Properties

Label 2-2160-9.2-c2-0-1
Degree $2$
Conductor $2160$
Sign $-0.934 + 0.356i$
Analytic cond. $58.8557$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.93 + 1.11i)5-s + (−3.63 + 6.28i)7-s + (6.50 + 3.75i)11-s + (−1.46 − 2.54i)13-s − 1.90i·17-s + 7.38·19-s + (−30.6 + 17.6i)23-s + (2.5 − 4.33i)25-s + (14.2 + 8.19i)29-s + (13.3 + 23.0i)31-s − 16.2i·35-s − 44.6·37-s + (−14.8 + 8.58i)41-s + (20.5 − 35.6i)43-s + (36.4 + 21.0i)47-s + ⋯
L(s)  = 1  + (−0.387 + 0.223i)5-s + (−0.518 + 0.898i)7-s + (0.591 + 0.341i)11-s + (−0.112 − 0.195i)13-s − 0.111i·17-s + 0.388·19-s + (−1.33 + 0.769i)23-s + (0.100 − 0.173i)25-s + (0.489 + 0.282i)29-s + (0.429 + 0.744i)31-s − 0.463i·35-s − 1.20·37-s + (−0.362 + 0.209i)41-s + (0.478 − 0.827i)43-s + (0.776 + 0.448i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 + 0.356i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-0.934 + 0.356i$
Analytic conductor: \(58.8557\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1),\ -0.934 + 0.356i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3299388093\)
\(L(\frac12)\) \(\approx\) \(0.3299388093\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.93 - 1.11i)T \)
good7 \( 1 + (3.63 - 6.28i)T + (-24.5 - 42.4i)T^{2} \)
11 \( 1 + (-6.50 - 3.75i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + (1.46 + 2.54i)T + (-84.5 + 146. i)T^{2} \)
17 \( 1 + 1.90iT - 289T^{2} \)
19 \( 1 - 7.38T + 361T^{2} \)
23 \( 1 + (30.6 - 17.6i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 + (-14.2 - 8.19i)T + (420.5 + 728. i)T^{2} \)
31 \( 1 + (-13.3 - 23.0i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + 44.6T + 1.36e3T^{2} \)
41 \( 1 + (14.8 - 8.58i)T + (840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (-20.5 + 35.6i)T + (-924.5 - 1.60e3i)T^{2} \)
47 \( 1 + (-36.4 - 21.0i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 - 100. iT - 2.80e3T^{2} \)
59 \( 1 + (4.12 - 2.37i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (-38.4 + 66.6i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (41.9 + 72.6i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 23.1iT - 5.04e3T^{2} \)
73 \( 1 + 103.T + 5.32e3T^{2} \)
79 \( 1 + (-40.2 + 69.7i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (17.1 + 9.87i)T + (3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 - 29.0iT - 7.92e3T^{2} \)
97 \( 1 + (-47.7 + 82.7i)T + (-4.70e3 - 8.14e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.245931129667595470581727097517, −8.664102038080019442827717844373, −7.73479964367364515704207752553, −7.01518852421742240908738668092, −6.16790233389298716944285300333, −5.47840960359613260195346265987, −4.44559107682602877529135989267, −3.49920771882006084646294085693, −2.68665577184729242000749999364, −1.51950185850907530298569015230, 0.088727267943870389112419685118, 1.13228146569088812937731239053, 2.50499093809267244213382239524, 3.76732368637349087446102835101, 4.10581049995808373338927939951, 5.23056968386465117679043880912, 6.27216919805286293753413016179, 6.85430401896561791155136025626, 7.71162093409621653755421813634, 8.429421370855948532700201319687

Graph of the $Z$-function along the critical line