Newspace parameters
Level: | \( N \) | \(=\) | \( 100 = 2^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 100.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(40.7378610061\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | no (minimal twist has level 20) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −15.9375 | − | 1.41320i | −39.9624 | 252.006 | + | 45.0455i | 0 | 636.899 | + | 56.4746i | 2633.20 | −3952.68 | − | 1074.04i | −4964.01 | 0 | ||||||||||
99.2 | −15.9375 | + | 1.41320i | −39.9624 | 252.006 | − | 45.0455i | 0 | 636.899 | − | 56.4746i | 2633.20 | −3952.68 | + | 1074.04i | −4964.01 | 0 | ||||||||||
99.3 | −15.3124 | − | 4.64016i | 75.7492 | 212.938 | + | 142.104i | 0 | −1159.90 | − | 351.488i | −210.345 | −2601.20 | − | 3164.01i | −823.060 | 0 | ||||||||||
99.4 | −15.3124 | + | 4.64016i | 75.7492 | 212.938 | − | 142.104i | 0 | −1159.90 | + | 351.488i | −210.345 | −2601.20 | + | 3164.01i | −823.060 | 0 | ||||||||||
99.5 | −14.2118 | − | 7.35022i | −110.171 | 147.949 | + | 208.919i | 0 | 1565.72 | + | 809.778i | −3540.70 | −567.011 | − | 4056.56i | 5576.56 | 0 | ||||||||||
99.6 | −14.2118 | + | 7.35022i | −110.171 | 147.949 | − | 208.919i | 0 | 1565.72 | − | 809.778i | −3540.70 | −567.011 | + | 4056.56i | 5576.56 | 0 | ||||||||||
99.7 | −11.2775 | − | 11.3498i | −137.297 | −1.63618 | + | 255.995i | 0 | 1548.37 | + | 1558.29i | 3940.57 | 2923.94 | − | 2868.41i | 12289.4 | 0 | ||||||||||
99.8 | −11.2775 | + | 11.3498i | −137.297 | −1.63618 | − | 255.995i | 0 | 1548.37 | − | 1558.29i | 3940.57 | 2923.94 | + | 2868.41i | 12289.4 | 0 | ||||||||||
99.9 | −11.0540 | − | 11.5676i | −27.2434 | −11.6196 | + | 255.736i | 0 | 301.148 | + | 315.141i | −3325.58 | 3086.70 | − | 2692.49i | −5818.80 | 0 | ||||||||||
99.10 | −11.0540 | + | 11.5676i | −27.2434 | −11.6196 | − | 255.736i | 0 | 301.148 | − | 315.141i | −3325.58 | 3086.70 | + | 2692.49i | −5818.80 | 0 | ||||||||||
99.11 | −6.70489 | − | 14.5274i | 150.211 | −166.089 | + | 194.809i | 0 | −1007.15 | − | 2182.17i | 2626.96 | 3943.67 | + | 1106.66i | 16002.3 | 0 | ||||||||||
99.12 | −6.70489 | + | 14.5274i | 150.211 | −166.089 | − | 194.809i | 0 | −1007.15 | + | 2182.17i | 2626.96 | 3943.67 | − | 1106.66i | 16002.3 | 0 | ||||||||||
99.13 | −5.65855 | − | 14.9660i | 25.1248 | −191.962 | + | 169.372i | 0 | −142.170 | − | 376.017i | 2973.76 | 3621.04 | + | 1914.50i | −5929.74 | 0 | ||||||||||
99.14 | −5.65855 | + | 14.9660i | 25.1248 | −191.962 | − | 169.372i | 0 | −142.170 | + | 376.017i | 2973.76 | 3621.04 | − | 1914.50i | −5929.74 | 0 | ||||||||||
99.15 | −4.49522 | − | 15.3556i | −98.1237 | −215.586 | + | 138.053i | 0 | 441.088 | + | 1506.74i | 820.952 | 3088.99 | + | 2689.86i | 3067.27 | 0 | ||||||||||
99.16 | −4.49522 | + | 15.3556i | −98.1237 | −215.586 | − | 138.053i | 0 | 441.088 | − | 1506.74i | 820.952 | 3088.99 | − | 2689.86i | 3067.27 | 0 | ||||||||||
99.17 | 4.49522 | − | 15.3556i | 98.1237 | −215.586 | − | 138.053i | 0 | 441.088 | − | 1506.74i | −820.952 | −3088.99 | + | 2689.86i | 3067.27 | 0 | ||||||||||
99.18 | 4.49522 | + | 15.3556i | 98.1237 | −215.586 | + | 138.053i | 0 | 441.088 | + | 1506.74i | −820.952 | −3088.99 | − | 2689.86i | 3067.27 | 0 | ||||||||||
99.19 | 5.65855 | − | 14.9660i | −25.1248 | −191.962 | − | 169.372i | 0 | −142.170 | + | 376.017i | −2973.76 | −3621.04 | + | 1914.50i | −5929.74 | 0 | ||||||||||
99.20 | 5.65855 | + | 14.9660i | −25.1248 | −191.962 | + | 169.372i | 0 | −142.170 | − | 376.017i | −2973.76 | −3621.04 | − | 1914.50i | −5929.74 | 0 | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
20.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 100.9.d.c | 32 | |
4.b | odd | 2 | 1 | inner | 100.9.d.c | 32 | |
5.b | even | 2 | 1 | inner | 100.9.d.c | 32 | |
5.c | odd | 4 | 1 | 20.9.b.a | ✓ | 16 | |
5.c | odd | 4 | 1 | 100.9.b.d | 16 | ||
15.e | even | 4 | 1 | 180.9.c.a | 16 | ||
20.d | odd | 2 | 1 | inner | 100.9.d.c | 32 | |
20.e | even | 4 | 1 | 20.9.b.a | ✓ | 16 | |
20.e | even | 4 | 1 | 100.9.b.d | 16 | ||
40.i | odd | 4 | 1 | 320.9.b.d | 16 | ||
40.k | even | 4 | 1 | 320.9.b.d | 16 | ||
60.l | odd | 4 | 1 | 180.9.c.a | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
20.9.b.a | ✓ | 16 | 5.c | odd | 4 | 1 | |
20.9.b.a | ✓ | 16 | 20.e | even | 4 | 1 | |
100.9.b.d | 16 | 5.c | odd | 4 | 1 | ||
100.9.b.d | 16 | 20.e | even | 4 | 1 | ||
100.9.d.c | 32 | 1.a | even | 1 | 1 | trivial | |
100.9.d.c | 32 | 4.b | odd | 2 | 1 | inner | |
100.9.d.c | 32 | 5.b | even | 2 | 1 | inner | |
100.9.d.c | 32 | 20.d | odd | 2 | 1 | inner | |
180.9.c.a | 16 | 15.e | even | 4 | 1 | ||
180.9.c.a | 16 | 60.l | odd | 4 | 1 | ||
320.9.b.d | 16 | 40.i | odd | 4 | 1 | ||
320.9.b.d | 16 | 40.k | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{16} - 71888 T_{3}^{14} + 2013496736 T_{3}^{12} - 27929868057600 T_{3}^{10} + \cdots + 21\!\cdots\!00 \)
acting on \(S_{9}^{\mathrm{new}}(100, [\chi])\).