13 + 1158.82i −2.87555 + 1.66020i
\(699\) 57.7888 103.801i 0.0826736 0.148499i
\(700\) 0 0
\(701\) 413.729i 0.590199i −0.955467 0.295099i \(-0.904647\pi\)
0.955467 0.295099i \(-0.0953528\pi\)
\(702\) 295.612 13.8496i 0.421100 0.0197287i
\(703\) −329.769 −0.469089
\(704\) −646.058 373.002i −0.917696 0.529832i
\(705\) 0 0
\(706\) −1052.91 1823.69i −1.49137 2.58312i
\(707\) −855.497 + 493.921i −1.21004 + 0.698616i
\(708\) 73.0009 + 122.004i 0.103109 + 0.172322i
\(709\) 328.568 569.096i 0.463424 0.802674i −0.535705 0.844405i \(-0.679954\pi\)
0.999129 + 0.0417311i \(0.0132873\pi\)
\(710\) 0 0
\(711\) −724.345 + 22.6147i −1.01877 + 0.0318070i
\(712\) 647.277 0.909096
\(713\) −816.684 471.513i −1.14542 0.661308i
\(714\) −2.41467 154.720i −0.00338189 0.216695i
\(715\) 0 0
\(716\) −1380.53 + 797.051i −1.92812 + 1.11320i
\(717\) −190.293 + 2.96984i −0.265401 + 0.00414203i
\(718\) 775.572 1343.33i 1.08018 1.87093i
\(719\) 217.226i 0.302122i 0.988524 + 0.151061i \(0.0482690\pi\)
−0.988524 + 0.151061i \(0.951731\pi\)
\(720\) 0 0
\(721\) 1248.06 1.73101
\(722\) −991.751 572.588i −1.37362 0.793058i
\(723\) −355.858 + 212.927i −0.492197 + 0.294505i
\(724\) −151.093 261.701i −0.208692 0.361466i
\(725\) 0 0
\(726\) −351.973 + 632.218i −0.484812 + 0.870824i
\(727\) 304.437 527.300i 0.418757 0.725309i −0.577057 0.816704i \(-0.695799\pi\)
0.995815 + 0.0913946i \(0.0291325\pi\)
\(728\) 474.481i 0.651760i
\(729\) −725.807 + 68.1584i −0.995620 + 0.0934958i
\(730\) 0 0
\(731\) −67.6840 39.0774i −0.0925910 0.0534574i
\(732\) −2008.65 1118.27i −2.74405 1.52769i
\(733\) −440.351 762.709i −0.600751 1.04053i −0.992708 0.120548i \(-0.961535\pi\)
0.391957 0.919984i \(-0.371798\pi\)
\(734\) 2031.79 1173.05i 2.76810 1.59816i
\(735\) 0 0
\(736\) −1292.39 + 2238.49i −1.75597 + 3.04143i
\(737\) 629.950i 0.854749i
\(738\) 304.040 + 490.592i 0.411979 + 0.664758i
\(739\) −917.157 −1.24108 −0.620540 0.784175i \(-0.713086\pi\)
−0.620540 + 0.784175i \(0.713086\pi\)
\(740\) 0 0
\(741\) 1.01396 + 64.9698i 0.00136837 + 0.0876786i
\(742\) −1363.02 2360.82i −1.83695 3.18170i
\(743\) 956.492 552.231i 1.28734 0.743245i 0.309159 0.951010i \(-0.399952\pi\)
0.978179 + 0.207765i \(0.0666191\pi\)
\(744\) −1780.20 + 27.7830i −2.39274 + 0.0373427i
\(745\) 0 0
\(746\) 1460.74i 1.95810i
\(747\) 5.54662 + 177.657i 0.00742519 + 0.237827i
\(748\) 142.287 0.190223
\(749\) −620.071 357.998i −0.827866 0.477968i
\(750\) 0 0
\(751\) −330.239 571.990i −0.439732 0.761638i 0.557936 0.829884i \(-0.311593\pi\)
−0.997669 + 0.0682453i \(0.978260\pi\)
\(752\) 1583.51 914.241i 2.10573 1.21575i
\(753\) 272.121 488.787i 0.361383 0.649120i
\(754\) 89.8684 155.657i 0.119189 0.206441i
\(755\) 0 0
\(756\) 91.4003 + 1950.89i 0.120900 + 2.58055i
\(757\) 353.728 0.467276 0.233638 0.972324i \(-0.424937\pi\)
0.233638 + 0.972324i \(0.424937\pi\)
\(758\) 169.702 + 97.9778i 0.223882 + 0.129258i
\(759\) −697.096 388.093i −0.918441 0.511321i
\(760\) 0 0
\(761\) 708.380 408.983i 0.930854 0.537429i 0.0437722 0.999042i \(-0.486062\pi\)
0.887081 + 0.461613i \(0.152729\pi\)
\(762\) 1111.18 + 1857.08i 1.45824 + 2.43711i
\(763\) −9.53584 + 16.5166i −0.0124978 + 0.0216469i
\(764\) 2875.00i 3.76309i
\(765\) 0 0
\(766\) 414.465 0.541078
\(767\) −12.0855 6.97756i −0.0157568 0.00909721i
\(768\) −4.78832 306.812i −0.00623479 0.399495i
\(769\) 500.408 + 866.732i 0.650725 + 1.12709i 0.982947 + 0.183888i \(0.0588684\pi\)
−0.332222 + 0.943201i \(0.607798\pi\)
\(770\) 0 0
\(771\) 698.670 10.9039i 0.906187 0.0141426i
\(772\) 471.530 816.713i 0.610790 1.05792i
\(773\) 860.440i 1.11312i 0.830808 + 0.556559i \(0.187879\pi\)
−0.830808 + 0.556559i \(0.812121\pi\)
\(774\) 1218.28 + 653.558i 1.57401 + 0.844390i
\(775\) 0 0
\(776\) −1844.20 1064.75i −2.37655 1.37210i
\(777\) 834.850 499.531i 1.07445 0.642898i
\(778\) −197.633 342.310i −0.254027 0.439987i
\(779\) −109.748 + 63.3632i −0.140884 + 0.0813391i
\(780\) 0 0
\(781\) −86.8283 + 150.391i −0.111176 + 0.192562i
\(782\) 251.442i 0.321538i
\(783\) −203.192 + 393.380i −0.259504 + 0.502401i
\(784\) 161.638 0.206171
\(785\) 0 0
\(786\) 2276.09 + 1267.16i 2.89579 + 1.61216i
\(787\) 463.491 + 802.789i 0.588933 + 1.02006i 0.994372 + 0.105940i \(0.0337853\pi\)
−0.405439 + 0.914122i \(0.632881\pi\)
\(788\) 1119.42 646.297i 1.42058 0.820174i
\(789\) −16.6256 27.7858i −0.0210717 0.0352165i
\(790\) 0 0
\(791\) 19.8531i 0.0250987i
\(792\) −1505.58 + 47.0058i −1.90099 + 0.0593507i
\(793\) 225.651 0.284553
\(794\) −323.236 186.620i −0.407098 0.235038i
\(795\) 0 0
\(796\) 679.534 + 1176.99i 0.853686 + 1.47863i
\(797\) 825.230 476.447i 1.03542 0.597800i 0.116888 0.993145i \(-0.462708\pi\)
0.918533 + 0.395345i \(0.129375\pi\)
\(798\) −600.934 + 9.37859i −0.753050 + 0.0117526i
\(799\) −40.0564 + 69.3797i −0.0501332 + 0.0868332i
\(800\) 0 0
\(801\) 222.283 137.758i 0.277507 0.171983i
\(802\) −587.129 −0.732082
\(803\) 675.087 + 389.762i 0.840707 + 0.485382i
\(804\) −2150.21 + 1286.58i −2.67440 + 1.60022i
\(805\) 0 0
\(806\) 252.883 146.002i 0.313750 0.181144i
\(807\) 85.3094 153.234i 0.105712 0.189881i
\(808\) −1515.28 + 2624.55i −1.87535 + 3.24820i
\(809\) 1425.22i 1.76171i 0.473387 + 0.880855i \(0.343031\pi\)
−0.473387 + 0.880855i \(0.656969\pi\)
\(810\) 0 0
\(811\) −473.774 −0.584185 −0.292093 0.956390i \(-0.594352\pi\)
−0.292093 + 0.956390i \(0.594352\pi\)
\(812\) 1027.26 + 593.087i 1.26509 + 0.730402i
\(813\) 171.947 + 95.7277i 0.211497 + 0.117746i
\(814\) 626.903 + 1085.83i 0.770151 + 1.33394i
\(815\) 0 0
\(816\) −127.060 212.351i −0.155711 0.260234i
\(817\) −151.777 + 262.885i −0.185773 + 0.321769i
\(818\) 2560.42i 3.13010i
\(819\) −100.983 162.943i −0.123300 0.198953i
\(820\) 0 0
\(821\) −63.4905 36.6562i −0.0773331 0.0446483i 0.460835 0.887486i \(-0.347550\pi\)
−0.538168 + 0.842838i \(0.680883\pi\)
\(822\) 31.1403 + 1995.32i 0.0378836 + 2.42740i
\(823\) 316.027 + 547.374i 0.383994 + 0.665096i 0.991629 0.129120i \(-0.0412151\pi\)
−0.607635 + 0.794216i \(0.707882\pi\)
\(824\) 3315.90 1914.44i 4.02416 2.32335i
\(825\) 0 0
\(826\) 64.5385 111.784i 0.0781338 0.135332i
\(827\) 226.153i 0.273462i 0.990608 + 0.136731i \(0.0436597\pi\)
−0.990608 + 0.136731i \(0.956340\pi\)
\(828\) 99.0338 + 3172.03i 0.119606 + 3.83095i
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) 0 0
\(831\) −690.588 + 413.212i −0.831032 + 0.497247i
\(832\) −145.629 252.236i −0.175034 0.303168i
\(833\) −6.13317 + 3.54099i −0.00736275 + 0.00425089i
\(834\) −174.859 + 314.084i −0.209663 + 0.376599i
\(835\) 0 0
\(836\) 552.642i 0.661055i
\(837\) −605.429 + 388.415i −0.723332 + 0.464057i
\(838\) −192.792 −0.230061
\(839\) 511.329 + 295.216i 0.609450 + 0.351866i 0.772750 0.634710i \(-0.218881\pi\)
−0.163300 + 0.986576i \(0.552214\pi\)
\(840\) 0 0
\(841\) −286.046 495.446i −0.340126 0.589115i
\(842\) −47.7379 + 27.5615i −0.0566959 + 0.0327334i
\(843\) −283.568 473.918i −0.336380 0.562180i
\(844\) 788.120 1365.06i 0.933791 1.61737i
\(845\) 0 0
\(846\) 669.931 1248.80i 0.791881 1.47613i
\(847\) 468.718 0.553386
\(848\) −3775.47 2179.77i −4.45220 2.57048i
\(849\) 21.6566 + 1387.65i 0.0255083 + 1.63445i
\(850\) 0 0
\(851\) 1369.09 790.444i 1.60880 0.928841i
\(852\) 690.666 10.7790i 0.810640 0.0126514i
\(853\) 693.749 1201.61i 0.813305 1.40869i −0.0972332 0.995262i \(-0.530999\pi\)
0.910538 0.413424i \(-0.135667\pi\)
\(854\) 2087.14i 2.44396i
\(855\) 0 0
\(856\) −2196.58 −2.56610
\(857\) 683.058 + 394.363i 0.797033 + 0.460167i 0.842433 0.538801i \(-0.181123\pi\)
−0.0453994 + 0.998969i \(0.514456\pi\)
\(858\) 211.998 126.848i 0.247084 0.147842i
\(859\) −413.601 716.378i −0.481491 0.833968i 0.518283 0.855209i \(-0.326571\pi\)
−0.999774 + 0.0212416i \(0.993238\pi\)
\(860\) 0 0
\(861\) 181.859 326.657i 0.211218 0.379393i
\(862\) 72.2667 125.170i 0.0838361 0.145208i
\(863\) 1089.70i 1.26268i 0.775504 + 0.631342i \(0.217496\pi\)
−0.775504 + 0.631342i \(0.782504\pi\)
\(864\) 1064.63 + 1659.45i 1.23221 + 1.92066i
\(865\) 0 0
\(866\) 1762.45 + 1017.55i 2.03516 + 1.17500i
\(867\) −748.044 416.457i −0.862796 0.480342i
\(868\) 963.540 + 1668.90i 1.11007 + 1.92270i
\(869\) −523.930 + 302.491i −0.602912 + 0.348091i
\(870\) 0 0
\(871\) 122.974 212.996i 0.141187 0.244542i
\(872\) 58.5093i 0.0670979i
\(873\) −859.931 + 26.8479i −0.985029 + 0.0307536i
\(874\) −976.605 −1.11740
\(875\) 0 0
\(876\) −48.3856 3100.31i −0.0552347 3.53917i
\(877\) 213.875 + 370.443i 0.243872 + 0.422398i 0.961814 0.273705i \(-0.0882491\pi\)
−0.717942 + 0.696103i \(0.754916\pi\)
\(878\) −813.575 + 469.718i −0.926623 + 0.534986i
\(879\) 860.202 13.4249i 0.978614 0.0152729i
\(880\) 0 0
\(881\) 1113.87i 1.26432i 0.774837 + 0.632161i \(0.217832\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(882\) 106.485 65.9932i 0.120731 0.0748222i
\(883\) 408.581 0.462719 0.231359 0.972868i \(-0.425683\pi\)
0.231359 + 0.972868i \(0.425683\pi\)
\(884\) 48.1094 + 27.7760i 0.0544224 + 0.0314208i
\(885\) 0 0
\(886\) −1365.46 2365.05i −1.54116 2.66936i
\(887\) 755.098 435.956i 0.851294 0.491495i −0.00979311 0.999952i \(-0.503117\pi\)
0.861087 + 0.508457i \(0.169784\pi\)
\(888\) 1451.82 2607.78i 1.63494 2.93669i
\(889\) 700.924 1214.04i 0.788441 1.36562i
\(890\) 0 0
\(891\) −507.033 + 336.572i −0.569060 + 0.377746i
\(892\) −2054.60 −2.30336
\(893\) 269.471 + 155.579i 0.301760 + 0.174221i
\(894\) −910.004 506.624i −1.01790 0.566693i
\(895\) 0 0
\(896\) 496.272 286.523i 0.553875 0.319780i
\(897\) −159.940 267.302i −0.178305 0.297995i
\(898\) 176.965 306.512i 0.197066 0.341328i
\(899\) 436.874i 0.485956i
\(900\) 0 0
\(901\) 191.008 0.211995
\(902\) 417.270 + 240.911i 0.462606 + 0.267085i
\(903\) −13.9748 895.436i −0.0154759 0.991623i
\(904\) −30.4533 52.7466i −0.0336872 0.0583480i
\(905\) 0 0
\(906\) −2546.82 + 39.7475i −2.81106 + 0.0438714i
\(907\) −843.097 + 1460.29i −0.929544 + 1.61002i −0.145459 + 0.989364i \(0.546466\pi\)
−0.784085 + 0.620653i \(0.786867\pi\)
\(908\) 1467.33i 1.61600i
\(909\) 38.2081 + 1223.80i 0.0420332 + 1.34631i
\(910\) 0 0
\(911\) −383.084 221.173i −0.420509 0.242781i 0.274786 0.961505i \(-0.411393\pi\)
−0.695295 + 0.718724i \(0.744726\pi\)
\(912\) −824.773 + 493.502i −0.904356 + 0.541120i
\(913\) 74.1907 + 128.502i 0.0812603 + 0.140747i
\(914\) −1321.60 + 763.024i −1.44595 + 0.834819i
\(915\) 0 0
\(916\) −135.232 + 234.228i −0.147633 + 0.255708i
\(917\) 1687.46i 1.84020i
\(918\) −170.404 88.0182i −0.185625 0.0958804i
\(919\) −182.236 −0.198298 −0.0991489 0.995073i \(-0.531612\pi\)
−0.0991489 + 0.995073i \(0.531612\pi\)
\(920\) 0 0
\(921\) −620.530 345.466i −0.673757 0.375099i
\(922\) −1103.96 1912.12i −1.19736 2.07388i
\(923\) −58.7162 + 33.8998i −0.0636145 + 0.0367279i
\(924\) 837.137 + 1399.08i 0.905992 + 1.51416i
\(925\) 0 0
\(926\) 2996.47i 3.23592i
\(927\) 731.279 1363.16i 0.788866 1.47050i
\(928\) 1197.45 1.29035
\(929\) −1150.27 664.111i −1.23819 0.714867i −0.269463 0.963011i \(-0.586846\pi\)
−0.968723 + 0.248144i \(0.920179\pi\)
\(930\) 0 0
\(931\) 13.7532 + 23.8213i 0.0147725 + 0.0255868i
\(932\) −341.644 + 197.248i −0.366571 + 0.211640i
\(933\) −1553.79 + 24.2496i −1.66537 + 0.0259910i
\(934\) −38.5671 + 66.8003i −0.0412924 + 0.0715206i
\(935\) 0 0
\(936\) −518.239 278.014i −0.553674 0.297024i
\(937\) 276.582 0.295178 0.147589 0.989049i \(-0.452849\pi\)
0.147589 + 0.989049i \(0.452849\pi\)
\(938\) 1970.10 + 1137.44i 2.10032 + 1.21262i
\(939\) 1274.90 762.832i 1.35772 0.812388i
\(940\) 0 0
\(941\) 1083.50 625.557i 1.15143 0.664779i 0.202196 0.979345i \(-0.435192\pi\)
0.949236 + 0.314566i \(0.101859\pi\)
\(942\) −8.64142 + 15.5218i −0.00917348 + 0.0164775i
\(943\) 303.758 526.124i 0.322119 0.557926i
\(944\) 206.422i 0.218668i
\(945\) 0 0
\(946\) 1154.13 1.22001
\(947\) 935.323 + 540.009i 0.987670 + 0.570232i 0.904577 0.426310i \(-0.140187\pi\)
0.0830930 + 0.996542i \(0.473520\pi\)
\(948\) 2102.55 + 1170.54i 2.21788 + 1.23475i
\(949\) 152.172 + 263.570i 0.160350 + 0.277734i
\(950\) 0 0
\(951\) −337.660 564.319i −0.355057 0.593396i
\(952\) −153.753 + 266.308i −0.161505 + 0.279735i
\(953\) 328.534i 0.344737i −0.985033 0.172369i \(-0.944858\pi\)
0.985033 0.172369i \(-0.0551420\pi\)
\(954\) −3377.18 + 105.439i −3.54002 + 0.110523i
\(955\) 0 0
\(956\) 547.294 + 315.980i 0.572483 + 0.330523i
\(957\) 5.76780 + 369.572i 0.00602696 + 0.386178i
\(958\) 939.239 + 1626.81i 0.980416 + 1.69813i
\(959\) 1119.47 646.328i 1.16733 0.673961i
\(960\) 0 0
\(961\) 125.623 217.585i 0.130721 0.226416i
\(962\) 489.515i 0.508851i
\(963\) −754.334 + 467.493i −0.783316 + 0.485454i
\(964\) 1377.04 1.42846
\(965\) 0 0
\(966\) 2472.39 1479.35i 2.55941 1.53142i
\(967\) −298.854 517.631i −0.309053 0.535296i 0.669102 0.743170i \(-0.266679\pi\)
−0.978155 + 0.207875i \(0.933345\pi\)
\(968\) 1245.31 718.981i 1.28648 0.742749i
\(969\) 20.4840 36.7936i 0.0211393 0.0379707i
\(970\) 0 0
\(971\) 711.597i 0.732850i 0.930448 + 0.366425i \(0.119418\pi\)
−0.930448 + 0.366425i \(0.880582\pi\)
\(972\) 2184.36 + 1043.26i 2.24729 + 1.07332i
\(973\) 232.857 0.239319
\(974\) −260.279 150.272i −0.267226 0.154283i
\(975\) 0 0
\(976\) 1668.90 + 2890.61i 1.70994 + 2.96169i
\(977\) −292.262 + 168.738i −0.299142 + 0.172710i −0.642058 0.766656i \(-0.721919\pi\)
0.342915 + 0.939366i \(0.388586\pi\)
\(978\) −239.895 400.928i −0.245291 0.409947i
\(979\) 109.155 189.062i 0.111496 0.193117i
\(980\) 0 0
\(981\) 12.4524 + 20.0928i 0.0126936 + 0.0204820i
\(982\) −1803.38 −1.83643
\(983\) 274.504 + 158.485i 0.279252 + 0.161226i 0.633085 0.774083i \(-0.281789\pi\)
−0.353833 + 0.935309i \(0.615122\pi\)
\(984\) −17.8983 1146.84i −0.0181894 1.16549i
\(985\) 0 0
\(986\) −100.879 + 58.2427i −0.102312 + 0.0590697i
\(987\) −917.869 + 14.3249i −0.929959 + 0.0145136i
\(988\) 107.882 186.857i 0.109193 0.189127i
\(989\) 1455.21i 1.47140i
\(990\) 0 0
\(991\) 685.922 0.692152 0.346076 0.938207i \(-0.387514\pi\)
0.346076 + 0.938207i \(0.387514\pi\)
\(992\) 1684.76 + 972.700i 1.69835 + 0.980544i
\(993\) −244.480 + 146.284i −0.246203 + 0.147315i
\(994\) −313.554 543.092i −0.315447 0.546370i
\(995\) 0 0
\(996\) 287.094 515.682i 0.288247 0.517753i
\(997\) 293.035 507.551i 0.293917 0.509078i −0.680816 0.732455i \(-0.738375\pi\)
0.974732 + 0.223376i \(0.0717079\pi\)
\(998\) 130.823i 0.131086i
\(999\) −56.4330 1204.53i −0.0564895 1.20574i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.j.b.101.8 16
3.2 odd 2 675.3.j.b.251.1 16
5.2 odd 4 225.3.i.b.74.1 32
5.3 odd 4 225.3.i.b.74.16 32
5.4 even 2 45.3.i.a.11.1 16
9.4 even 3 675.3.j.b.476.1 16
9.5 odd 6 inner 225.3.j.b.176.8 16
15.2 even 4 675.3.i.c.224.16 32
15.8 even 4 675.3.i.c.224.1 32
15.14 odd 2 135.3.i.a.116.8 16
20.19 odd 2 720.3.bs.c.641.2 16
45.4 even 6 135.3.i.a.71.8 16
45.13 odd 12 675.3.i.c.449.16 32
45.14 odd 6 45.3.i.a.41.1 yes 16
45.22 odd 12 675.3.i.c.449.1 32
45.23 even 12 225.3.i.b.149.1 32
45.29 odd 6 405.3.c.a.161.1 16
45.32 even 12 225.3.i.b.149.16 32
45.34 even 6 405.3.c.a.161.16 16
60.59 even 2 2160.3.bs.c.1601.1 16
180.59 even 6 720.3.bs.c.401.2 16
180.139 odd 6 2160.3.bs.c.881.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 5.4 even 2
45.3.i.a.41.1 yes 16 45.14 odd 6
135.3.i.a.71.8 16 45.4 even 6
135.3.i.a.116.8 16 15.14 odd 2
225.3.i.b.74.1 32 5.2 odd 4
225.3.i.b.74.16 32 5.3 odd 4
225.3.i.b.149.1 32 45.23 even 12
225.3.i.b.149.16 32 45.32 even 12
225.3.j.b.101.8 16 1.1 even 1 trivial
225.3.j.b.176.8 16 9.5 odd 6 inner
405.3.c.a.161.1 16 45.29 odd 6
405.3.c.a.161.16 16 45.34 even 6
675.3.i.c.224.1 32 15.8 even 4
675.3.i.c.224.16 32 15.2 even 4
675.3.i.c.449.1 32 45.22 odd 12
675.3.i.c.449.16 32 45.13 odd 12
675.3.j.b.251.1 16 3.2 odd 2
675.3.j.b.476.1 16 9.4 even 3
720.3.bs.c.401.2 16 180.59 even 6
720.3.bs.c.641.2 16 20.19 odd 2
2160.3.bs.c.881.1 16 180.139 odd 6
2160.3.bs.c.1601.1 16 60.59 even 2