Defining parameters
Level: | \( N \) | = | \( 225 = 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(10800\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(225))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3824 | 2718 | 1106 |
Cusp forms | 3376 | 2534 | 842 |
Eisenstein series | 448 | 184 | 264 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(225))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(225))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(225)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)