Properties

Label 225.3
Level 225
Weight 3
Dimension 2534
Nonzero newspaces 12
Newform subspaces 32
Sturm bound 10800
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 32 \)
Sturm bound: \(10800\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(225))\).

Total New Old
Modular forms 3824 2718 1106
Cusp forms 3376 2534 842
Eisenstein series 448 184 264

Trace form

\( 2534 q - 25 q^{2} - 27 q^{3} - 23 q^{4} - 26 q^{5} - 31 q^{6} - 24 q^{7} + 42 q^{8} + 7 q^{9} - 10 q^{10} + 55 q^{11} + 46 q^{12} + 14 q^{13} - 44 q^{15} - 91 q^{16} - 96 q^{17} - 120 q^{18} - 96 q^{19}+ \cdots + 2544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(225))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
225.3.c \(\chi_{225}(26, \cdot)\) 225.3.c.a 2 1
225.3.c.b 2
225.3.c.c 4
225.3.c.d 4
225.3.d \(\chi_{225}(224, \cdot)\) 225.3.d.a 4 1
225.3.d.b 8
225.3.g \(\chi_{225}(82, \cdot)\) 225.3.g.a 4 2
225.3.g.b 4
225.3.g.c 4
225.3.g.d 4
225.3.g.e 4
225.3.g.f 4
225.3.g.g 4
225.3.i \(\chi_{225}(74, \cdot)\) 225.3.i.a 4 2
225.3.i.b 32
225.3.i.c 32
225.3.j \(\chi_{225}(101, \cdot)\) 225.3.j.a 2 2
225.3.j.b 16
225.3.j.c 16
225.3.j.d 16
225.3.j.e 20
225.3.l \(\chi_{225}(44, \cdot)\) 225.3.l.a 80 4
225.3.n \(\chi_{225}(71, \cdot)\) 225.3.n.a 80 4
225.3.o \(\chi_{225}(7, \cdot)\) 225.3.o.a 32 4
225.3.o.b 40
225.3.o.c 64
225.3.r \(\chi_{225}(28, \cdot)\) 225.3.r.a 32 8
225.3.r.b 80
225.3.r.c 80
225.3.t \(\chi_{225}(11, \cdot)\) 225.3.t.a 464 8
225.3.v \(\chi_{225}(14, \cdot)\) 225.3.v.a 464 8
225.3.x \(\chi_{225}(13, \cdot)\) 225.3.x.a 928 16

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(225))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(225)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)