Properties

Label 720.3.bs.c.641.2
Level $720$
Weight $3$
Character 720.641
Analytic conductor $19.619$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(401,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 48x^{14} + 912x^{12} + 8704x^{10} + 43602x^{8} + 109032x^{6} + 117844x^{4} + 36000x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 641.2
Root \(-3.73655i\) of defining polynomial
Character \(\chi\) \(=\) 720.641
Dual form 720.3.bs.c.401.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.62117 - 1.45927i) q^{3} +(1.93649 - 1.11803i) q^{5} +(-3.63061 + 6.28840i) q^{7} +(4.74103 + 7.65001i) q^{9} +(-6.50668 - 3.75663i) q^{11} +(-1.46668 - 2.54036i) q^{13} +(-6.70739 + 0.104680i) q^{15} +1.90107i q^{17} +7.38378 q^{19} +(18.6929 - 11.1849i) q^{21} +(30.6549 - 17.6986i) q^{23} +(2.50000 - 4.33013i) q^{25} +(-1.26358 - 26.9704i) q^{27} +(-14.2015 - 8.19922i) q^{29} +(13.3206 + 23.0720i) q^{31} +(11.5731 + 19.3418i) q^{33} +16.2366i q^{35} -44.6613 q^{37} +(0.137323 + 8.79899i) q^{39} +(14.8634 - 8.58140i) q^{41} +(20.5554 - 35.6031i) q^{43} +(17.7339 + 9.51354i) q^{45} +(-36.4950 - 21.0704i) q^{47} +(-1.86263 - 3.22616i) q^{49} +(2.77419 - 4.98303i) q^{51} -100.474i q^{53} -16.8002 q^{55} +(-19.3541 - 10.7750i) q^{57} +(4.12003 - 2.37870i) q^{59} +(38.4629 - 66.6197i) q^{61} +(-65.3191 + 2.03933i) q^{63} +(-5.68041 - 3.27959i) q^{65} +(-41.9225 - 72.6119i) q^{67} +(-106.179 + 1.65710i) q^{69} -23.1134i q^{71} -103.753 q^{73} +(-12.8718 + 7.70180i) q^{75} +(47.2464 - 27.2777i) q^{77} +(40.2610 - 69.7340i) q^{79} +(-36.0452 + 72.5379i) q^{81} +(17.1034 + 9.87463i) q^{83} +(2.12546 + 3.68141i) q^{85} +(25.2595 + 42.2153i) q^{87} -29.0566i q^{89} +21.2997 q^{91} +(-1.24719 - 79.9139i) q^{93} +(14.2986 - 8.25532i) q^{95} +(47.7972 - 82.7872i) q^{97} +(-2.11011 - 67.5864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 2 q^{7} + 8 q^{9} + 18 q^{11} - 10 q^{13} - 10 q^{15} + 52 q^{19} + 72 q^{21} + 54 q^{23} + 40 q^{25} - 34 q^{27} - 54 q^{29} - 32 q^{31} + 62 q^{33} + 44 q^{37} - 160 q^{39} + 144 q^{41}+ \cdots + 824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.62117 1.45927i −0.873722 0.486425i
\(4\) 0 0
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) 0 0
\(7\) −3.63061 + 6.28840i −0.518658 + 0.898342i 0.481107 + 0.876662i \(0.340235\pi\)
−0.999765 + 0.0216804i \(0.993098\pi\)
\(8\) 0 0
\(9\) 4.74103 + 7.65001i 0.526781 + 0.850001i
\(10\) 0 0
\(11\) −6.50668 3.75663i −0.591516 0.341512i 0.174181 0.984714i \(-0.444272\pi\)
−0.765697 + 0.643202i \(0.777606\pi\)
\(12\) 0 0
\(13\) −1.46668 2.54036i −0.112821 0.195412i 0.804085 0.594514i \(-0.202655\pi\)
−0.916907 + 0.399102i \(0.869322\pi\)
\(14\) 0 0
\(15\) −6.70739 + 0.104680i −0.447159 + 0.00697867i
\(16\) 0 0
\(17\) 1.90107i 0.111828i 0.998436 + 0.0559139i \(0.0178072\pi\)
−0.998436 + 0.0559139i \(0.982193\pi\)
\(18\) 0 0
\(19\) 7.38378 0.388620 0.194310 0.980940i \(-0.437753\pi\)
0.194310 + 0.980940i \(0.437753\pi\)
\(20\) 0 0
\(21\) 18.6929 11.1849i 0.890140 0.532614i
\(22\) 0 0
\(23\) 30.6549 17.6986i 1.33282 0.769506i 0.347091 0.937831i \(-0.387169\pi\)
0.985731 + 0.168326i \(0.0538360\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 0 0
\(27\) −1.26358 26.9704i −0.0467992 0.998904i
\(28\) 0 0
\(29\) −14.2015 8.19922i −0.489705 0.282732i 0.234747 0.972057i \(-0.424574\pi\)
−0.724452 + 0.689325i \(0.757907\pi\)
\(30\) 0 0
\(31\) 13.3206 + 23.0720i 0.429697 + 0.744257i 0.996846 0.0793581i \(-0.0252871\pi\)
−0.567149 + 0.823615i \(0.691954\pi\)
\(32\) 0 0
\(33\) 11.5731 + 19.3418i 0.350701 + 0.586115i
\(34\) 0 0
\(35\) 16.2366i 0.463902i
\(36\) 0 0
\(37\) −44.6613 −1.20706 −0.603531 0.797340i \(-0.706240\pi\)
−0.603531 + 0.797340i \(0.706240\pi\)
\(38\) 0 0
\(39\) 0.137323 + 8.79899i 0.00352110 + 0.225615i
\(40\) 0 0
\(41\) 14.8634 8.58140i 0.362522 0.209302i −0.307664 0.951495i \(-0.599547\pi\)
0.670187 + 0.742193i \(0.266214\pi\)
\(42\) 0 0
\(43\) 20.5554 35.6031i 0.478033 0.827978i −0.521650 0.853160i \(-0.674683\pi\)
0.999683 + 0.0251818i \(0.00801646\pi\)
\(44\) 0 0
\(45\) 17.7339 + 9.51354i 0.394088 + 0.211412i
\(46\) 0 0
\(47\) −36.4950 21.0704i −0.776490 0.448307i 0.0586949 0.998276i \(-0.481306\pi\)
−0.835185 + 0.549969i \(0.814639\pi\)
\(48\) 0 0
\(49\) −1.86263 3.22616i −0.0380128 0.0658401i
\(50\) 0 0
\(51\) 2.77419 4.98303i 0.0543959 0.0977065i
\(52\) 0 0
\(53\) 100.474i 1.89573i −0.318671 0.947865i \(-0.603236\pi\)
0.318671 0.947865i \(-0.396764\pi\)
\(54\) 0 0
\(55\) −16.8002 −0.305458
\(56\) 0 0
\(57\) −19.3541 10.7750i −0.339546 0.189035i
\(58\) 0 0
\(59\) 4.12003 2.37870i 0.0698310 0.0403169i −0.464678 0.885480i \(-0.653830\pi\)
0.534509 + 0.845163i \(0.320497\pi\)
\(60\) 0 0
\(61\) 38.4629 66.6197i 0.630539 1.09213i −0.356902 0.934142i \(-0.616167\pi\)
0.987442 0.157985i \(-0.0504996\pi\)
\(62\) 0 0
\(63\) −65.3191 + 2.03933i −1.03681 + 0.0323703i
\(64\) 0 0
\(65\) −5.68041 3.27959i −0.0873910 0.0504552i
\(66\) 0 0
\(67\) −41.9225 72.6119i −0.625709 1.08376i −0.988403 0.151852i \(-0.951476\pi\)
0.362694 0.931908i \(-0.381857\pi\)
\(68\) 0 0
\(69\) −106.179 + 1.65710i −1.53882 + 0.0240159i
\(70\) 0 0
\(71\) 23.1134i 0.325540i −0.986664 0.162770i \(-0.947957\pi\)
0.986664 0.162770i \(-0.0520429\pi\)
\(72\) 0 0
\(73\) −103.753 −1.42127 −0.710637 0.703559i \(-0.751593\pi\)
−0.710637 + 0.703559i \(0.751593\pi\)
\(74\) 0 0
\(75\) −12.8718 + 7.70180i −0.171624 + 0.102691i
\(76\) 0 0
\(77\) 47.2464 27.2777i 0.613589 0.354256i
\(78\) 0 0
\(79\) 40.2610 69.7340i 0.509633 0.882709i −0.490305 0.871551i \(-0.663115\pi\)
0.999938 0.0111586i \(-0.00355198\pi\)
\(80\) 0 0
\(81\) −36.0452 + 72.5379i −0.445003 + 0.895529i
\(82\) 0 0
\(83\) 17.1034 + 9.87463i 0.206065 + 0.118971i 0.599481 0.800389i \(-0.295374\pi\)
−0.393417 + 0.919360i \(0.628707\pi\)
\(84\) 0 0
\(85\) 2.12546 + 3.68141i 0.0250055 + 0.0433107i
\(86\) 0 0
\(87\) 25.2595 + 42.2153i 0.290339 + 0.485234i
\(88\) 0 0
\(89\) 29.0566i 0.326478i −0.986587 0.163239i \(-0.947806\pi\)
0.986587 0.163239i \(-0.0521942\pi\)
\(90\) 0 0
\(91\) 21.2997 0.234063
\(92\) 0 0
\(93\) −1.24719 79.9139i −0.0134107 0.859289i
\(94\) 0 0
\(95\) 14.2986 8.25532i 0.150512 0.0868981i
\(96\) 0 0
\(97\) 47.7972 82.7872i 0.492755 0.853476i −0.507210 0.861822i \(-0.669323\pi\)
0.999965 + 0.00834602i \(0.00265665\pi\)
\(98\) 0 0
\(99\) −2.11011 67.5864i −0.0213143 0.682691i
\(100\) 0 0
\(101\) 117.817 + 68.0219i 1.16651 + 0.673484i 0.952855 0.303426i \(-0.0981305\pi\)
0.213653 + 0.976910i \(0.431464\pi\)
\(102\) 0 0
\(103\) −85.9401 148.853i −0.834370 1.44517i −0.894542 0.446983i \(-0.852498\pi\)
0.0601721 0.998188i \(-0.480835\pi\)
\(104\) 0 0
\(105\) 23.6936 42.5588i 0.225654 0.405322i
\(106\) 0 0
\(107\) 98.6056i 0.921548i 0.887518 + 0.460774i \(0.152428\pi\)
−0.887518 + 0.460774i \(0.847572\pi\)
\(108\) 0 0
\(109\) 2.62651 0.0240965 0.0120482 0.999927i \(-0.496165\pi\)
0.0120482 + 0.999927i \(0.496165\pi\)
\(110\) 0 0
\(111\) 117.065 + 65.1731i 1.05464 + 0.587145i
\(112\) 0 0
\(113\) 2.36782 1.36706i 0.0209542 0.0120979i −0.489486 0.872011i \(-0.662816\pi\)
0.510440 + 0.859913i \(0.329482\pi\)
\(114\) 0 0
\(115\) 39.5753 68.5465i 0.344133 0.596056i
\(116\) 0 0
\(117\) 12.4802 23.2640i 0.106668 0.198838i
\(118\) 0 0
\(119\) −11.9547 6.90205i −0.100460 0.0580004i
\(120\) 0 0
\(121\) −32.2754 55.9027i −0.266739 0.462006i
\(122\) 0 0
\(123\) −51.4821 + 0.803465i −0.418554 + 0.00653224i
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −193.060 −1.52015 −0.760077 0.649833i \(-0.774839\pi\)
−0.760077 + 0.649833i \(0.774839\pi\)
\(128\) 0 0
\(129\) −105.834 + 63.3255i −0.820418 + 0.490896i
\(130\) 0 0
\(131\) 201.259 116.197i 1.53633 0.886999i 0.537278 0.843405i \(-0.319453\pi\)
0.999049 0.0435937i \(-0.0138807\pi\)
\(132\) 0 0
\(133\) −26.8076 + 46.4322i −0.201561 + 0.349114i
\(134\) 0 0
\(135\) −32.6007 50.8153i −0.241487 0.376409i
\(136\) 0 0
\(137\) 154.172 + 89.0111i 1.12534 + 0.649716i 0.942759 0.333475i \(-0.108221\pi\)
0.182582 + 0.983191i \(0.441555\pi\)
\(138\) 0 0
\(139\) 16.0343 + 27.7722i 0.115355 + 0.199800i 0.917922 0.396762i \(-0.129866\pi\)
−0.802567 + 0.596562i \(0.796533\pi\)
\(140\) 0 0
\(141\) 64.9120 + 108.485i 0.460369 + 0.769400i
\(142\) 0 0
\(143\) 22.0390i 0.154119i
\(144\) 0 0
\(145\) −36.6680 −0.252883
\(146\) 0 0
\(147\) 0.174395 + 11.1744i 0.00118636 + 0.0760163i
\(148\) 0 0
\(149\) 80.4653 46.4567i 0.540036 0.311790i −0.205058 0.978750i \(-0.565738\pi\)
0.745093 + 0.666960i \(0.232405\pi\)
\(150\) 0 0
\(151\) −113.614 + 196.785i −0.752408 + 1.30321i 0.194245 + 0.980953i \(0.437774\pi\)
−0.946653 + 0.322256i \(0.895559\pi\)
\(152\) 0 0
\(153\) −14.5432 + 9.01305i −0.0950537 + 0.0589088i
\(154\) 0 0
\(155\) 51.5905 + 29.7858i 0.332842 + 0.192166i
\(156\) 0 0
\(157\) 0.792406 + 1.37249i 0.00504717 + 0.00874196i 0.868538 0.495623i \(-0.165060\pi\)
−0.863491 + 0.504365i \(0.831727\pi\)
\(158\) 0 0
\(159\) −146.619 + 263.358i −0.922131 + 1.65634i
\(160\) 0 0
\(161\) 257.027i 1.59644i
\(162\) 0 0
\(163\) 41.6801 0.255706 0.127853 0.991793i \(-0.459191\pi\)
0.127853 + 0.991793i \(0.459191\pi\)
\(164\) 0 0
\(165\) 44.0360 + 24.5161i 0.266885 + 0.148582i
\(166\) 0 0
\(167\) −8.01405 + 4.62692i −0.0479884 + 0.0277061i −0.523802 0.851840i \(-0.675487\pi\)
0.475814 + 0.879546i \(0.342154\pi\)
\(168\) 0 0
\(169\) 80.1977 138.907i 0.474543 0.821932i
\(170\) 0 0
\(171\) 35.0068 + 56.4860i 0.204718 + 0.330327i
\(172\) 0 0
\(173\) −127.637 73.6913i −0.737787 0.425962i 0.0834771 0.996510i \(-0.473397\pi\)
−0.821264 + 0.570548i \(0.806731\pi\)
\(174\) 0 0
\(175\) 18.1530 + 31.4420i 0.103732 + 0.179668i
\(176\) 0 0
\(177\) −14.2705 + 0.222714i −0.0806240 + 0.00125827i
\(178\) 0 0
\(179\) 160.022i 0.893977i −0.894540 0.446988i \(-0.852496\pi\)
0.894540 0.446988i \(-0.147504\pi\)
\(180\) 0 0
\(181\) −30.3346 −0.167595 −0.0837973 0.996483i \(-0.526705\pi\)
−0.0837973 + 0.996483i \(0.526705\pi\)
\(182\) 0 0
\(183\) −198.034 + 118.493i −1.08215 + 0.647505i
\(184\) 0 0
\(185\) −86.4862 + 49.9328i −0.467493 + 0.269907i
\(186\) 0 0
\(187\) 7.14163 12.3697i 0.0381905 0.0661480i
\(188\) 0 0
\(189\) 174.188 + 89.9731i 0.921631 + 0.476048i
\(190\) 0 0
\(191\) 249.938 + 144.302i 1.30857 + 0.755506i 0.981858 0.189617i \(-0.0607245\pi\)
0.326716 + 0.945122i \(0.394058\pi\)
\(192\) 0 0
\(193\) 47.3339 + 81.9847i 0.245253 + 0.424791i 0.962203 0.272334i \(-0.0877955\pi\)
−0.716949 + 0.697125i \(0.754462\pi\)
\(194\) 0 0
\(195\) 10.1035 + 16.8856i 0.0518128 + 0.0865930i
\(196\) 0 0
\(197\) 129.755i 0.658657i 0.944215 + 0.329329i \(0.106822\pi\)
−0.944215 + 0.329329i \(0.893178\pi\)
\(198\) 0 0
\(199\) −136.428 −0.685570 −0.342785 0.939414i \(-0.611370\pi\)
−0.342785 + 0.939414i \(0.611370\pi\)
\(200\) 0 0
\(201\) 3.92515 + 251.504i 0.0195281 + 1.25127i
\(202\) 0 0
\(203\) 103.120 59.5363i 0.507980 0.293282i
\(204\) 0 0
\(205\) 19.1886 33.2356i 0.0936029 0.162125i
\(206\) 0 0
\(207\) 280.731 + 150.601i 1.35619 + 0.727539i
\(208\) 0 0
\(209\) −48.0439 27.7382i −0.229875 0.132718i
\(210\) 0 0
\(211\) 79.1144 + 137.030i 0.374950 + 0.649432i 0.990320 0.138806i \(-0.0443266\pi\)
−0.615370 + 0.788239i \(0.710993\pi\)
\(212\) 0 0
\(213\) −33.7287 + 60.5840i −0.158351 + 0.284432i
\(214\) 0 0
\(215\) 91.9267i 0.427566i
\(216\) 0 0
\(217\) −193.448 −0.891463
\(218\) 0 0
\(219\) 271.954 + 151.404i 1.24180 + 0.691343i
\(220\) 0 0
\(221\) 4.82941 2.78826i 0.0218525 0.0126166i
\(222\) 0 0
\(223\) −103.124 + 178.616i −0.462440 + 0.800969i −0.999082 0.0428406i \(-0.986359\pi\)
0.536642 + 0.843810i \(0.319693\pi\)
\(224\) 0 0
\(225\) 44.9781 1.40426i 0.199903 0.00624115i
\(226\) 0 0
\(227\) 127.562 + 73.6481i 0.561948 + 0.324441i 0.753927 0.656958i \(-0.228157\pi\)
−0.191979 + 0.981399i \(0.561490\pi\)
\(228\) 0 0
\(229\) 13.5751 + 23.5127i 0.0592798 + 0.102676i 0.894142 0.447783i \(-0.147786\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(230\) 0 0
\(231\) −163.646 + 2.55398i −0.708426 + 0.0110562i
\(232\) 0 0
\(233\) 39.6011i 0.169962i −0.996383 0.0849808i \(-0.972917\pi\)
0.996383 0.0849808i \(-0.0270829\pi\)
\(234\) 0 0
\(235\) −94.2298 −0.400978
\(236\) 0 0
\(237\) −207.292 + 124.033i −0.874649 + 0.523345i
\(238\) 0 0
\(239\) −54.9394 + 31.7193i −0.229872 + 0.132717i −0.610513 0.792006i \(-0.709037\pi\)
0.380641 + 0.924723i \(0.375703\pi\)
\(240\) 0 0
\(241\) 69.1161 119.713i 0.286789 0.496733i −0.686253 0.727363i \(-0.740746\pi\)
0.973041 + 0.230630i \(0.0740789\pi\)
\(242\) 0 0
\(243\) 200.333 137.534i 0.824416 0.565984i
\(244\) 0 0
\(245\) −7.21392 4.16496i −0.0294446 0.0169998i
\(246\) 0 0
\(247\) −10.8296 18.7575i −0.0438446 0.0759411i
\(248\) 0 0
\(249\) −30.4210 50.8415i −0.122173 0.204183i
\(250\) 0 0
\(251\) 186.477i 0.742936i −0.928446 0.371468i \(-0.878855\pi\)
0.928446 0.371468i \(-0.121145\pi\)
\(252\) 0 0
\(253\) −265.949 −1.05118
\(254\) 0 0
\(255\) −0.199004 12.7512i −0.000780410 0.0500048i
\(256\) 0 0
\(257\) 201.713 116.459i 0.784877 0.453149i −0.0532790 0.998580i \(-0.516967\pi\)
0.838156 + 0.545431i \(0.183634\pi\)
\(258\) 0 0
\(259\) 162.148 280.848i 0.626053 1.08435i
\(260\) 0 0
\(261\) −4.60553 147.514i −0.0176457 0.565188i
\(262\) 0 0
\(263\) 9.34728 + 5.39665i 0.0355410 + 0.0205196i 0.517665 0.855583i \(-0.326801\pi\)
−0.482124 + 0.876103i \(0.660135\pi\)
\(264\) 0 0
\(265\) −112.333 194.567i −0.423898 0.734213i
\(266\) 0 0
\(267\) −42.4015 + 76.1622i −0.158807 + 0.285252i
\(268\) 0 0
\(269\) 58.4601i 0.217324i 0.994079 + 0.108662i \(0.0346566\pi\)
−0.994079 + 0.108662i \(0.965343\pi\)
\(270\) 0 0
\(271\) 65.5995 0.242065 0.121032 0.992649i \(-0.461380\pi\)
0.121032 + 0.992649i \(0.461380\pi\)
\(272\) 0 0
\(273\) −55.8301 31.0821i −0.204506 0.113854i
\(274\) 0 0
\(275\) −32.5334 + 18.7832i −0.118303 + 0.0683024i
\(276\) 0 0
\(277\) −134.128 + 232.317i −0.484218 + 0.838690i −0.999836 0.0181286i \(-0.994229\pi\)
0.515618 + 0.856819i \(0.327562\pi\)
\(278\) 0 0
\(279\) −113.347 + 211.288i −0.406263 + 0.757303i
\(280\) 0 0
\(281\) 159.428 + 92.0461i 0.567361 + 0.327566i 0.756095 0.654462i \(-0.227105\pi\)
−0.188734 + 0.982028i \(0.560438\pi\)
\(282\) 0 0
\(283\) −231.303 400.628i −0.817324 1.41565i −0.907647 0.419734i \(-0.862123\pi\)
0.0903234 0.995912i \(-0.471210\pi\)
\(284\) 0 0
\(285\) −49.5259 + 0.772935i −0.173775 + 0.00271205i
\(286\) 0 0
\(287\) 124.623i 0.434226i
\(288\) 0 0
\(289\) 285.386 0.987495
\(290\) 0 0
\(291\) −246.094 + 147.250i −0.845683 + 0.506013i
\(292\) 0 0
\(293\) 248.349 143.384i 0.847608 0.489367i −0.0122351 0.999925i \(-0.503895\pi\)
0.859843 + 0.510559i \(0.170561\pi\)
\(294\) 0 0
\(295\) 5.31893 9.21266i 0.0180303 0.0312294i
\(296\) 0 0
\(297\) −93.0962 + 180.235i −0.313455 + 0.606850i
\(298\) 0 0
\(299\) −89.9217 51.9163i −0.300741 0.173633i
\(300\) 0 0
\(301\) 149.257 + 258.521i 0.495872 + 0.858875i
\(302\) 0 0
\(303\) −209.556 350.225i −0.691605 1.15586i
\(304\) 0 0
\(305\) 172.011i 0.563972i
\(306\) 0 0
\(307\) 236.738 0.771133 0.385567 0.922680i \(-0.374006\pi\)
0.385567 + 0.922680i \(0.374006\pi\)
\(308\) 0 0
\(309\) 8.04646 + 515.578i 0.0260403 + 1.66854i
\(310\) 0 0
\(311\) −448.597 + 258.997i −1.44243 + 0.832789i −0.998012 0.0630292i \(-0.979924\pi\)
−0.444421 + 0.895818i \(0.646591\pi\)
\(312\) 0 0
\(313\) 247.615 428.882i 0.791102 1.37023i −0.134183 0.990957i \(-0.542841\pi\)
0.925285 0.379272i \(-0.123826\pi\)
\(314\) 0 0
\(315\) −124.210 + 76.9781i −0.394317 + 0.244375i
\(316\) 0 0
\(317\) −189.840 109.604i −0.598864 0.345754i 0.169731 0.985491i \(-0.445710\pi\)
−0.768595 + 0.639736i \(0.779044\pi\)
\(318\) 0 0
\(319\) 61.6029 + 106.699i 0.193112 + 0.334481i
\(320\) 0 0
\(321\) 143.893 258.462i 0.448264 0.805177i
\(322\) 0 0
\(323\) 14.0371i 0.0434586i
\(324\) 0 0
\(325\) −14.6668 −0.0451285
\(326\) 0 0
\(327\) −6.88453 3.83281i −0.0210536 0.0117211i
\(328\) 0 0
\(329\) 264.998 152.997i 0.805466 0.465036i
\(330\) 0 0
\(331\) −47.4838 + 82.2443i −0.143455 + 0.248472i −0.928796 0.370592i \(-0.879155\pi\)
0.785340 + 0.619064i \(0.212488\pi\)
\(332\) 0 0
\(333\) −211.741 341.659i −0.635858 1.02600i
\(334\) 0 0
\(335\) −162.365 93.7416i −0.484672 0.279826i
\(336\) 0 0
\(337\) 257.989 + 446.850i 0.765547 + 1.32597i 0.939957 + 0.341293i \(0.110865\pi\)
−0.174411 + 0.984673i \(0.555802\pi\)
\(338\) 0 0
\(339\) −8.20138 + 0.127996i −0.0241929 + 0.000377570i
\(340\) 0 0
\(341\) 200.162i 0.586986i
\(342\) 0 0
\(343\) −328.750 −0.958454
\(344\) 0 0
\(345\) −203.762 + 121.921i −0.590614 + 0.353393i
\(346\) 0 0
\(347\) 96.4994 55.7140i 0.278096 0.160559i −0.354465 0.935069i \(-0.615337\pi\)
0.632561 + 0.774510i \(0.282004\pi\)
\(348\) 0 0
\(349\) −310.131 + 537.162i −0.888627 + 1.53915i −0.0471279 + 0.998889i \(0.515007\pi\)
−0.841499 + 0.540258i \(0.818327\pi\)
\(350\) 0 0
\(351\) −66.6613 + 42.7668i −0.189918 + 0.121843i
\(352\) 0 0
\(353\) 488.067 + 281.786i 1.38263 + 0.798260i 0.992470 0.122488i \(-0.0390873\pi\)
0.390157 + 0.920748i \(0.372421\pi\)
\(354\) 0 0
\(355\) −25.8415 44.7588i −0.0727930 0.126081i
\(356\) 0 0
\(357\) 21.2633 + 35.5366i 0.0595610 + 0.0995424i
\(358\) 0 0
\(359\) 415.128i 1.15635i 0.815915 + 0.578173i \(0.196234\pi\)
−0.815915 + 0.578173i \(0.803766\pi\)
\(360\) 0 0
\(361\) −306.480 −0.848974
\(362\) 0 0
\(363\) 3.02191 + 193.629i 0.00832482 + 0.533413i
\(364\) 0 0
\(365\) −200.917 + 115.999i −0.550457 + 0.317807i
\(366\) 0 0
\(367\) 313.940 543.761i 0.855423 1.48164i −0.0208286 0.999783i \(-0.506630\pi\)
0.876252 0.481853i \(-0.160036\pi\)
\(368\) 0 0
\(369\) 136.116 + 73.0205i 0.368877 + 0.197888i
\(370\) 0 0
\(371\) 631.819 + 364.781i 1.70302 + 0.983237i
\(372\) 0 0
\(373\) −195.467 338.559i −0.524040 0.907665i −0.999608 0.0279857i \(-0.991091\pi\)
0.475568 0.879679i \(-0.342243\pi\)
\(374\) 0 0
\(375\) −16.3152 + 29.3055i −0.0435072 + 0.0781481i
\(376\) 0 0
\(377\) 48.1024i 0.127593i
\(378\) 0 0
\(379\) −52.4430 −0.138372 −0.0691860 0.997604i \(-0.522040\pi\)
−0.0691860 + 0.997604i \(0.522040\pi\)
\(380\) 0 0
\(381\) 506.042 + 281.727i 1.32819 + 0.739441i
\(382\) 0 0
\(383\) 96.0614 55.4610i 0.250813 0.144807i −0.369324 0.929301i \(-0.620411\pi\)
0.620136 + 0.784494i \(0.287077\pi\)
\(384\) 0 0
\(385\) 60.9948 105.646i 0.158428 0.274405i
\(386\) 0 0
\(387\) 369.818 11.5461i 0.955601 0.0298348i
\(388\) 0 0
\(389\) −91.6114 52.8918i −0.235505 0.135969i 0.377604 0.925967i \(-0.376748\pi\)
−0.613109 + 0.789998i \(0.710081\pi\)
\(390\) 0 0
\(391\) 33.6464 + 58.2773i 0.0860521 + 0.149047i
\(392\) 0 0
\(393\) −697.096 + 10.8794i −1.77378 + 0.0276829i
\(394\) 0 0
\(395\) 180.053i 0.455829i
\(396\) 0 0
\(397\) 99.8892 0.251610 0.125805 0.992055i \(-0.459849\pi\)
0.125805 + 0.992055i \(0.459849\pi\)
\(398\) 0 0
\(399\) 138.025 82.5868i 0.345926 0.206984i
\(400\) 0 0
\(401\) −136.080 + 78.5658i −0.339352 + 0.195925i −0.659985 0.751279i \(-0.729437\pi\)
0.320634 + 0.947203i \(0.396104\pi\)
\(402\) 0 0
\(403\) 39.0740 67.6782i 0.0969579 0.167936i
\(404\) 0 0
\(405\) 11.2986 + 180.769i 0.0278977 + 0.446343i
\(406\) 0 0
\(407\) 290.597 + 167.776i 0.713996 + 0.412226i
\(408\) 0 0
\(409\) −342.619 593.434i −0.837700 1.45094i −0.891813 0.452404i \(-0.850567\pi\)
0.0541134 0.998535i \(-0.482767\pi\)
\(410\) 0 0
\(411\) −274.218 458.292i −0.667197 1.11506i
\(412\) 0 0
\(413\) 34.5445i 0.0836428i
\(414\) 0 0
\(415\) 44.1607 0.106411
\(416\) 0 0
\(417\) −1.50127 96.1942i −0.00360017 0.230681i
\(418\) 0 0
\(419\) 44.6836 25.7981i 0.106643 0.0615706i −0.445730 0.895168i \(-0.647056\pi\)
0.552373 + 0.833597i \(0.313722\pi\)
\(420\) 0 0
\(421\) −7.37620 + 12.7760i −0.0175207 + 0.0303467i −0.874653 0.484750i \(-0.838911\pi\)
0.857132 + 0.515097i \(0.172244\pi\)
\(422\) 0 0
\(423\) −11.8353 379.083i −0.0279795 0.896177i
\(424\) 0 0
\(425\) 8.23189 + 4.75268i 0.0193691 + 0.0111828i
\(426\) 0 0
\(427\) 279.287 + 483.740i 0.654069 + 1.13288i
\(428\) 0 0
\(429\) 32.1610 57.7680i 0.0749674 0.134657i
\(430\) 0 0
\(431\) 38.6810i 0.0897472i 0.998993 + 0.0448736i \(0.0142885\pi\)
−0.998993 + 0.0448736i \(0.985711\pi\)
\(432\) 0 0
\(433\) −544.647 −1.25784 −0.628922 0.777468i \(-0.716504\pi\)
−0.628922 + 0.777468i \(0.716504\pi\)
\(434\) 0 0
\(435\) 96.1130 + 53.5087i 0.220949 + 0.123009i
\(436\) 0 0
\(437\) 226.349 130.683i 0.517962 0.299045i
\(438\) 0 0
\(439\) 125.709 217.735i 0.286353 0.495978i −0.686583 0.727051i \(-0.740890\pi\)
0.972936 + 0.231073i \(0.0742236\pi\)
\(440\) 0 0
\(441\) 15.8494 29.5444i 0.0359397 0.0669942i
\(442\) 0 0
\(443\) −632.952 365.435i −1.42878 0.824909i −0.431760 0.901989i \(-0.642107\pi\)
−0.997025 + 0.0770796i \(0.975440\pi\)
\(444\) 0 0
\(445\) −32.4862 56.2678i −0.0730028 0.126445i
\(446\) 0 0
\(447\) −278.706 + 4.34968i −0.623504 + 0.00973083i
\(448\) 0 0
\(449\) 94.7211i 0.210960i −0.994421 0.105480i \(-0.966362\pi\)
0.994421 0.105480i \(-0.0336379\pi\)
\(450\) 0 0
\(451\) −128.949 −0.285917
\(452\) 0 0
\(453\) 584.963 350.012i 1.29131 0.772653i
\(454\) 0 0
\(455\) 41.2467 23.8138i 0.0906521 0.0523380i
\(456\) 0 0
\(457\) 204.206 353.695i 0.446840 0.773949i −0.551339 0.834282i \(-0.685883\pi\)
0.998178 + 0.0603323i \(0.0192160\pi\)
\(458\) 0 0
\(459\) 51.2727 2.40215i 0.111705 0.00523345i
\(460\) 0 0
\(461\) −511.735 295.450i −1.11005 0.640890i −0.171211 0.985234i \(-0.554768\pi\)
−0.938843 + 0.344344i \(0.888101\pi\)
\(462\) 0 0
\(463\) 400.967 + 694.496i 0.866020 + 1.49999i 0.866031 + 0.499991i \(0.166663\pi\)
−1.04649e−5 1.00000i \(0.500003\pi\)
\(464\) 0 0
\(465\) −91.7616 153.358i −0.197337 0.329803i
\(466\) 0 0
\(467\) 20.6432i 0.0442039i 0.999756 + 0.0221019i \(0.00703584\pi\)
−0.999756 + 0.0221019i \(0.992964\pi\)
\(468\) 0 0
\(469\) 608.817 1.29812
\(470\) 0 0
\(471\) −0.0741920 4.75386i −0.000157520 0.0100931i
\(472\) 0 0
\(473\) −267.495 + 154.438i −0.565529 + 0.326508i
\(474\) 0 0
\(475\) 18.4595 31.9727i 0.0388620 0.0673110i
\(476\) 0 0
\(477\) 768.625 476.349i 1.61137 0.998636i
\(478\) 0 0
\(479\) −435.378 251.366i −0.908931 0.524771i −0.0288439 0.999584i \(-0.509183\pi\)
−0.880087 + 0.474812i \(0.842516\pi\)
\(480\) 0 0
\(481\) 65.5037 + 113.456i 0.136182 + 0.235875i
\(482\) 0 0
\(483\) 375.073 673.711i 0.776549 1.39485i
\(484\) 0 0
\(485\) 213.756i 0.440733i
\(486\) 0 0
\(487\) −80.4336 −0.165161 −0.0825807 0.996584i \(-0.526316\pi\)
−0.0825807 + 0.996584i \(0.526316\pi\)
\(488\) 0 0
\(489\) −109.250 60.8227i −0.223416 0.124382i
\(490\) 0 0
\(491\) 417.972 241.316i 0.851267 0.491479i −0.00981129 0.999952i \(-0.503123\pi\)
0.861078 + 0.508473i \(0.169790\pi\)
\(492\) 0 0
\(493\) 15.5873 26.9980i 0.0316173 0.0547627i
\(494\) 0 0
\(495\) −79.6501 128.521i −0.160909 0.259639i
\(496\) 0 0
\(497\) 145.346 + 83.9155i 0.292447 + 0.168844i
\(498\) 0 0
\(499\) −17.5059 30.3212i −0.0350820 0.0607638i 0.847951 0.530074i \(-0.177836\pi\)
−0.883033 + 0.469310i \(0.844503\pi\)
\(500\) 0 0
\(501\) 27.7581 0.433212i 0.0554054 0.000864695i
\(502\) 0 0
\(503\) 211.016i 0.419514i −0.977754 0.209757i \(-0.932733\pi\)
0.977754 0.209757i \(-0.0672673\pi\)
\(504\) 0 0
\(505\) 304.203 0.602382
\(506\) 0 0
\(507\) −412.914 + 247.067i −0.814427 + 0.487311i
\(508\) 0 0
\(509\) −732.292 + 422.789i −1.43869 + 0.830627i −0.997759 0.0669144i \(-0.978685\pi\)
−0.440930 + 0.897542i \(0.645351\pi\)
\(510\) 0 0
\(511\) 376.687 652.440i 0.737156 1.27679i
\(512\) 0 0
\(513\) −9.32998 199.144i −0.0181871 0.388194i
\(514\) 0 0
\(515\) −332.845 192.168i −0.646300 0.373142i
\(516\) 0 0
\(517\) 158.308 + 274.197i 0.306204 + 0.530361i
\(518\) 0 0
\(519\) 227.022 + 379.415i 0.437423 + 0.731050i
\(520\) 0 0
\(521\) 260.960i 0.500883i 0.968132 + 0.250442i \(0.0805758\pi\)
−0.968132 + 0.250442i \(0.919424\pi\)
\(522\) 0 0
\(523\) −553.330 −1.05799 −0.528996 0.848624i \(-0.677431\pi\)
−0.528996 + 0.848624i \(0.677431\pi\)
\(524\) 0 0
\(525\) −1.69965 108.905i −0.00323742 0.207438i
\(526\) 0 0
\(527\) −43.8615 + 25.3234i −0.0832286 + 0.0480521i
\(528\) 0 0
\(529\) 361.983 626.973i 0.684278 1.18520i
\(530\) 0 0
\(531\) 37.7302 + 20.2407i 0.0710551 + 0.0381182i
\(532\) 0 0
\(533\) −43.5996 25.1723i −0.0818005 0.0472275i
\(534\) 0 0
\(535\) 110.244 + 190.949i 0.206064 + 0.356914i
\(536\) 0 0
\(537\) −233.516 + 419.444i −0.434853 + 0.781088i
\(538\) 0 0
\(539\) 27.9888i 0.0519273i
\(540\) 0 0
\(541\) −795.168 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(542\) 0 0
\(543\) 79.5121 + 44.2665i 0.146431 + 0.0815222i
\(544\) 0 0
\(545\) 5.08622 2.93653i 0.00933252 0.00538813i
\(546\) 0 0
\(547\) −303.604 + 525.858i −0.555035 + 0.961348i 0.442866 + 0.896588i \(0.353962\pi\)
−0.997901 + 0.0647606i \(0.979372\pi\)
\(548\) 0 0
\(549\) 691.995 21.6048i 1.26046 0.0393529i
\(550\) 0 0
\(551\) −104.861 60.5412i −0.190309 0.109875i
\(552\) 0 0
\(553\) 292.344 + 506.354i 0.528650 + 0.915649i
\(554\) 0 0
\(555\) 299.561 4.67515i 0.539749 0.00842369i
\(556\) 0 0
\(557\) 686.808i 1.23305i −0.787336 0.616524i \(-0.788540\pi\)
0.787336 0.616524i \(-0.211460\pi\)
\(558\) 0 0
\(559\) −120.593 −0.215729
\(560\) 0 0
\(561\) −36.7702 + 22.0014i −0.0655439 + 0.0392181i
\(562\) 0 0
\(563\) 208.976 120.652i 0.371182 0.214302i −0.302792 0.953057i \(-0.597919\pi\)
0.673975 + 0.738754i \(0.264586\pi\)
\(564\) 0 0
\(565\) 3.05685 5.29461i 0.00541035 0.00937099i
\(566\) 0 0
\(567\) −325.281 490.023i −0.573688 0.864238i
\(568\) 0 0
\(569\) −666.084 384.564i −1.17062 0.675859i −0.216796 0.976217i \(-0.569561\pi\)
−0.953827 + 0.300358i \(0.902894\pi\)
\(570\) 0 0
\(571\) 48.7253 + 84.3947i 0.0853333 + 0.147802i 0.905533 0.424275i \(-0.139471\pi\)
−0.820200 + 0.572077i \(0.806138\pi\)
\(572\) 0 0
\(573\) −444.553 742.966i −0.775834 1.29663i
\(574\) 0 0
\(575\) 176.986i 0.307802i
\(576\) 0 0
\(577\) 277.283 0.480560 0.240280 0.970704i \(-0.422761\pi\)
0.240280 + 0.970704i \(0.422761\pi\)
\(578\) 0 0
\(579\) −4.43181 283.969i −0.00765425 0.490447i
\(580\) 0 0
\(581\) −124.191 + 71.7018i −0.213754 + 0.123411i
\(582\) 0 0
\(583\) −377.443 + 653.750i −0.647415 + 1.12136i
\(584\) 0 0
\(585\) −1.84216 59.0038i −0.00314899 0.100861i
\(586\) 0 0
\(587\) −405.017 233.836i −0.689977 0.398358i 0.113626 0.993524i \(-0.463753\pi\)
−0.803603 + 0.595165i \(0.797087\pi\)
\(588\) 0 0
\(589\) 98.3565 + 170.358i 0.166989 + 0.289233i
\(590\) 0 0
\(591\) 189.349 340.111i 0.320387 0.575483i
\(592\) 0 0
\(593\) 254.411i 0.429023i 0.976721 + 0.214512i \(0.0688160\pi\)
−0.976721 + 0.214512i \(0.931184\pi\)
\(594\) 0 0
\(595\) −30.8669 −0.0518772
\(596\) 0 0
\(597\) 357.602 + 199.087i 0.598998 + 0.333478i
\(598\) 0 0
\(599\) −352.081 + 203.274i −0.587780 + 0.339355i −0.764219 0.644956i \(-0.776876\pi\)
0.176439 + 0.984312i \(0.443542\pi\)
\(600\) 0 0
\(601\) −249.967 + 432.956i −0.415919 + 0.720393i −0.995524 0.0945042i \(-0.969873\pi\)
0.579605 + 0.814897i \(0.303207\pi\)
\(602\) 0 0
\(603\) 356.726 664.963i 0.591585 1.10276i
\(604\) 0 0
\(605\) −125.002 72.1701i −0.206615 0.119289i
\(606\) 0 0
\(607\) 29.9627 + 51.8970i 0.0493620 + 0.0854975i 0.889651 0.456642i \(-0.150948\pi\)
−0.840289 + 0.542139i \(0.817615\pi\)
\(608\) 0 0
\(609\) −357.174 + 5.57430i −0.586493 + 0.00915321i
\(610\) 0 0
\(611\) 123.614i 0.202314i
\(612\) 0 0
\(613\) −373.866 −0.609896 −0.304948 0.952369i \(-0.598639\pi\)
−0.304948 + 0.952369i \(0.598639\pi\)
\(614\) 0 0
\(615\) −98.7964 + 59.1147i −0.160645 + 0.0961214i
\(616\) 0 0
\(617\) −320.088 + 184.803i −0.518782 + 0.299519i −0.736436 0.676507i \(-0.763493\pi\)
0.217654 + 0.976026i \(0.430159\pi\)
\(618\) 0 0
\(619\) 598.225 1036.16i 0.966438 1.67392i 0.260738 0.965410i \(-0.416034\pi\)
0.705701 0.708510i \(-0.250632\pi\)
\(620\) 0 0
\(621\) −516.074 804.413i −0.831037 1.29535i
\(622\) 0 0
\(623\) 182.719 + 105.493i 0.293289 + 0.169331i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 85.4535 + 142.816i 0.136289 + 0.227776i
\(628\) 0 0
\(629\) 84.9044i 0.134983i
\(630\) 0 0
\(631\) −628.525 −0.996078 −0.498039 0.867155i \(-0.665946\pi\)
−0.498039 + 0.867155i \(0.665946\pi\)
\(632\) 0 0
\(633\) −7.40738 474.629i −0.0117020 0.749808i
\(634\) 0 0
\(635\) −373.858 + 215.847i −0.588753 + 0.339917i
\(636\) 0 0
\(637\) −5.46374 + 9.46347i −0.00857730 + 0.0148563i
\(638\) 0 0
\(639\) 176.817 109.581i 0.276709 0.171489i
\(640\) 0 0
\(641\) 824.417 + 475.977i 1.28614 + 0.742554i 0.977964 0.208774i \(-0.0669474\pi\)
0.308178 + 0.951329i \(0.400281\pi\)
\(642\) 0 0
\(643\) −35.7759 61.9656i −0.0556390 0.0963696i 0.836864 0.547410i \(-0.184386\pi\)
−0.892503 + 0.451041i \(0.851053\pi\)
\(644\) 0 0
\(645\) −134.146 + 240.955i −0.207979 + 0.373574i
\(646\) 0 0
\(647\) 900.292i 1.39149i −0.718290 0.695744i \(-0.755075\pi\)
0.718290 0.695744i \(-0.244925\pi\)
\(648\) 0 0
\(649\) −35.7436 −0.0550748
\(650\) 0 0
\(651\) 507.058 + 282.293i 0.778892 + 0.433630i
\(652\) 0 0
\(653\) −222.825 + 128.648i −0.341233 + 0.197011i −0.660817 0.750547i \(-0.729790\pi\)
0.319584 + 0.947558i \(0.396457\pi\)
\(654\) 0 0
\(655\) 259.824 450.029i 0.396678 0.687066i
\(656\) 0 0
\(657\) −491.897 793.711i −0.748701 1.20808i
\(658\) 0 0
\(659\) −477.967 275.954i −0.725291 0.418747i 0.0914057 0.995814i \(-0.470864\pi\)
−0.816697 + 0.577067i \(0.804197\pi\)
\(660\) 0 0
\(661\) 523.413 + 906.578i 0.791851 + 1.37153i 0.924820 + 0.380405i \(0.124216\pi\)
−0.132969 + 0.991120i \(0.542451\pi\)
\(662\) 0 0
\(663\) −16.7275 + 0.261061i −0.0252300 + 0.000393757i
\(664\) 0 0
\(665\) 119.887i 0.180282i
\(666\) 0 0
\(667\) −580.460 −0.870254
\(668\) 0 0
\(669\) 530.956 317.696i 0.793656 0.474883i
\(670\) 0 0
\(671\) −500.531 + 288.982i −0.745948 + 0.430673i
\(672\) 0 0
\(673\) −118.875 + 205.898i −0.176635 + 0.305940i −0.940726 0.339168i \(-0.889854\pi\)
0.764091 + 0.645108i \(0.223188\pi\)
\(674\) 0 0
\(675\) −119.944 61.9546i −0.177695 0.0917846i
\(676\) 0 0
\(677\) −145.591 84.0570i −0.215053 0.124161i 0.388605 0.921405i \(-0.372957\pi\)
−0.603658 + 0.797244i \(0.706291\pi\)
\(678\) 0 0
\(679\) 347.066 + 601.136i 0.511143 + 0.885325i
\(680\) 0 0
\(681\) −226.889 379.192i −0.333171 0.556817i
\(682\) 0 0
\(683\) 995.446i 1.45746i 0.684800 + 0.728731i \(0.259889\pi\)
−0.684800 + 0.728731i \(0.740111\pi\)
\(684\) 0 0
\(685\) 398.070 0.581123
\(686\) 0 0
\(687\) −1.27102 81.4405i −0.00185010 0.118545i
\(688\) 0 0
\(689\) −255.239 + 147.362i −0.370449 + 0.213879i
\(690\) 0 0
\(691\) −298.570 + 517.138i −0.432084 + 0.748391i −0.997053 0.0767211i \(-0.975555\pi\)
0.564969 + 0.825112i \(0.308888\pi\)
\(692\) 0 0
\(693\) 432.671 + 232.111i 0.624345 + 0.334936i
\(694\) 0 0
\(695\) 62.1006 + 35.8538i 0.0893534 + 0.0515882i
\(696\) 0 0
\(697\) 16.3139 + 28.2564i 0.0234058 + 0.0405401i
\(698\) 0 0
\(699\) −57.7888 + 103.801i −0.0826736 + 0.148499i
\(700\) 0 0
\(701\) 413.729i 0.590199i −0.955467 0.295099i \(-0.904647\pi\)
0.955467 0.295099i \(-0.0953528\pi\)
\(702\) 0 0
\(703\) −329.769 −0.469089
\(704\) 0 0
\(705\) 246.992 + 137.507i 0.350343 + 0.195046i
\(706\) 0 0
\(707\) −855.497 + 493.921i −1.21004 + 0.698616i
\(708\) 0 0
\(709\) 328.568 569.096i 0.463424 0.802674i −0.535705 0.844405i \(-0.679954\pi\)
0.999129 + 0.0417311i \(0.0132873\pi\)
\(710\) 0 0
\(711\) 724.345 22.6147i 1.01877 0.0318070i
\(712\) 0 0
\(713\) 816.684 + 471.513i 1.14542 + 0.661308i
\(714\) 0 0
\(715\) 24.6404 + 42.6784i 0.0344621 + 0.0596901i
\(716\) 0 0
\(717\) 190.293 2.96984i 0.265401 0.00414203i
\(718\) 0 0
\(719\) 217.226i 0.302122i −0.988524 0.151061i \(-0.951731\pi\)
0.988524 0.151061i \(-0.0482690\pi\)
\(720\) 0 0
\(721\) 1248.06 1.73101
\(722\) 0 0
\(723\) −355.858 + 212.927i −0.492197 + 0.294505i
\(724\) 0 0
\(725\) −71.0073 + 40.9961i −0.0979411 + 0.0565463i
\(726\) 0 0
\(727\) 304.437 527.300i 0.418757 0.725309i −0.577057 0.816704i \(-0.695799\pi\)
0.995815 + 0.0913946i \(0.0291325\pi\)
\(728\) 0 0
\(729\) −725.807 + 68.1584i −0.995620 + 0.0934958i
\(730\) 0 0
\(731\) 67.6840 + 39.0774i 0.0925910 + 0.0534574i
\(732\) 0 0
\(733\) 440.351 + 762.709i 0.600751 + 1.04053i 0.992708 + 0.120548i \(0.0384650\pi\)
−0.391957 + 0.919984i \(0.628202\pi\)
\(734\) 0 0
\(735\) 12.8311 + 21.4441i 0.0174572 + 0.0291757i
\(736\) 0 0
\(737\) 629.950i 0.854749i
\(738\) 0 0
\(739\) 917.157 1.24108 0.620540 0.784175i \(-0.286914\pi\)
0.620540 + 0.784175i \(0.286914\pi\)
\(740\) 0 0
\(741\) 1.01396 + 64.9698i 0.00136837 + 0.0876786i
\(742\) 0 0
\(743\) 956.492 552.231i 1.28734 0.743245i 0.309159 0.951010i \(-0.399952\pi\)
0.978179 + 0.207765i \(0.0666191\pi\)
\(744\) 0 0
\(745\) 103.880 179.926i 0.139437 0.241511i
\(746\) 0 0
\(747\) 5.54662 + 177.657i 0.00742519 + 0.237827i
\(748\) 0 0
\(749\) −620.071 357.998i −0.827866 0.477968i
\(750\) 0 0
\(751\) 330.239 + 571.990i 0.439732 + 0.761638i 0.997669 0.0682453i \(-0.0217401\pi\)
−0.557936 + 0.829884i \(0.688407\pi\)
\(752\) 0 0
\(753\) −272.121 + 488.787i −0.361383 + 0.649120i
\(754\) 0 0
\(755\) 508.096i 0.672974i
\(756\) 0 0
\(757\) −353.728 −0.467276 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(758\) 0 0
\(759\) 697.096 + 388.093i 0.918441 + 0.511321i
\(760\) 0 0
\(761\) 708.380 408.983i 0.930854 0.537429i 0.0437722 0.999042i \(-0.486062\pi\)
0.887081 + 0.461613i \(0.152729\pi\)
\(762\) 0 0
\(763\) −9.53584 + 16.5166i −0.0124978 + 0.0216469i
\(764\) 0 0
\(765\) −18.0859 + 33.7135i −0.0236417 + 0.0440700i
\(766\) 0 0
\(767\) −12.0855 6.97756i −0.0157568 0.00909721i
\(768\) 0 0
\(769\) 500.408 + 866.732i 0.650725 + 1.12709i 0.982947 + 0.183888i \(0.0588684\pi\)
−0.332222 + 0.943201i \(0.607798\pi\)
\(770\) 0 0
\(771\) −698.670 + 10.9039i −0.906187 + 0.0141426i
\(772\) 0 0
\(773\) 860.440i 1.11312i −0.830808 0.556559i \(-0.812121\pi\)
0.830808 0.556559i \(-0.187879\pi\)
\(774\) 0 0
\(775\) 133.206 0.171879
\(776\) 0 0
\(777\) −834.850 + 499.531i −1.07445 + 0.642898i
\(778\) 0 0
\(779\) 109.748 63.3632i 0.140884 0.0813391i
\(780\) 0 0
\(781\) −86.8283 + 150.391i −0.111176 + 0.192562i
\(782\) 0 0
\(783\) −203.192 + 393.380i −0.259504 + 0.502401i
\(784\) 0 0
\(785\) 3.06898 + 1.77187i 0.00390952 + 0.00225716i
\(786\) 0 0
\(787\) 463.491 + 802.789i 0.588933 + 1.02006i 0.994372 + 0.105940i \(0.0337853\pi\)
−0.405439 + 0.914122i \(0.632881\pi\)
\(788\) 0 0
\(789\) −16.6256 27.7858i −0.0210717 0.0352165i
\(790\) 0 0
\(791\) 19.8531i 0.0250987i
\(792\) 0 0
\(793\) −225.651 −0.284553
\(794\) 0 0
\(795\) 10.5176 + 673.916i 0.0132297 + 0.847693i
\(796\) 0 0
\(797\) −825.230 + 476.447i −1.03542 + 0.597800i −0.918533 0.395345i \(-0.870625\pi\)
−0.116888 + 0.993145i \(0.537292\pi\)
\(798\) 0 0
\(799\) 40.0564 69.3797i 0.0501332 0.0868332i
\(800\) 0 0
\(801\) 222.283 137.758i 0.277507 0.171983i
\(802\) 0 0
\(803\) 675.087 + 389.762i 0.840707 + 0.485382i
\(804\) 0 0
\(805\) 287.365 + 497.731i 0.356975 + 0.618299i
\(806\) 0 0
\(807\) 85.3094 153.234i 0.105712 0.189881i
\(808\) 0 0
\(809\) 1425.22i 1.76171i 0.473387 + 0.880855i \(0.343031\pi\)
−0.473387 + 0.880855i \(0.656969\pi\)
\(810\) 0 0
\(811\) 473.774 0.584185 0.292093 0.956390i \(-0.405648\pi\)
0.292093 + 0.956390i \(0.405648\pi\)
\(812\) 0 0
\(813\) −171.947 95.7277i −0.211497 0.117746i
\(814\) 0 0
\(815\) 80.7131 46.5997i 0.0990345 0.0571776i
\(816\) 0 0
\(817\) 151.777 262.885i 0.185773 0.321769i
\(818\) 0 0
\(819\) 100.983 + 162.943i 0.123300 + 0.198953i
\(820\) 0 0
\(821\) −63.4905 36.6562i −0.0773331 0.0446483i 0.460835 0.887486i \(-0.347550\pi\)
−0.538168 + 0.842838i \(0.680883\pi\)
\(822\) 0 0
\(823\) 316.027 + 547.374i 0.383994 + 0.665096i 0.991629 0.129120i \(-0.0412151\pi\)
−0.607635 + 0.794216i \(0.707882\pi\)
\(824\) 0 0
\(825\) 112.685 1.75864i 0.136588 0.00213169i
\(826\) 0 0
\(827\) 226.153i 0.273462i 0.990608 + 0.136731i \(0.0436597\pi\)
−0.990608 + 0.136731i \(0.956340\pi\)
\(828\) 0 0
\(829\) −522.396 −0.630152 −0.315076 0.949067i \(-0.602030\pi\)
−0.315076 + 0.949067i \(0.602030\pi\)
\(830\) 0 0
\(831\) 690.588 413.212i 0.831032 0.497247i
\(832\) 0 0
\(833\) 6.13317 3.54099i 0.00736275 0.00425089i
\(834\) 0 0
\(835\) −10.3461 + 17.9200i −0.0123905 + 0.0214610i
\(836\) 0 0
\(837\) 605.429 388.415i 0.723332 0.464057i
\(838\) 0 0
\(839\) −511.329 295.216i −0.609450 0.351866i 0.163300 0.986576i \(-0.447786\pi\)
−0.772750 + 0.634710i \(0.781119\pi\)
\(840\) 0 0
\(841\) −286.046 495.446i −0.340126 0.589115i
\(842\) 0 0
\(843\) −283.568 473.918i −0.336380 0.562180i
\(844\) 0 0
\(845\) 358.655i 0.424444i
\(846\) 0 0
\(847\) 468.718 0.553386
\(848\) 0 0
\(849\) 21.6566 + 1387.65i 0.0255083 + 1.63445i
\(850\) 0 0
\(851\) −1369.09 + 790.444i −1.60880 + 0.928841i
\(852\) 0 0
\(853\) −693.749 + 1201.61i −0.813305 + 1.40869i 0.0972332 + 0.995262i \(0.469001\pi\)
−0.910538 + 0.413424i \(0.864333\pi\)
\(854\) 0 0
\(855\) 130.944 + 70.2459i 0.153150 + 0.0821590i
\(856\) 0 0
\(857\) −683.058 394.363i −0.797033 0.460167i 0.0453994 0.998969i \(-0.485544\pi\)
−0.842433 + 0.538801i \(0.818877\pi\)
\(858\) 0 0
\(859\) 413.601 + 716.378i 0.481491 + 0.833968i 0.999774 0.0212416i \(-0.00676191\pi\)
−0.518283 + 0.855209i \(0.673429\pi\)
\(860\) 0 0
\(861\) 181.859 326.657i 0.211218 0.379393i
\(862\) 0 0
\(863\) 1089.70i 1.26268i 0.775504 + 0.631342i \(0.217496\pi\)
−0.775504 + 0.631342i \(0.782504\pi\)
\(864\) 0 0
\(865\) −329.558 −0.380992
\(866\) 0 0
\(867\) −748.044 416.457i −0.862796 0.480342i
\(868\) 0 0
\(869\) −523.930 + 302.491i −0.602912 + 0.348091i
\(870\) 0 0
\(871\) −122.974 + 212.996i −0.141187 + 0.244542i
\(872\) 0 0
\(873\) 859.931 26.8479i 0.985029 0.0307536i
\(874\) 0 0
\(875\) 70.3064 + 40.5914i 0.0803502 + 0.0463902i
\(876\) 0 0
\(877\) −213.875 370.443i −0.243872 0.422398i 0.717942 0.696103i \(-0.245084\pi\)
−0.961814 + 0.273705i \(0.911751\pi\)
\(878\) 0 0
\(879\) −860.202 + 13.4249i −0.978614 + 0.0152729i
\(880\) 0 0
\(881\) 1113.87i 1.26432i 0.774837 + 0.632161i \(0.217832\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(882\) 0 0
\(883\) 408.581 0.462719 0.231359 0.972868i \(-0.425683\pi\)
0.231359 + 0.972868i \(0.425683\pi\)
\(884\) 0 0
\(885\) −27.3856 + 16.3861i −0.0309442 + 0.0185154i
\(886\) 0 0
\(887\) 755.098 435.956i 0.851294 0.491495i −0.00979311 0.999952i \(-0.503117\pi\)
0.861087 + 0.508457i \(0.169784\pi\)
\(888\) 0 0
\(889\) 700.924 1214.04i 0.788441 1.36562i
\(890\) 0 0
\(891\) 507.033 336.572i 0.569060 0.377746i
\(892\) 0 0
\(893\) −269.471 155.579i −0.301760 0.174221i
\(894\) 0 0
\(895\) −178.910 309.881i −0.199899 0.346236i
\(896\) 0 0
\(897\) 159.940 + 267.302i 0.178305 + 0.297995i
\(898\) 0 0
\(899\) 436.874i 0.485956i
\(900\) 0 0
\(901\) 191.008 0.211995
\(902\) 0 0
\(903\) −13.9748 895.436i −0.0154759 0.991623i
\(904\) 0 0
\(905\) −58.7427 + 33.9151i −0.0649091 + 0.0374753i
\(906\) 0 0
\(907\) −843.097 + 1460.29i −0.929544 + 1.61002i −0.145459 + 0.989364i \(0.546466\pi\)
−0.784085 + 0.620653i \(0.786867\pi\)
\(908\) 0 0
\(909\) 38.2081 + 1223.80i 0.0420332 + 1.34631i
\(910\) 0 0
\(911\) 383.084 + 221.173i 0.420509 + 0.242781i 0.695295 0.718724i \(-0.255274\pi\)
−0.274786 + 0.961505i \(0.588607\pi\)
\(912\) 0 0
\(913\) −74.1907 128.502i −0.0812603 0.140747i
\(914\) 0 0
\(915\) −251.012 + 450.870i −0.274330 + 0.492755i
\(916\) 0 0
\(917\) 1687.46i 1.84020i
\(918\) 0 0
\(919\) 182.236 0.198298 0.0991489 0.995073i \(-0.468388\pi\)
0.0991489 + 0.995073i \(0.468388\pi\)
\(920\) 0 0
\(921\) −620.530 345.466i −0.673757 0.375099i
\(922\) 0 0
\(923\) −58.7162 + 33.8998i −0.0636145 + 0.0367279i
\(924\) 0 0
\(925\) −111.653 + 193.389i −0.120706 + 0.209069i
\(926\) 0 0
\(927\) 731.279 1363.16i 0.788866 1.47050i
\(928\) 0 0
\(929\) −1150.27 664.111i −1.23819 0.714867i −0.269463 0.963011i \(-0.586846\pi\)
−0.968723 + 0.248144i \(0.920179\pi\)
\(930\) 0 0
\(931\) −13.7532 23.8213i −0.0147725 0.0255868i
\(932\) 0 0
\(933\) 1553.79 24.2496i 1.66537 0.0259910i
\(934\) 0 0
\(935\) 31.9383i 0.0341587i
\(936\) 0 0
\(937\) −276.582 −0.295178 −0.147589 0.989049i \(-0.547151\pi\)
−0.147589 + 0.989049i \(0.547151\pi\)
\(938\) 0 0
\(939\) −1274.90 + 762.832i −1.35772 + 0.812388i
\(940\) 0 0
\(941\) 1083.50 625.557i 1.15143 0.664779i 0.202196 0.979345i \(-0.435192\pi\)
0.949236 + 0.314566i \(0.101859\pi\)
\(942\) 0 0
\(943\) 303.758 526.124i 0.322119 0.557926i
\(944\) 0 0
\(945\) 437.907 20.5162i 0.463394 0.0217102i
\(946\) 0 0
\(947\) 935.323 + 540.009i 0.987670 + 0.570232i 0.904577 0.426310i \(-0.140187\pi\)
0.0830930 + 0.996542i \(0.473520\pi\)
\(948\) 0 0
\(949\) 152.172 + 263.570i 0.160350 + 0.277734i
\(950\) 0 0
\(951\) 337.660 + 564.319i 0.355057 + 0.593396i
\(952\) 0 0
\(953\) 328.534i 0.344737i 0.985033 + 0.172369i \(0.0551420\pi\)
−0.985033 + 0.172369i \(0.944858\pi\)
\(954\) 0 0
\(955\) 645.336 0.675745
\(956\) 0 0
\(957\) −5.76780 369.572i −0.00602696 0.386178i
\(958\) 0 0
\(959\) −1119.47 + 646.328i −1.16733 + 0.673961i
\(960\) 0 0
\(961\) 125.623 217.585i 0.130721 0.226416i
\(962\) 0 0
\(963\) −754.334 + 467.493i −0.783316 + 0.485454i
\(964\) 0 0
\(965\) 183.323 + 105.842i 0.189972 + 0.109681i
\(966\) 0 0
\(967\) −298.854 517.631i −0.309053 0.535296i 0.669102 0.743170i \(-0.266679\pi\)
−0.978155 + 0.207875i \(0.933345\pi\)
\(968\) 0 0
\(969\) 20.4840 36.7936i 0.0211393 0.0379707i
\(970\) 0 0
\(971\) 711.597i 0.732850i −0.930448 0.366425i \(-0.880582\pi\)
0.930448 0.366425i \(-0.119418\pi\)
\(972\) 0 0
\(973\) −232.857 −0.239319
\(974\) 0 0
\(975\) 38.4440 + 21.4028i 0.0394298 + 0.0219516i
\(976\) 0 0
\(977\) 292.262 168.738i 0.299142 0.172710i −0.342915 0.939366i \(-0.611414\pi\)
0.642058 + 0.766656i \(0.278081\pi\)
\(978\) 0 0
\(979\) −109.155 + 189.062i −0.111496 + 0.193117i
\(980\) 0 0
\(981\) 12.4524 + 20.0928i 0.0126936 + 0.0204820i
\(982\) 0 0
\(983\) 274.504 + 158.485i 0.279252 + 0.161226i 0.633085 0.774083i \(-0.281789\pi\)
−0.353833 + 0.935309i \(0.615122\pi\)
\(984\) 0 0
\(985\) 145.071 + 251.270i 0.147280 + 0.255097i
\(986\) 0 0
\(987\) −917.869 + 14.3249i −0.929959 + 0.0145136i
\(988\) 0 0
\(989\) 1455.21i 1.47140i
\(990\) 0 0
\(991\) −685.922 −0.692152 −0.346076 0.938207i \(-0.612486\pi\)
−0.346076 + 0.938207i \(0.612486\pi\)
\(992\) 0 0
\(993\) 244.480 146.284i 0.246203 0.147315i
\(994\) 0 0
\(995\) −264.192 + 152.532i −0.265520 + 0.153298i
\(996\) 0 0
\(997\) −293.035 + 507.551i −0.293917 + 0.509078i −0.974732 0.223376i \(-0.928292\pi\)
0.680816 + 0.732455i \(0.261625\pi\)
\(998\) 0 0
\(999\) 56.4330 + 1204.53i 0.0564895 + 1.20574i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.bs.c.641.2 16
3.2 odd 2 2160.3.bs.c.1601.1 16
4.3 odd 2 45.3.i.a.11.1 16
9.4 even 3 2160.3.bs.c.881.1 16
9.5 odd 6 inner 720.3.bs.c.401.2 16
12.11 even 2 135.3.i.a.116.8 16
20.3 even 4 225.3.i.b.74.1 32
20.7 even 4 225.3.i.b.74.16 32
20.19 odd 2 225.3.j.b.101.8 16
36.7 odd 6 405.3.c.a.161.16 16
36.11 even 6 405.3.c.a.161.1 16
36.23 even 6 45.3.i.a.41.1 yes 16
36.31 odd 6 135.3.i.a.71.8 16
60.23 odd 4 675.3.i.c.224.16 32
60.47 odd 4 675.3.i.c.224.1 32
60.59 even 2 675.3.j.b.251.1 16
180.23 odd 12 225.3.i.b.149.16 32
180.59 even 6 225.3.j.b.176.8 16
180.67 even 12 675.3.i.c.449.16 32
180.103 even 12 675.3.i.c.449.1 32
180.139 odd 6 675.3.j.b.476.1 16
180.167 odd 12 225.3.i.b.149.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.i.a.11.1 16 4.3 odd 2
45.3.i.a.41.1 yes 16 36.23 even 6
135.3.i.a.71.8 16 36.31 odd 6
135.3.i.a.116.8 16 12.11 even 2
225.3.i.b.74.1 32 20.3 even 4
225.3.i.b.74.16 32 20.7 even 4
225.3.i.b.149.1 32 180.167 odd 12
225.3.i.b.149.16 32 180.23 odd 12
225.3.j.b.101.8 16 20.19 odd 2
225.3.j.b.176.8 16 180.59 even 6
405.3.c.a.161.1 16 36.11 even 6
405.3.c.a.161.16 16 36.7 odd 6
675.3.i.c.224.1 32 60.47 odd 4
675.3.i.c.224.16 32 60.23 odd 4
675.3.i.c.449.1 32 180.103 even 12
675.3.i.c.449.16 32 180.67 even 12
675.3.j.b.251.1 16 60.59 even 2
675.3.j.b.476.1 16 180.139 odd 6
720.3.bs.c.401.2 16 9.5 odd 6 inner
720.3.bs.c.641.2 16 1.1 even 1 trivial
2160.3.bs.c.881.1 16 9.4 even 3
2160.3.bs.c.1601.1 16 3.2 odd 2