Properties

Label 180.9.c.a
Level $180$
Weight $9$
Character orbit 180.c
Analytic conductor $73.328$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{58}\cdot 3^{4}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} - 3) q^{4} + (\beta_{2} - 2 \beta_1 + 1) q^{5} + (\beta_{6} - \beta_{5} - \beta_{3} + \cdots + 6) q^{7} + (\beta_{14} + 2 \beta_1 + 886) q^{8} + (\beta_{9} + 2 \beta_{5} - \beta_{4} + \cdots + 547) q^{10}+ \cdots + (2384 \beta_{15} - 3864 \beta_{14} + \cdots + 17124354) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 14184 q^{8} + 8750 q^{10} + 51392 q^{13} - 68472 q^{14} - 81424 q^{16} - 27552 q^{17} - 172500 q^{20} - 389120 q^{22} + 1250000 q^{25} - 1037124 q^{26} + 1288520 q^{28} - 2764896 q^{29}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 15630052 x^{14} + 100431843210026 x^{12} + \cdots + 41\!\cdots\!25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 77\!\cdots\!71 \nu^{15} + \cdots + 41\!\cdots\!00 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 77\!\cdots\!71 \nu^{15} + \cdots + 12\!\cdots\!00 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 32\!\cdots\!14 \nu^{15} + \cdots + 16\!\cdots\!75 ) / 59\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 32\!\cdots\!33 \nu^{15} + \cdots - 54\!\cdots\!50 ) / 51\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 88\!\cdots\!31 \nu^{15} + \cdots + 24\!\cdots\!00 ) / 71\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 25\!\cdots\!16 \nu^{15} + \cdots + 91\!\cdots\!25 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 20\!\cdots\!97 \nu^{15} + \cdots + 20\!\cdots\!50 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 51\!\cdots\!57 \nu^{15} + \cdots + 46\!\cdots\!50 ) / 71\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 36\!\cdots\!47 \nu^{15} + \cdots + 53\!\cdots\!00 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 39\!\cdots\!01 \nu^{15} + \cdots - 78\!\cdots\!00 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 66\!\cdots\!43 \nu^{15} + \cdots - 48\!\cdots\!50 ) / 51\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 50\!\cdots\!80 \nu^{15} + \cdots - 31\!\cdots\!75 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 29\!\cdots\!27 \nu^{15} + \cdots + 52\!\cdots\!25 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 66\!\cdots\!09 \nu^{15} + \cdots + 73\!\cdots\!50 ) / 35\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 79\!\cdots\!17 \nu^{15} + \cdots - 18\!\cdots\!75 ) / 17\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} - \beta_{5} - \beta_{3} - 17\beta _1 + 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 149 \beta_{15} + 287 \beta_{14} - 98 \beta_{13} - 323 \beta_{12} + 51 \beta_{11} - 744 \beta_{10} + \cdots - 7790132 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 76669 \beta_{15} - 65047 \beta_{14} - 40665 \beta_{13} + 59240 \beta_{12} - 95867 \beta_{11} + \cdots - 14557334 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 613416900 \beta_{15} - 795040988 \beta_{14} + 598331122 \beta_{13} + 1222179726 \beta_{12} + \cdots + 21619464685439 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 291150171010 \beta_{15} + 354906269520 \beta_{14} + 411738118373 \beta_{13} - 175156164389 \beta_{12} + \cdots + 27932728834607 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 45\!\cdots\!42 \beta_{15} + \cdots - 13\!\cdots\!69 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 41\!\cdots\!63 \beta_{15} + \cdots - 72\!\cdots\!15 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 39\!\cdots\!46 \beta_{15} + \cdots + 10\!\cdots\!40 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 17\!\cdots\!92 \beta_{15} + \cdots + 88\!\cdots\!03 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 54\!\cdots\!76 \beta_{15} + \cdots - 14\!\cdots\!01 ) / 8 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 16\!\cdots\!33 \beta_{15} + \cdots - 48\!\cdots\!76 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 92\!\cdots\!34 \beta_{15} + \cdots + 24\!\cdots\!71 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 58\!\cdots\!38 \beta_{15} + \cdots + 11\!\cdots\!12 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 31\!\cdots\!55 \beta_{15} + \cdots - 88\!\cdots\!04 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 10\!\cdots\!85 \beta_{15} + \cdots - 10\!\cdots\!72 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
1313.48i
1313.48i
1662.79i
1662.79i
1970.29i
1970.29i
105.172i
105.172i
1316.60i
1316.60i
1770.35i
1770.35i
1486.88i
1486.88i
410.476i
410.476i
−14.5274 6.70489i 0 166.089 + 194.809i −279.508 0 2626.96i −1106.66 3943.67i 0 4060.52 + 1874.07i
91.2 −14.5274 + 6.70489i 0 166.089 194.809i −279.508 0 2626.96i −1106.66 + 3943.67i 0 4060.52 1874.07i
91.3 −11.5676 11.0540i 0 11.6196 + 255.736i −279.508 0 3325.58i 2692.49 3086.70i 0 3233.25 + 3089.68i
91.4 −11.5676 + 11.0540i 0 11.6196 255.736i −279.508 0 3325.58i 2692.49 + 3086.70i 0 3233.25 3089.68i
91.5 −11.3498 11.2775i 0 1.63618 + 255.995i 279.508 0 3940.57i 2868.41 2923.94i 0 −3172.37 3152.16i
91.6 −11.3498 + 11.2775i 0 1.63618 255.995i 279.508 0 3940.57i 2868.41 + 2923.94i 0 −3172.37 + 3152.16i
91.7 −4.64016 15.3124i 0 −212.938 + 142.104i 279.508 0 210.345i 3164.01 + 2601.20i 0 −1296.96 4279.94i
91.8 −4.64016 + 15.3124i 0 −212.938 142.104i 279.508 0 210.345i 3164.01 2601.20i 0 −1296.96 + 4279.94i
91.9 1.41320 15.9375i 0 −252.006 45.0455i −279.508 0 2633.20i −1074.04 + 3952.68i 0 −395.000 + 4454.66i
91.10 1.41320 + 15.9375i 0 −252.006 + 45.0455i −279.508 0 2633.20i −1074.04 3952.68i 0 −395.000 4454.66i
91.11 7.35022 14.2118i 0 −147.949 208.919i 279.508 0 3540.70i −4056.56 + 567.011i 0 2054.45 3972.31i
91.12 7.35022 + 14.2118i 0 −147.949 + 208.919i 279.508 0 3540.70i −4056.56 567.011i 0 2054.45 + 3972.31i
91.13 14.9660 5.65855i 0 191.962 169.372i 279.508 0 2973.76i 1914.50 3621.04i 0 4183.12 1581.61i
91.14 14.9660 + 5.65855i 0 191.962 + 169.372i 279.508 0 2973.76i 1914.50 + 3621.04i 0 4183.12 + 1581.61i
91.15 15.3556 4.49522i 0 215.586 138.053i −279.508 0 820.952i 2689.86 3088.99i 0 −4292.01 + 1256.45i
91.16 15.3556 + 4.49522i 0 215.586 + 138.053i −279.508 0 820.952i 2689.86 + 3088.99i 0 −4292.01 1256.45i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 91.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 180.9.c.a 16
3.b odd 2 1 20.9.b.a 16
4.b odd 2 1 inner 180.9.c.a 16
12.b even 2 1 20.9.b.a 16
15.d odd 2 1 100.9.b.d 16
15.e even 4 2 100.9.d.c 32
24.f even 2 1 320.9.b.d 16
24.h odd 2 1 320.9.b.d 16
60.h even 2 1 100.9.b.d 16
60.l odd 4 2 100.9.d.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.9.b.a 16 3.b odd 2 1
20.9.b.a 16 12.b even 2 1
100.9.b.d 16 15.d odd 2 1
100.9.b.d 16 60.h even 2 1
100.9.d.c 32 15.e even 4 2
100.9.d.c 32 60.l odd 4 2
180.9.c.a 16 1.a even 1 1 trivial
180.9.c.a 16 4.b odd 2 1 inner
320.9.b.d 16 24.f even 2 1
320.9.b.d 16 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{16} + 62520208 T_{7}^{14} + \cdots + 27\!\cdots\!00 \) acting on \(S_{9}^{\mathrm{new}}(180, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{2} - 78125)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{8} + \cdots + 36\!\cdots\!00)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + \cdots + 92\!\cdots\!00)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{8} + \cdots - 61\!\cdots\!04)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots - 37\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots - 56\!\cdots\!64)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{8} + \cdots - 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 83\!\cdots\!76)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 75\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots - 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots - 36\!\cdots\!24)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 40\!\cdots\!00)^{2} \) Copy content Toggle raw display
show more
show less