L(s) = 1 | + (−14.2 − 7.35i)2-s − 110.·3-s + (147. + 208. i)4-s + (1.56e3 + 809. i)6-s − 3.54e3·7-s + (−567. − 4.05e3i)8-s + 5.57e3·9-s + 1.59e4i·11-s + (−1.62e4 − 2.30e4i)12-s + 2.41e4i·13-s + (5.03e4 + 2.60e4i)14-s + (−2.17e4 + 6.18e4i)16-s + 4.38e4i·17-s + (−7.92e4 − 4.09e4i)18-s − 5.09e4i·19-s + ⋯ |
L(s) = 1 | + (−0.888 − 0.459i)2-s − 1.36·3-s + (0.577 + 0.816i)4-s + (1.20 + 0.624i)6-s − 1.47·7-s + (−0.138 − 0.990i)8-s + 0.849·9-s + 1.09i·11-s + (−0.786 − 1.10i)12-s + 0.846i·13-s + (1.30 + 0.677i)14-s + (−0.332 + 0.943i)16-s + 0.524i·17-s + (−0.754 − 0.390i)18-s − 0.390i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.0135861 - 0.177791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0135861 - 0.177791i\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (14.2 + 7.35i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 110.T + 6.56e3T^{2} \) |
| 7 | \( 1 + 3.54e3T + 5.76e6T^{2} \) |
| 11 | \( 1 - 1.59e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 2.41e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 4.38e4iT - 6.97e9T^{2} \) |
| 19 | \( 1 + 5.09e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 2.70e5T + 7.83e10T^{2} \) |
| 29 | \( 1 - 1.32e6T + 5.00e11T^{2} \) |
| 31 | \( 1 - 1.18e6iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 2.97e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 + 4.92e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.86e6T + 1.16e13T^{2} \) |
| 47 | \( 1 - 1.26e4T + 2.38e13T^{2} \) |
| 53 | \( 1 - 5.50e6iT - 6.22e13T^{2} \) |
| 59 | \( 1 - 6.68e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 2.50e6T + 1.91e14T^{2} \) |
| 67 | \( 1 + 3.86e6T + 4.06e14T^{2} \) |
| 71 | \( 1 - 3.21e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 1.91e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 + 5.33e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 6.22e6T + 2.25e15T^{2} \) |
| 89 | \( 1 + 3.83e7T + 3.93e15T^{2} \) |
| 97 | \( 1 - 7.87e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31833915822376136431064783610, −11.82817938390597499670248240543, −10.50359452247774739500886550471, −9.932597993828760778092761810745, −8.750531668511327699729015967888, −6.81712869538311950284256877788, −6.57953421173859206933713167614, −4.70882355736808016726850556217, −3.03536753069402348842880835756, −1.27165026338010520016112463972,
0.13930861565850514470268059135, 0.73096318974126168504941832081, 3.03579330647221819237451727096, 5.29522770702243117895708478907, 6.13992484600587489985946198381, 6.89801005893074112433802515320, 8.426131503717316764610553254501, 9.720055571863180729240450472582, 10.54112266663573736481302748855, 11.44364168137612287815905349938