Properties

Label 100.9.d.c.99.5
Level $100$
Weight $9$
Character 100.99
Analytic conductor $40.738$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(99,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.99"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.5
Character \(\chi\) \(=\) 100.99
Dual form 100.9.d.c.99.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-14.2118 - 7.35022i) q^{2} -110.171 q^{3} +(147.949 + 208.919i) q^{4} +(1565.72 + 809.778i) q^{6} -3540.70 q^{7} +(-567.011 - 4056.56i) q^{8} +5576.56 q^{9} +15969.8i q^{11} +(-16299.6 - 23016.7i) q^{12} +24176.2i q^{13} +(50319.6 + 26024.9i) q^{14} +(-21758.4 + 61818.6i) q^{16} +43810.0i q^{17} +(-79252.8 - 40988.9i) q^{18} -50919.1i q^{19} +390081. q^{21} +(117382. - 226960. i) q^{22} +270875. q^{23} +(62467.9 + 446914. i) q^{24} +(177701. - 343587. i) q^{26} +108456. q^{27} +(-523841. - 739720. i) q^{28} +1.32588e6 q^{29} +1.18623e6i q^{31} +(763605. - 718623. i) q^{32} -1.75941e6i q^{33} +(322013. - 622618. i) q^{34} +(825045. + 1.16505e6i) q^{36} +2.97108e6i q^{37} +(-374266. + 723650. i) q^{38} -2.66351e6i q^{39} -4.92072e6 q^{41} +(-5.54374e6 - 2.86718e6i) q^{42} -2.86229e6 q^{43} +(-3.33641e6 + 2.36272e6i) q^{44} +(-3.84961e6 - 1.99099e6i) q^{46} +12696.5 q^{47} +(2.39714e6 - 6.81059e6i) q^{48} +6.77174e6 q^{49} -4.82658e6i q^{51} +(-5.05088e6 + 3.57684e6i) q^{52} +5.50364e6i q^{53} +(-1.54135e6 - 797176. i) q^{54} +(2.00761e6 + 1.43631e7i) q^{56} +5.60979e6i q^{57} +(-1.88430e7 - 9.74547e6i) q^{58} +6.68863e6i q^{59} -2.50550e6 q^{61} +(8.71902e6 - 1.68584e7i) q^{62} -1.97449e7 q^{63} +(-1.61342e7 + 4.60023e6i) q^{64} +(-1.29320e7 + 2.50043e7i) q^{66} -3.86718e6 q^{67} +(-9.15275e6 + 6.48163e6i) q^{68} -2.98424e7 q^{69} +3.21701e7i q^{71} +(-3.16197e6 - 2.26217e7i) q^{72} -1.91362e7i q^{73} +(2.18381e7 - 4.22243e7i) q^{74} +(1.06380e7 - 7.53341e6i) q^{76} -5.65444e7i q^{77} +(-1.95774e7 + 3.78532e7i) q^{78} -5.33471e7i q^{79} -4.85365e7 q^{81} +(6.99321e7 + 3.61683e7i) q^{82} +6.22776e6 q^{83} +(5.77119e7 + 8.14954e7i) q^{84} +(4.06782e7 + 2.10385e7i) q^{86} -1.46072e8 q^{87} +(6.47827e7 - 9.05507e6i) q^{88} -3.83322e7 q^{89} -8.56008e7i q^{91} +(4.00755e7 + 5.65909e7i) q^{92} -1.30687e8i q^{93} +(-180440. - 93322.2i) q^{94} +(-8.41269e7 + 7.91711e7i) q^{96} +7.87237e7i q^{97} +(-9.62384e7 - 4.97738e7i) q^{98} +8.90568e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 104 q^{4} + 8736 q^{6} + 77600 q^{9} - 136944 q^{14} - 162848 q^{16} + 828992 q^{21} - 327584 q^{24} + 2074248 q^{26} - 5529792 q^{29} - 7587928 q^{34} - 10937832 q^{36} - 17152896 q^{41} - 33842400 q^{44}+ \cdots - 906779904 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.2118 7.35022i −0.888235 0.459389i
\(3\) −110.171 −1.36013 −0.680065 0.733151i \(-0.738049\pi\)
−0.680065 + 0.733151i \(0.738049\pi\)
\(4\) 147.949 + 208.919i 0.577924 + 0.816090i
\(5\) 0 0
\(6\) 1565.72 + 809.778i 1.20812 + 0.624829i
\(7\) −3540.70 −1.47468 −0.737338 0.675524i \(-0.763918\pi\)
−0.737338 + 0.675524i \(0.763918\pi\)
\(8\) −567.011 4056.56i −0.138430 0.990372i
\(9\) 5576.56 0.849956
\(10\) 0 0
\(11\) 15969.8i 1.09076i 0.838188 + 0.545381i \(0.183615\pi\)
−0.838188 + 0.545381i \(0.816385\pi\)
\(12\) −16299.6 23016.7i −0.786053 1.10999i
\(13\) 24176.2i 0.846477i 0.906018 + 0.423239i \(0.139107\pi\)
−0.906018 + 0.423239i \(0.860893\pi\)
\(14\) 50319.6 + 26024.9i 1.30986 + 0.677449i
\(15\) 0 0
\(16\) −21758.4 + 61818.6i −0.332007 + 0.943277i
\(17\) 43810.0i 0.524539i 0.964995 + 0.262269i \(0.0844709\pi\)
−0.964995 + 0.262269i \(0.915529\pi\)
\(18\) −79252.8 40988.9i −0.754961 0.390460i
\(19\) 50919.1i 0.390721i −0.980732 0.195360i \(-0.937412\pi\)
0.980732 0.195360i \(-0.0625876\pi\)
\(20\) 0 0
\(21\) 390081. 2.00575
\(22\) 117382. 226960.i 0.501083 0.968853i
\(23\) 270875. 0.967959 0.483980 0.875079i \(-0.339191\pi\)
0.483980 + 0.875079i \(0.339191\pi\)
\(24\) 62467.9 + 446914.i 0.188283 + 1.34704i
\(25\) 0 0
\(26\) 177701. 343587.i 0.388862 0.751871i
\(27\) 108456. 0.204079
\(28\) −523841. 739720.i −0.852251 1.20347i
\(29\) 1.32588e6 1.87461 0.937305 0.348511i \(-0.113313\pi\)
0.937305 + 0.348511i \(0.113313\pi\)
\(30\) 0 0
\(31\) 1.18623e6i 1.28446i 0.766512 + 0.642230i \(0.221991\pi\)
−0.766512 + 0.642230i \(0.778009\pi\)
\(32\) 763605. 718623.i 0.728231 0.685332i
\(33\) 1.75941e6i 1.48358i
\(34\) 322013. 622618.i 0.240967 0.465914i
\(35\) 0 0
\(36\) 825045. + 1.16505e6i 0.491210 + 0.693641i
\(37\) 2.97108e6i 1.58529i 0.609686 + 0.792643i \(0.291295\pi\)
−0.609686 + 0.792643i \(0.708705\pi\)
\(38\) −374266. + 723650.i −0.179493 + 0.347052i
\(39\) 2.66351e6i 1.15132i
\(40\) 0 0
\(41\) −4.92072e6 −1.74138 −0.870689 0.491834i \(-0.836327\pi\)
−0.870689 + 0.491834i \(0.836327\pi\)
\(42\) −5.54374e6 2.86718e6i −1.78158 0.921420i
\(43\) −2.86229e6 −0.837221 −0.418611 0.908166i \(-0.637483\pi\)
−0.418611 + 0.908166i \(0.637483\pi\)
\(44\) −3.33641e6 + 2.36272e6i −0.890160 + 0.630378i
\(45\) 0 0
\(46\) −3.84961e6 1.99099e6i −0.859776 0.444669i
\(47\) 12696.5 0.00260192 0.00130096 0.999999i \(-0.499586\pi\)
0.00130096 + 0.999999i \(0.499586\pi\)
\(48\) 2.39714e6 6.81059e6i 0.451573 1.28298i
\(49\) 6.77174e6 1.17467
\(50\) 0 0
\(51\) 4.82658e6i 0.713442i
\(52\) −5.05088e6 + 3.57684e6i −0.690802 + 0.489200i
\(53\) 5.50364e6i 0.697504i 0.937215 + 0.348752i \(0.113394\pi\)
−0.937215 + 0.348752i \(0.886606\pi\)
\(54\) −1.54135e6 797176.i −0.181270 0.0937517i
\(55\) 0 0
\(56\) 2.00761e6 + 1.43631e7i 0.204140 + 1.46048i
\(57\) 5.60979e6i 0.531431i
\(58\) −1.88430e7 9.74547e6i −1.66509 0.861174i
\(59\) 6.68863e6i 0.551987i 0.961159 + 0.275994i \(0.0890068\pi\)
−0.961159 + 0.275994i \(0.910993\pi\)
\(60\) 0 0
\(61\) −2.50550e6 −0.180957 −0.0904784 0.995898i \(-0.528840\pi\)
−0.0904784 + 0.995898i \(0.528840\pi\)
\(62\) 8.71902e6 1.68584e7i 0.590066 1.14090i
\(63\) −1.97449e7 −1.25341
\(64\) −1.61342e7 + 4.60023e6i −0.961674 + 0.274195i
\(65\) 0 0
\(66\) −1.29320e7 + 2.50043e7i −0.681539 + 1.31777i
\(67\) −3.86718e6 −0.191909 −0.0959546 0.995386i \(-0.530590\pi\)
−0.0959546 + 0.995386i \(0.530590\pi\)
\(68\) −9.15275e6 + 6.48163e6i −0.428071 + 0.303144i
\(69\) −2.98424e7 −1.31655
\(70\) 0 0
\(71\) 3.21701e7i 1.26596i 0.774170 + 0.632978i \(0.218168\pi\)
−0.774170 + 0.632978i \(0.781832\pi\)
\(72\) −3.16197e6 2.26217e7i −0.117660 0.841773i
\(73\) 1.91362e7i 0.673853i −0.941531 0.336927i \(-0.890613\pi\)
0.941531 0.336927i \(-0.109387\pi\)
\(74\) 2.18381e7 4.22243e7i 0.728262 1.40811i
\(75\) 0 0
\(76\) 1.06380e7 7.53341e6i 0.318863 0.225807i
\(77\) 5.65444e7i 1.60852i
\(78\) −1.95774e7 + 3.78532e7i −0.528903 + 1.02264i
\(79\) 5.33471e7i 1.36963i −0.728718 0.684814i \(-0.759884\pi\)
0.728718 0.684814i \(-0.240116\pi\)
\(80\) 0 0
\(81\) −4.85365e7 −1.12753
\(82\) 6.99321e7 + 3.61683e7i 1.54675 + 0.799969i
\(83\) 6.22776e6 0.131226 0.0656129 0.997845i \(-0.479100\pi\)
0.0656129 + 0.997845i \(0.479100\pi\)
\(84\) 5.77119e7 + 8.14954e7i 1.15917 + 1.63688i
\(85\) 0 0
\(86\) 4.06782e7 + 2.10385e7i 0.743650 + 0.384610i
\(87\) −1.46072e8 −2.54971
\(88\) 6.47827e7 9.05507e6i 1.08026 0.150995i
\(89\) −3.83322e7 −0.610947 −0.305473 0.952201i \(-0.598815\pi\)
−0.305473 + 0.952201i \(0.598815\pi\)
\(90\) 0 0
\(91\) 8.56008e7i 1.24828i
\(92\) 4.00755e7 + 5.65909e7i 0.559407 + 0.789942i
\(93\) 1.30687e8i 1.74703i
\(94\) −180440. 93322.2i −0.00231111 0.00119529i
\(95\) 0 0
\(96\) −8.41269e7 + 7.91711e7i −0.990489 + 0.932141i
\(97\) 7.87237e7i 0.889239i 0.895720 + 0.444620i \(0.146661\pi\)
−0.895720 + 0.444620i \(0.853339\pi\)
\(98\) −9.62384e7 4.97738e7i −1.04338 0.539630i
\(99\) 8.90568e7i 0.927100i
\(100\) 0 0
\(101\) −1.16450e7 −0.111906 −0.0559530 0.998433i \(-0.517820\pi\)
−0.0559530 + 0.998433i \(0.517820\pi\)
\(102\) −3.54764e7 + 6.85942e7i −0.327747 + 0.633704i
\(103\) −6.88569e7 −0.611785 −0.305892 0.952066i \(-0.598955\pi\)
−0.305892 + 0.952066i \(0.598955\pi\)
\(104\) 9.80725e7 1.37082e7i 0.838328 0.117178i
\(105\) 0 0
\(106\) 4.04529e7 7.82164e7i 0.320425 0.619547i
\(107\) −7.69690e7 −0.587193 −0.293596 0.955929i \(-0.594852\pi\)
−0.293596 + 0.955929i \(0.594852\pi\)
\(108\) 1.60459e7 + 2.26585e7i 0.117942 + 0.166547i
\(109\) 4.29484e6 0.0304257 0.0152129 0.999884i \(-0.495157\pi\)
0.0152129 + 0.999884i \(0.495157\pi\)
\(110\) 0 0
\(111\) 3.27326e8i 2.15620i
\(112\) 7.70399e7 2.18881e8i 0.489603 1.39103i
\(113\) 2.34309e8i 1.43706i 0.695496 + 0.718530i \(0.255185\pi\)
−0.695496 + 0.718530i \(0.744815\pi\)
\(114\) 4.12331e7 7.97250e7i 0.244133 0.472036i
\(115\) 0 0
\(116\) 1.96161e8 + 2.77001e8i 1.08338 + 1.52985i
\(117\) 1.34820e8i 0.719469i
\(118\) 4.91629e7 9.50572e7i 0.253577 0.490294i
\(119\) 1.55118e8i 0.773525i
\(120\) 0 0
\(121\) −4.06770e7 −0.189761
\(122\) 3.56076e7 + 1.84160e7i 0.160732 + 0.0831295i
\(123\) 5.42118e8 2.36850
\(124\) −2.47825e8 + 1.75500e8i −1.04824 + 0.742321i
\(125\) 0 0
\(126\) 2.80610e8 + 1.45129e8i 1.11332 + 0.575802i
\(127\) 2.94344e8 1.13146 0.565732 0.824589i \(-0.308594\pi\)
0.565732 + 0.824589i \(0.308594\pi\)
\(128\) 2.63108e8 + 5.32125e7i 0.980155 + 0.198232i
\(129\) 3.15341e8 1.13873
\(130\) 0 0
\(131\) 3.43317e8i 1.16576i −0.812558 0.582881i \(-0.801925\pi\)
0.812558 0.582881i \(-0.198075\pi\)
\(132\) 3.67574e8 2.60302e8i 1.21073 0.857396i
\(133\) 1.80289e8i 0.576186i
\(134\) 5.49595e7 + 2.84246e7i 0.170461 + 0.0881609i
\(135\) 0 0
\(136\) 1.77718e8 2.48407e7i 0.519489 0.0726121i
\(137\) 2.03539e8i 0.577784i 0.957362 + 0.288892i \(0.0932869\pi\)
−0.957362 + 0.288892i \(0.906713\pi\)
\(138\) 4.24114e8 + 2.19348e8i 1.16941 + 0.604808i
\(139\) 2.51305e8i 0.673197i −0.941648 0.336599i \(-0.890723\pi\)
0.941648 0.336599i \(-0.109277\pi\)
\(140\) 0 0
\(141\) −1.39878e6 −0.00353895
\(142\) 2.36457e8 4.57193e8i 0.581566 1.12447i
\(143\) −3.86091e8 −0.923305
\(144\) −1.21337e8 + 3.44735e8i −0.282191 + 0.801744i
\(145\) 0 0
\(146\) −1.40656e8 + 2.71960e8i −0.309560 + 0.598540i
\(147\) −7.46047e8 −1.59771
\(148\) −6.20716e8 + 4.39567e8i −1.29374 + 0.916175i
\(149\) −7.65026e8 −1.55214 −0.776070 0.630647i \(-0.782790\pi\)
−0.776070 + 0.630647i \(0.782790\pi\)
\(150\) 0 0
\(151\) 5.12585e8i 0.985958i −0.870041 0.492979i \(-0.835908\pi\)
0.870041 0.492979i \(-0.164092\pi\)
\(152\) −2.06557e8 + 2.88717e7i −0.386959 + 0.0540876i
\(153\) 2.44309e8i 0.445835i
\(154\) −4.15613e8 + 8.03596e8i −0.738936 + 1.42874i
\(155\) 0 0
\(156\) 5.56458e8 3.94063e8i 0.939581 0.665376i
\(157\) 1.16971e9i 1.92522i 0.270890 + 0.962610i \(0.412682\pi\)
−0.270890 + 0.962610i \(0.587318\pi\)
\(158\) −3.92113e8 + 7.58157e8i −0.629191 + 1.21655i
\(159\) 6.06339e8i 0.948696i
\(160\) 0 0
\(161\) −9.59085e8 −1.42743
\(162\) 6.89789e8 + 3.56754e8i 1.00151 + 0.517975i
\(163\) 8.79268e8 1.24558 0.622789 0.782390i \(-0.286000\pi\)
0.622789 + 0.782390i \(0.286000\pi\)
\(164\) −7.28014e8 1.02803e9i −1.00638 1.42112i
\(165\) 0 0
\(166\) −8.85075e7 4.57754e7i −0.116559 0.0602837i
\(167\) −4.63319e8 −0.595682 −0.297841 0.954616i \(-0.596266\pi\)
−0.297841 + 0.954616i \(0.596266\pi\)
\(168\) −2.21180e8 1.58239e9i −0.277657 1.98644i
\(169\) 2.31240e8 0.283476
\(170\) 0 0
\(171\) 2.83954e8i 0.332095i
\(172\) −4.23472e8 5.97988e8i −0.483851 0.683248i
\(173\) 4.71680e8i 0.526579i −0.964717 0.263289i \(-0.915193\pi\)
0.964717 0.263289i \(-0.0848074\pi\)
\(174\) 2.07595e9 + 1.07366e9i 2.26475 + 1.17131i
\(175\) 0 0
\(176\) −9.87233e8 3.47478e8i −1.02889 0.362140i
\(177\) 7.36890e8i 0.750775i
\(178\) 5.44768e8 + 2.81750e8i 0.542664 + 0.280662i
\(179\) 8.30768e8i 0.809222i 0.914489 + 0.404611i \(0.132593\pi\)
−0.914489 + 0.404611i \(0.867407\pi\)
\(180\) 0 0
\(181\) 6.19754e8 0.577437 0.288719 0.957414i \(-0.406771\pi\)
0.288719 + 0.957414i \(0.406771\pi\)
\(182\) −6.29184e8 + 1.21654e9i −0.573446 + 1.10877i
\(183\) 2.76032e8 0.246125
\(184\) −1.53589e8 1.09882e9i −0.133995 0.958640i
\(185\) 0 0
\(186\) −9.60579e8 + 1.85730e9i −0.802567 + 1.55178i
\(187\) −6.99639e8 −0.572147
\(188\) 1.87843e6 + 2.65255e6i 0.00150371 + 0.00212340i
\(189\) −3.84010e8 −0.300951
\(190\) 0 0
\(191\) 4.24020e7i 0.0318605i −0.999873 0.0159303i \(-0.994929\pi\)
0.999873 0.0159303i \(-0.00507097\pi\)
\(192\) 1.77752e9 5.06810e8i 1.30800 0.372941i
\(193\) 4.21151e8i 0.303535i −0.988416 0.151767i \(-0.951504\pi\)
0.988416 0.151767i \(-0.0484965\pi\)
\(194\) 5.78636e8 1.11880e9i 0.408506 0.789854i
\(195\) 0 0
\(196\) 1.00187e9 + 1.41475e9i 0.678871 + 0.958637i
\(197\) 1.93944e9i 1.28769i −0.765155 0.643846i \(-0.777338\pi\)
0.765155 0.643846i \(-0.222662\pi\)
\(198\) 6.54587e8 1.26565e9i 0.425899 0.823483i
\(199\) 2.11255e8i 0.134708i −0.997729 0.0673542i \(-0.978544\pi\)
0.997729 0.0673542i \(-0.0214557\pi\)
\(200\) 0 0
\(201\) 4.26050e8 0.261022
\(202\) 1.65496e8 + 8.55931e7i 0.0993989 + 0.0514083i
\(203\) −4.69452e9 −2.76444
\(204\) 1.00836e9 7.14085e8i 0.582233 0.412315i
\(205\) 0 0
\(206\) 9.78578e8 + 5.06113e8i 0.543409 + 0.281047i
\(207\) 1.51055e9 0.822723
\(208\) −1.49454e9 5.26036e8i −0.798463 0.281036i
\(209\) 8.13170e8 0.426183
\(210\) 0 0
\(211\) 2.01406e9i 1.01611i 0.861324 + 0.508056i \(0.169636\pi\)
−0.861324 + 0.508056i \(0.830364\pi\)
\(212\) −1.14982e9 + 8.14256e8i −0.569226 + 0.403104i
\(213\) 3.54420e9i 1.72187i
\(214\) 1.09387e9 + 5.65739e8i 0.521565 + 0.269750i
\(215\) 0 0
\(216\) −6.14958e7 4.39959e8i −0.0282508 0.202114i
\(217\) 4.20007e9i 1.89416i
\(218\) −6.10373e7 3.15680e7i −0.0270252 0.0139772i
\(219\) 2.10825e9i 0.916528i
\(220\) 0 0
\(221\) −1.05916e9 −0.444010
\(222\) −2.40592e9 + 4.65188e9i −0.990532 + 1.91521i
\(223\) −9.06863e8 −0.366710 −0.183355 0.983047i \(-0.558696\pi\)
−0.183355 + 0.983047i \(0.558696\pi\)
\(224\) −2.70370e9 + 2.54443e9i −1.07390 + 1.01064i
\(225\) 0 0
\(226\) 1.72222e9 3.32994e9i 0.660169 1.27645i
\(227\) −9.31268e7 −0.0350729 −0.0175364 0.999846i \(-0.505582\pi\)
−0.0175364 + 0.999846i \(0.505582\pi\)
\(228\) −1.17199e9 + 8.29960e8i −0.433696 + 0.307127i
\(229\) 5.17840e8 0.188301 0.0941507 0.995558i \(-0.469986\pi\)
0.0941507 + 0.995558i \(0.469986\pi\)
\(230\) 0 0
\(231\) 6.22953e9i 2.18780i
\(232\) −7.51786e8 5.37850e9i −0.259503 1.85656i
\(233\) 1.20417e9i 0.408569i 0.978912 + 0.204284i \(0.0654867\pi\)
−0.978912 + 0.204284i \(0.934513\pi\)
\(234\) 9.90959e8 1.91604e9i 0.330516 0.639058i
\(235\) 0 0
\(236\) −1.39738e9 + 9.89573e8i −0.450471 + 0.319007i
\(237\) 5.87728e9i 1.86287i
\(238\) −1.14015e9 + 2.20450e9i −0.355349 + 0.687072i
\(239\) 2.12088e9i 0.650018i 0.945711 + 0.325009i \(0.105367\pi\)
−0.945711 + 0.325009i \(0.894633\pi\)
\(240\) 0 0
\(241\) −6.85448e8 −0.203192 −0.101596 0.994826i \(-0.532395\pi\)
−0.101596 + 0.994826i \(0.532395\pi\)
\(242\) 5.78092e8 + 2.98984e8i 0.168552 + 0.0871740i
\(243\) 4.63572e9 1.32951
\(244\) −3.70685e8 5.23447e8i −0.104579 0.147677i
\(245\) 0 0
\(246\) −7.70446e9 3.98469e9i −2.10379 1.08806i
\(247\) 1.23103e9 0.330736
\(248\) 4.81200e9 6.72603e8i 1.27209 0.177808i
\(249\) −6.86116e8 −0.178484
\(250\) 0 0
\(251\) 4.44219e9i 1.11919i −0.828768 0.559593i \(-0.810958\pi\)
0.828768 0.559593i \(-0.189042\pi\)
\(252\) −2.92123e9 4.12509e9i −0.724376 1.02290i
\(253\) 4.32582e9i 1.05581i
\(254\) −4.18315e9 2.16350e9i −1.00501 0.519782i
\(255\) 0 0
\(256\) −3.34811e9 2.69015e9i −0.779543 0.626349i
\(257\) 1.71181e9i 0.392395i 0.980564 + 0.196198i \(0.0628594\pi\)
−0.980564 + 0.196198i \(0.937141\pi\)
\(258\) −4.48155e9 2.31782e9i −1.01146 0.523120i
\(259\) 1.05197e10i 2.33778i
\(260\) 0 0
\(261\) 7.39383e9 1.59334
\(262\) −2.52345e9 + 4.87914e9i −0.535538 + 1.03547i
\(263\) 2.50597e9 0.523785 0.261892 0.965097i \(-0.415653\pi\)
0.261892 + 0.965097i \(0.415653\pi\)
\(264\) −7.13715e9 + 9.97603e8i −1.46930 + 0.205372i
\(265\) 0 0
\(266\) 1.32516e9 2.56223e9i 0.264693 0.511789i
\(267\) 4.22308e9 0.830967
\(268\) −5.72145e8 8.07929e8i −0.110909 0.156615i
\(269\) −3.62847e8 −0.0692970 −0.0346485 0.999400i \(-0.511031\pi\)
−0.0346485 + 0.999400i \(0.511031\pi\)
\(270\) 0 0
\(271\) 1.05662e10i 1.95903i 0.201368 + 0.979516i \(0.435461\pi\)
−0.201368 + 0.979516i \(0.564539\pi\)
\(272\) −2.70827e9 9.53236e8i −0.494785 0.174151i
\(273\) 9.43069e9i 1.69782i
\(274\) 1.49606e9 2.89265e9i 0.265428 0.513209i
\(275\) 0 0
\(276\) −4.41515e9 6.23465e9i −0.760867 1.07442i
\(277\) 1.36227e9i 0.231390i −0.993285 0.115695i \(-0.963091\pi\)
0.993285 0.115695i \(-0.0369095\pi\)
\(278\) −1.84715e9 + 3.57149e9i −0.309259 + 0.597958i
\(279\) 6.61506e9i 1.09173i
\(280\) 0 0
\(281\) −3.01499e9 −0.483572 −0.241786 0.970330i \(-0.577733\pi\)
−0.241786 + 0.970330i \(0.577733\pi\)
\(282\) 1.98792e7 + 1.02814e7i 0.00314342 + 0.00162575i
\(283\) −1.38220e9 −0.215490 −0.107745 0.994179i \(-0.534363\pi\)
−0.107745 + 0.994179i \(0.534363\pi\)
\(284\) −6.72094e9 + 4.75952e9i −1.03313 + 0.731627i
\(285\) 0 0
\(286\) 5.48703e9 + 2.83785e9i 0.820112 + 0.424156i
\(287\) 1.74228e10 2.56797
\(288\) 4.25829e9 4.00744e9i 0.618964 0.582502i
\(289\) 5.05644e9 0.724859
\(290\) 0 0
\(291\) 8.67304e9i 1.20948i
\(292\) 3.99793e9 2.83118e9i 0.549925 0.389436i
\(293\) 5.86750e9i 0.796127i −0.917358 0.398064i \(-0.869682\pi\)
0.917358 0.398064i \(-0.130318\pi\)
\(294\) 1.06026e10 + 5.48361e9i 1.41914 + 0.733968i
\(295\) 0 0
\(296\) 1.20524e10 1.68463e9i 1.57002 0.219452i
\(297\) 1.73203e9i 0.222602i
\(298\) 1.08724e10 + 5.62310e9i 1.37867 + 0.713035i
\(299\) 6.54873e9i 0.819355i
\(300\) 0 0
\(301\) 1.01345e10 1.23463
\(302\) −3.76761e9 + 7.28474e9i −0.452938 + 0.875762i
\(303\) 1.28293e9 0.152207
\(304\) 3.14775e9 + 1.10792e9i 0.368558 + 0.129722i
\(305\) 0 0
\(306\) 1.79573e9 3.47207e9i 0.204812 0.396007i
\(307\) −5.79386e9 −0.652250 −0.326125 0.945327i \(-0.605743\pi\)
−0.326125 + 0.945327i \(0.605743\pi\)
\(308\) 1.18132e10 8.36567e9i 1.31270 0.929603i
\(309\) 7.58601e9 0.832107
\(310\) 0 0
\(311\) 8.37260e9i 0.894991i 0.894286 + 0.447496i \(0.147684\pi\)
−0.894286 + 0.447496i \(0.852316\pi\)
\(312\) −1.08047e10 + 1.51024e9i −1.14024 + 0.159378i
\(313\) 1.22771e10i 1.27914i −0.768731 0.639572i \(-0.779111\pi\)
0.768731 0.639572i \(-0.220889\pi\)
\(314\) 8.59764e9 1.66237e10i 0.884424 1.71005i
\(315\) 0 0
\(316\) 1.11452e10 7.89263e9i 1.11774 0.791541i
\(317\) 1.38443e10i 1.37099i −0.728077 0.685495i \(-0.759586\pi\)
0.728077 0.685495i \(-0.240414\pi\)
\(318\) −4.45672e9 + 8.61715e9i −0.435820 + 0.842665i
\(319\) 2.11740e10i 2.04475i
\(320\) 0 0
\(321\) 8.47972e9 0.798659
\(322\) 1.36303e10 + 7.04948e9i 1.26789 + 0.655743i
\(323\) 2.23077e9 0.204948
\(324\) −7.18091e9 1.01402e10i −0.651627 0.920167i
\(325\) 0 0
\(326\) −1.24959e10 6.46281e9i −1.10637 0.572204i
\(327\) −4.73165e8 −0.0413830
\(328\) 2.79010e9 + 1.99612e10i 0.241060 + 1.72461i
\(329\) −4.49546e7 −0.00383699
\(330\) 0 0
\(331\) 7.71740e9i 0.642923i −0.946923 0.321462i \(-0.895826\pi\)
0.946923 0.321462i \(-0.104174\pi\)
\(332\) 9.21389e8 + 1.30110e9i 0.0758386 + 0.107092i
\(333\) 1.65684e10i 1.34742i
\(334\) 6.58458e9 + 3.40549e9i 0.529105 + 0.273649i
\(335\) 0 0
\(336\) −8.48754e9 + 2.41143e10i −0.665924 + 1.89198i
\(337\) 1.47787e10i 1.14582i −0.819618 0.572910i \(-0.805814\pi\)
0.819618 0.572910i \(-0.194186\pi\)
\(338\) −3.28633e9 1.69966e9i −0.251793 0.130226i
\(339\) 2.58139e10i 1.95459i
\(340\) 0 0
\(341\) −1.89438e10 −1.40104
\(342\) −2.08712e9 + 4.03548e9i −0.152561 + 0.294979i
\(343\) −3.56527e9 −0.257582
\(344\) 1.62295e9 + 1.16111e10i 0.115897 + 0.829161i
\(345\) 0 0
\(346\) −3.46695e9 + 6.70341e9i −0.241904 + 0.467726i
\(347\) −2.69899e10 −1.86158 −0.930792 0.365549i \(-0.880881\pi\)
−0.930792 + 0.365549i \(0.880881\pi\)
\(348\) −2.16112e10 3.05173e10i −1.47354 2.08080i
\(349\) −2.02677e10 −1.36617 −0.683083 0.730340i \(-0.739361\pi\)
−0.683083 + 0.730340i \(0.739361\pi\)
\(350\) 0 0
\(351\) 2.62206e9i 0.172748i
\(352\) 1.14763e10 + 1.21947e10i 0.747534 + 0.794326i
\(353\) 9.41747e9i 0.606506i −0.952910 0.303253i \(-0.901927\pi\)
0.952910 0.303253i \(-0.0980728\pi\)
\(354\) −5.41630e9 + 1.04725e10i −0.344897 + 0.666865i
\(355\) 0 0
\(356\) −5.67119e9 8.00832e9i −0.353081 0.498588i
\(357\) 1.70894e10i 1.05210i
\(358\) 6.10633e9 1.18067e10i 0.371747 0.718780i
\(359\) 3.30369e9i 0.198894i −0.995043 0.0994469i \(-0.968293\pi\)
0.995043 0.0994469i \(-0.0317073\pi\)
\(360\) 0 0
\(361\) 1.43908e10 0.847337
\(362\) −8.80780e9 4.55533e9i −0.512900 0.265268i
\(363\) 4.48141e9 0.258100
\(364\) 1.78836e10 1.26645e10i 1.01871 0.721412i
\(365\) 0 0
\(366\) −3.92291e9 2.02890e9i −0.218617 0.113067i
\(367\) 1.14531e10 0.631335 0.315667 0.948870i \(-0.397772\pi\)
0.315667 + 0.948870i \(0.397772\pi\)
\(368\) −5.89380e9 + 1.67451e10i −0.321369 + 0.913053i
\(369\) −2.74407e10 −1.48009
\(370\) 0 0
\(371\) 1.94867e10i 1.02859i
\(372\) 2.73031e10 1.93350e10i 1.42574 1.00965i
\(373\) 2.26449e10i 1.16986i −0.811083 0.584932i \(-0.801121\pi\)
0.811083 0.584932i \(-0.198879\pi\)
\(374\) 9.94311e9 + 5.14250e9i 0.508201 + 0.262838i
\(375\) 0 0
\(376\) −7.19907e6 5.15043e7i −0.000360184 0.00257687i
\(377\) 3.20547e10i 1.58681i
\(378\) 5.45746e9 + 2.82256e9i 0.267315 + 0.138253i
\(379\) 5.61760e9i 0.272266i −0.990691 0.136133i \(-0.956533\pi\)
0.990691 0.136133i \(-0.0434675\pi\)
\(380\) 0 0
\(381\) −3.24281e10 −1.53894
\(382\) −3.11664e8 + 6.02607e8i −0.0146364 + 0.0282996i
\(383\) −4.10535e9 −0.190790 −0.0953950 0.995440i \(-0.530411\pi\)
−0.0953950 + 0.995440i \(0.530411\pi\)
\(384\) −2.89868e10 5.86246e9i −1.33314 0.269622i
\(385\) 0 0
\(386\) −3.09555e9 + 5.98530e9i −0.139440 + 0.269610i
\(387\) −1.59618e10 −0.711602
\(388\) −1.64469e10 + 1.16471e10i −0.725699 + 0.513913i
\(389\) 1.37663e9 0.0601199 0.0300599 0.999548i \(-0.490430\pi\)
0.0300599 + 0.999548i \(0.490430\pi\)
\(390\) 0 0
\(391\) 1.18670e10i 0.507732i
\(392\) −3.83965e9 2.74700e10i −0.162610 1.16336i
\(393\) 3.78234e10i 1.58559i
\(394\) −1.42553e10 + 2.75629e10i −0.591551 + 1.14377i
\(395\) 0 0
\(396\) −1.86057e10 + 1.31758e10i −0.756597 + 0.535793i
\(397\) 3.04208e10i 1.22464i −0.790610 0.612321i \(-0.790236\pi\)
0.790610 0.612321i \(-0.209764\pi\)
\(398\) −1.55277e9 + 3.00231e9i −0.0618835 + 0.119653i
\(399\) 1.98626e10i 0.783689i
\(400\) 0 0
\(401\) −1.95473e10 −0.755977 −0.377989 0.925810i \(-0.623384\pi\)
−0.377989 + 0.925810i \(0.623384\pi\)
\(402\) −6.05492e9 3.13156e9i −0.231849 0.119910i
\(403\) −2.86785e10 −1.08727
\(404\) −1.72286e9 2.43286e9i −0.0646732 0.0913254i
\(405\) 0 0
\(406\) 6.67175e10 + 3.45058e10i 2.45548 + 1.26995i
\(407\) −4.74477e10 −1.72917
\(408\) −1.95793e10 + 2.73672e9i −0.706573 + 0.0987620i
\(409\) 4.37475e10 1.56336 0.781681 0.623678i \(-0.214362\pi\)
0.781681 + 0.623678i \(0.214362\pi\)
\(410\) 0 0
\(411\) 2.24240e10i 0.785862i
\(412\) −1.01873e10 1.43855e10i −0.353565 0.499271i
\(413\) 2.36824e10i 0.814002i
\(414\) −2.14676e10 1.11029e10i −0.730772 0.377949i
\(415\) 0 0
\(416\) 1.73736e10 + 1.84611e10i 0.580118 + 0.616431i
\(417\) 2.76865e10i 0.915637i
\(418\) −1.15566e10 5.97697e9i −0.378551 0.195784i
\(419\) 1.93115e10i 0.626555i 0.949662 + 0.313277i \(0.101427\pi\)
−0.949662 + 0.313277i \(0.898573\pi\)
\(420\) 0 0
\(421\) −3.65545e10 −1.16362 −0.581812 0.813323i \(-0.697656\pi\)
−0.581812 + 0.813323i \(0.697656\pi\)
\(422\) 1.48038e10 2.86233e10i 0.466791 0.902547i
\(423\) 7.08030e7 0.00221152
\(424\) 2.23259e10 3.12062e9i 0.690788 0.0965557i
\(425\) 0 0
\(426\) −2.60506e10 + 5.03693e10i −0.791005 + 1.52942i
\(427\) 8.87121e9 0.266853
\(428\) −1.13875e10 1.60803e10i −0.339353 0.479202i
\(429\) 4.25359e10 1.25582
\(430\) 0 0
\(431\) 3.98669e10i 1.15532i 0.816276 + 0.577662i \(0.196035\pi\)
−0.816276 + 0.577662i \(0.803965\pi\)
\(432\) −2.35983e9 + 6.70460e9i −0.0677557 + 0.192503i
\(433\) 3.21564e10i 0.914779i −0.889266 0.457389i \(-0.848785\pi\)
0.889266 0.457389i \(-0.151215\pi\)
\(434\) −3.08714e10 + 5.96904e10i −0.870157 + 1.68246i
\(435\) 0 0
\(436\) 6.35416e8 + 8.97275e8i 0.0175838 + 0.0248302i
\(437\) 1.37927e10i 0.378201i
\(438\) 1.54961e10 2.99620e10i 0.421043 0.814093i
\(439\) 2.72016e10i 0.732379i −0.930540 0.366189i \(-0.880662\pi\)
0.930540 0.366189i \(-0.119338\pi\)
\(440\) 0 0
\(441\) 3.77630e10 0.998418
\(442\) 1.50526e10 + 7.78507e9i 0.394386 + 0.203973i
\(443\) −1.32228e10 −0.343327 −0.171663 0.985156i \(-0.554914\pi\)
−0.171663 + 0.985156i \(0.554914\pi\)
\(444\) 6.83846e10 4.84274e10i 1.75965 1.24612i
\(445\) 0 0
\(446\) 1.28881e10 + 6.66564e9i 0.325724 + 0.168462i
\(447\) 8.42834e10 2.11111
\(448\) 5.71264e10 1.62880e10i 1.41816 0.404349i
\(449\) −2.82958e10 −0.696203 −0.348102 0.937457i \(-0.613174\pi\)
−0.348102 + 0.937457i \(0.613174\pi\)
\(450\) 0 0
\(451\) 7.85831e10i 1.89943i
\(452\) −4.89516e10 + 3.46657e10i −1.17277 + 0.830512i
\(453\) 5.64718e10i 1.34103i
\(454\) 1.32350e9 + 6.84502e8i 0.0311530 + 0.0161121i
\(455\) 0 0
\(456\) 2.27565e10 3.18081e9i 0.526315 0.0735662i
\(457\) 7.89688e10i 1.81047i 0.424914 + 0.905234i \(0.360304\pi\)
−0.424914 + 0.905234i \(0.639696\pi\)
\(458\) −7.35942e9 3.80623e9i −0.167256 0.0865035i
\(459\) 4.75146e9i 0.107047i
\(460\) 0 0
\(461\) 2.63713e10 0.583885 0.291943 0.956436i \(-0.405698\pi\)
0.291943 + 0.956436i \(0.405698\pi\)
\(462\) 4.57884e10 8.85326e10i 1.00505 1.94328i
\(463\) 2.74281e10 0.596858 0.298429 0.954432i \(-0.403537\pi\)
0.298429 + 0.954432i \(0.403537\pi\)
\(464\) −2.88489e10 + 8.19638e10i −0.622383 + 1.76828i
\(465\) 0 0
\(466\) 8.85093e9 1.71134e10i 0.187692 0.362905i
\(467\) −8.24023e10 −1.73249 −0.866247 0.499616i \(-0.833475\pi\)
−0.866247 + 0.499616i \(0.833475\pi\)
\(468\) −2.81665e10 + 1.99465e10i −0.587151 + 0.415799i
\(469\) 1.36925e10 0.283004
\(470\) 0 0
\(471\) 1.28868e11i 2.61855i
\(472\) 2.71328e10 3.79252e9i 0.546673 0.0764118i
\(473\) 4.57104e10i 0.913209i
\(474\) 4.31993e10 8.35266e10i 0.855782 1.65467i
\(475\) 0 0
\(476\) 3.24071e10 2.29495e10i 0.631266 0.447039i
\(477\) 3.06914e10i 0.592847i
\(478\) 1.55890e10 3.01415e10i 0.298611 0.577369i
\(479\) 1.28142e10i 0.243415i −0.992566 0.121708i \(-0.961163\pi\)
0.992566 0.121708i \(-0.0388370\pi\)
\(480\) 0 0
\(481\) −7.18296e10 −1.34191
\(482\) 9.74143e9 + 5.03819e9i 0.180482 + 0.0933441i
\(483\) 1.05663e11 1.94149
\(484\) −6.01810e9 8.49820e9i −0.109668 0.154862i
\(485\) 0 0
\(486\) −6.58817e10 3.40735e10i −1.18092 0.610762i
\(487\) −2.27188e10 −0.403895 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(488\) 1.42064e9 + 1.01637e10i 0.0250499 + 0.179215i
\(489\) −9.68695e10 −1.69415
\(490\) 0 0
\(491\) 8.70411e10i 1.49761i 0.662791 + 0.748805i \(0.269372\pi\)
−0.662791 + 0.748805i \(0.730628\pi\)
\(492\) 8.02057e10 + 1.13259e11i 1.36882 + 1.93291i
\(493\) 5.80866e10i 0.983305i
\(494\) −1.74951e10 9.04835e9i −0.293772 0.151936i
\(495\) 0 0
\(496\) −7.33308e10 2.58104e10i −1.21160 0.426449i
\(497\) 1.13904e11i 1.86688i
\(498\) 9.75092e9 + 5.04310e9i 0.158536 + 0.0819937i
\(499\) 1.34972e10i 0.217691i −0.994059 0.108846i \(-0.965285\pi\)
0.994059 0.108846i \(-0.0347154\pi\)
\(500\) 0 0
\(501\) 5.10441e10 0.810205
\(502\) −3.26510e10 + 6.31313e10i −0.514141 + 0.994100i
\(503\) −4.13249e10 −0.645565 −0.322782 0.946473i \(-0.604618\pi\)
−0.322782 + 0.946473i \(0.604618\pi\)
\(504\) 1.11956e10 + 8.00966e10i 0.173510 + 1.24134i
\(505\) 0 0
\(506\) 3.17957e10 6.14776e10i 0.485028 0.937810i
\(507\) −2.54759e10 −0.385564
\(508\) 4.35479e10 + 6.14942e10i 0.653901 + 0.923377i
\(509\) 3.37390e9 0.0502645 0.0251322 0.999684i \(-0.491999\pi\)
0.0251322 + 0.999684i \(0.491999\pi\)
\(510\) 0 0
\(511\) 6.77557e10i 0.993715i
\(512\) 2.78094e10 + 6.28411e10i 0.404680 + 0.914458i
\(513\) 5.52248e9i 0.0797379i
\(514\) 1.25822e10 2.43279e10i 0.180262 0.348539i
\(515\) 0 0
\(516\) 4.66542e10 + 6.58807e10i 0.658100 + 0.929307i
\(517\) 2.02761e8i 0.00283807i
\(518\) −7.73221e10 + 1.49504e11i −1.07395 + 2.07650i
\(519\) 5.19653e10i 0.716216i
\(520\) 0 0
\(521\) 1.24497e11 1.68969 0.844847 0.535007i \(-0.179691\pi\)
0.844847 + 0.535007i \(0.179691\pi\)
\(522\) −1.05079e11 5.43462e10i −1.41526 0.731960i
\(523\) 4.47960e10 0.598733 0.299366 0.954138i \(-0.403225\pi\)
0.299366 + 0.954138i \(0.403225\pi\)
\(524\) 7.17254e10 5.07932e10i 0.951367 0.673722i
\(525\) 0 0
\(526\) −3.56142e10 1.84194e10i −0.465244 0.240621i
\(527\) −5.19686e10 −0.673749
\(528\) 1.08764e11 + 3.82819e10i 1.39943 + 0.492558i
\(529\) −4.93792e9 −0.0630553
\(530\) 0 0
\(531\) 3.72995e10i 0.469165i
\(532\) −3.76658e10 + 2.66735e10i −0.470220 + 0.332992i
\(533\) 1.18964e11i 1.47404i
\(534\) −6.00174e10 3.10405e10i −0.738095 0.381737i
\(535\) 0 0
\(536\) 2.19274e9 + 1.56875e10i 0.0265661 + 0.190061i
\(537\) 9.15263e10i 1.10065i
\(538\) 5.15670e9 + 2.66700e9i 0.0615520 + 0.0318342i
\(539\) 1.08144e11i 1.28129i
\(540\) 0 0
\(541\) −8.68526e10 −1.01390 −0.506948 0.861977i \(-0.669226\pi\)
−0.506948 + 0.861977i \(0.669226\pi\)
\(542\) 7.76638e10 1.50164e11i 0.899957 1.74008i
\(543\) −6.82787e10 −0.785391
\(544\) 3.14829e10 + 3.34536e10i 0.359483 + 0.381985i
\(545\) 0 0
\(546\) 6.93176e10 1.34027e11i 0.779961 1.50807i
\(547\) 1.65768e11 1.85162 0.925808 0.377993i \(-0.123386\pi\)
0.925808 + 0.377993i \(0.123386\pi\)
\(548\) −4.25232e10 + 3.01133e10i −0.471524 + 0.333916i
\(549\) −1.39721e10 −0.153805
\(550\) 0 0
\(551\) 6.75124e10i 0.732448i
\(552\) 1.69210e10 + 1.21058e11i 0.182251 + 1.30388i
\(553\) 1.88886e11i 2.01976i
\(554\) −1.00130e10 + 1.93603e10i −0.106298 + 0.205529i
\(555\) 0 0
\(556\) 5.25025e10 3.71803e10i 0.549390 0.389057i
\(557\) 9.73769e10i 1.01166i −0.862633 0.505831i \(-0.831186\pi\)
0.862633 0.505831i \(-0.168814\pi\)
\(558\) 4.86221e10 9.40117e10i 0.501530 0.969717i
\(559\) 6.91995e10i 0.708689i
\(560\) 0 0
\(561\) 7.70796e10 0.778195
\(562\) 4.28484e10 + 2.21608e10i 0.429525 + 0.222147i
\(563\) −1.96004e9 −0.0195088 −0.00975440 0.999952i \(-0.503105\pi\)
−0.00975440 + 0.999952i \(0.503105\pi\)
\(564\) −2.06948e8 2.92233e8i −0.00204524 0.00288810i
\(565\) 0 0
\(566\) 1.96435e10 + 1.01595e10i 0.191405 + 0.0989934i
\(567\) 1.71853e11 1.66274
\(568\) 1.30500e11 1.82408e10i 1.25377 0.175247i
\(569\) −7.88598e10 −0.752327 −0.376164 0.926553i \(-0.622757\pi\)
−0.376164 + 0.926553i \(0.622757\pi\)
\(570\) 0 0
\(571\) 5.71331e10i 0.537457i 0.963216 + 0.268728i \(0.0866034\pi\)
−0.963216 + 0.268728i \(0.913397\pi\)
\(572\) −5.71216e10 8.06617e10i −0.533601 0.753500i
\(573\) 4.67145e9i 0.0433345i
\(574\) −2.47608e11 1.28061e11i −2.28096 1.17970i
\(575\) 0 0
\(576\) −8.99735e10 + 2.56535e10i −0.817381 + 0.233054i
\(577\) 1.51459e11i 1.36644i 0.730212 + 0.683221i \(0.239421\pi\)
−0.730212 + 0.683221i \(0.760579\pi\)
\(578\) −7.18610e10 3.71659e10i −0.643845 0.332992i
\(579\) 4.63984e10i 0.412847i
\(580\) 0 0
\(581\) −2.20506e10 −0.193516
\(582\) −6.37487e10 + 1.23259e11i −0.555622 + 1.07430i
\(583\) −8.78922e10 −0.760810
\(584\) −7.76274e10 + 1.08505e10i −0.667365 + 0.0932817i
\(585\) 0 0
\(586\) −4.31274e10 + 8.33875e10i −0.365732 + 0.707148i
\(587\) 1.33645e11 1.12564 0.562819 0.826580i \(-0.309717\pi\)
0.562819 + 0.826580i \(0.309717\pi\)
\(588\) −1.10377e11 1.55863e11i −0.923353 1.30387i
\(589\) 6.04015e10 0.501865
\(590\) 0 0
\(591\) 2.13670e11i 1.75143i
\(592\) −1.83668e11 6.46460e10i −1.49536 0.526326i
\(593\) 1.58419e11i 1.28112i 0.767910 + 0.640558i \(0.221297\pi\)
−0.767910 + 0.640558i \(0.778703\pi\)
\(594\) 1.27308e10 2.46152e10i 0.102261 0.197723i
\(595\) 0 0
\(596\) −1.13185e11 1.59829e11i −0.897020 1.26669i
\(597\) 2.32741e10i 0.183221i
\(598\) 4.81346e10 9.30690e10i 0.376403 0.727781i
\(599\) 4.31245e10i 0.334978i 0.985874 + 0.167489i \(0.0535659\pi\)
−0.985874 + 0.167489i \(0.946434\pi\)
\(600\) 0 0
\(601\) 4.15092e10 0.318160 0.159080 0.987266i \(-0.449147\pi\)
0.159080 + 0.987266i \(0.449147\pi\)
\(602\) −1.44029e11 7.44909e10i −1.09664 0.567175i
\(603\) −2.15656e10 −0.163114
\(604\) 1.07089e11 7.58363e10i 0.804630 0.569809i
\(605\) 0 0
\(606\) −1.82328e10 9.42985e9i −0.135195 0.0699221i
\(607\) −2.83174e10 −0.208592 −0.104296 0.994546i \(-0.533259\pi\)
−0.104296 + 0.994546i \(0.533259\pi\)
\(608\) −3.65916e10 3.88821e10i −0.267773 0.284535i
\(609\) 5.17199e11 3.76000
\(610\) 0 0
\(611\) 3.06954e8i 0.00220246i
\(612\) −5.10409e10 + 3.61452e10i −0.363842 + 0.257659i
\(613\) 2.40024e11i 1.69986i −0.526899 0.849928i \(-0.676645\pi\)
0.526899 0.849928i \(-0.323355\pi\)
\(614\) 8.23410e10 + 4.25861e10i 0.579352 + 0.299636i
\(615\) 0 0
\(616\) −2.29376e11 + 3.20613e10i −1.59303 + 0.222668i
\(617\) 1.16795e10i 0.0805904i −0.999188 0.0402952i \(-0.987170\pi\)
0.999188 0.0402952i \(-0.0128298\pi\)
\(618\) −1.07811e11 5.57588e10i −0.739107 0.382260i
\(619\) 2.19401e11i 1.49443i −0.664583 0.747215i \(-0.731391\pi\)
0.664583 0.747215i \(-0.268609\pi\)
\(620\) 0 0
\(621\) 2.93780e10 0.197540
\(622\) 6.15404e10 1.18989e11i 0.411149 0.794963i
\(623\) 1.35723e11 0.900948
\(624\) 1.64655e11 + 5.79537e10i 1.08601 + 0.382246i
\(625\) 0 0
\(626\) −9.02396e10 + 1.74480e11i −0.587624 + 1.13618i
\(627\) −8.95874e10 −0.579665
\(628\) −2.44375e11 + 1.73057e11i −1.57115 + 1.11263i
\(629\) −1.30163e11 −0.831544
\(630\) 0 0
\(631\) 2.35335e10i 0.148446i 0.997242 + 0.0742230i \(0.0236477\pi\)
−0.997242 + 0.0742230i \(0.976352\pi\)
\(632\) −2.16406e11 + 3.02484e10i −1.35644 + 0.189598i
\(633\) 2.21890e11i 1.38205i
\(634\) −1.01759e11 + 1.96752e11i −0.629817 + 1.21776i
\(635\) 0 0
\(636\) 1.26676e11 8.97071e10i 0.774222 0.548275i
\(637\) 1.63715e11i 0.994332i
\(638\) 1.55634e11 3.00920e11i 0.939336 1.81622i
\(639\) 1.79398e11i 1.07601i
\(640\) 0 0
\(641\) −8.47231e10 −0.501845 −0.250923 0.968007i \(-0.580734\pi\)
−0.250923 + 0.968007i \(0.580734\pi\)
\(642\) −1.20512e11 6.23278e10i −0.709397 0.366895i
\(643\) −2.37102e11 −1.38705 −0.693523 0.720435i \(-0.743942\pi\)
−0.693523 + 0.720435i \(0.743942\pi\)
\(644\) −1.41895e11 2.00371e11i −0.824944 1.16491i
\(645\) 0 0
\(646\) −3.17031e10 1.63966e10i −0.182042 0.0941508i
\(647\) −2.88712e11 −1.64758 −0.823792 0.566892i \(-0.808146\pi\)
−0.823792 + 0.566892i \(0.808146\pi\)
\(648\) 2.75207e10 + 1.96891e11i 0.156084 + 1.11667i
\(649\) −1.06816e11 −0.602086
\(650\) 0 0
\(651\) 4.62724e11i 2.57631i
\(652\) 1.30086e11 + 1.83696e11i 0.719850 + 1.01650i
\(653\) 7.01205e10i 0.385649i −0.981233 0.192824i \(-0.938235\pi\)
0.981233 0.192824i \(-0.0617648\pi\)
\(654\) 6.72451e9 + 3.47787e9i 0.0367578 + 0.0190109i
\(655\) 0 0
\(656\) 1.07067e11 3.04192e11i 0.578149 1.64260i
\(657\) 1.06714e11i 0.572746i
\(658\) 6.38884e8 + 3.30426e8i 0.00340815 + 0.00176267i
\(659\) 1.30280e11i 0.690774i 0.938460 + 0.345387i \(0.112252\pi\)
−0.938460 + 0.345387i \(0.887748\pi\)
\(660\) 0 0
\(661\) −9.13098e10 −0.478312 −0.239156 0.970981i \(-0.576871\pi\)
−0.239156 + 0.970981i \(0.576871\pi\)
\(662\) −5.67246e10 + 1.09678e11i −0.295352 + 0.571067i
\(663\) 1.16688e11 0.603912
\(664\) −3.53121e9 2.52633e10i −0.0181656 0.129962i
\(665\) 0 0
\(666\) 1.21781e11 2.35466e11i 0.618991 1.19683i
\(667\) 3.59146e11 1.81454
\(668\) −6.85474e10 9.67962e10i −0.344259 0.486130i
\(669\) 9.99097e10 0.498773
\(670\) 0 0
\(671\) 4.00124e10i 0.197381i
\(672\) 2.97868e11 2.80321e11i 1.46065 1.37461i
\(673\) 2.19105e11i 1.06805i 0.845468 + 0.534026i \(0.179321\pi\)
−0.845468 + 0.534026i \(0.820679\pi\)
\(674\) −1.08627e11 + 2.10031e11i −0.526377 + 1.01776i
\(675\) 0 0
\(676\) 3.42117e10 + 4.83105e10i 0.163828 + 0.231342i
\(677\) 8.12354e10i 0.386715i −0.981128 0.193357i \(-0.938062\pi\)
0.981128 0.193357i \(-0.0619377\pi\)
\(678\) −1.89738e11 + 3.66862e11i −0.897916 + 1.73614i
\(679\) 2.78737e11i 1.31134i
\(680\) 0 0
\(681\) 1.02598e10 0.0477037
\(682\) 2.69225e11 + 1.39241e11i 1.24445 + 0.643622i
\(683\) −2.91761e11 −1.34074 −0.670369 0.742028i \(-0.733864\pi\)
−0.670369 + 0.742028i \(0.733864\pi\)
\(684\) 5.93233e10 4.20105e10i 0.271020 0.191926i
\(685\) 0 0
\(686\) 5.06688e10 + 2.62055e10i 0.228794 + 0.118330i
\(687\) −5.70507e10 −0.256115
\(688\) 6.22789e10 1.76943e11i 0.277963 0.789732i
\(689\) −1.33057e11 −0.590421
\(690\) 0 0
\(691\) 1.35594e11i 0.594743i −0.954762 0.297371i \(-0.903890\pi\)
0.954762 0.297371i \(-0.0961100\pi\)
\(692\) 9.85430e10 6.97845e10i 0.429736 0.304323i
\(693\) 3.15323e11i 1.36717i
\(694\) 3.83574e11 + 1.98381e11i 1.65353 + 0.855191i
\(695\) 0 0
\(696\) 8.28247e10 + 5.92552e11i 0.352958 + 2.52517i
\(697\) 2.15577e11i 0.913420i
\(698\) 2.88040e11 + 1.48972e11i 1.21348 + 0.627601i
\(699\) 1.32664e11i 0.555707i
\(700\) 0 0
\(701\) 1.48441e11 0.614725 0.307363 0.951592i \(-0.400554\pi\)
0.307363 + 0.951592i \(0.400554\pi\)
\(702\) 1.92727e10 3.72641e10i 0.0793587 0.153441i
\(703\) 1.51285e11 0.619404
\(704\) −7.34650e10 2.57661e11i −0.299082 1.04896i
\(705\) 0 0
\(706\) −6.92204e10 + 1.33839e11i −0.278622 + 0.538720i
\(707\) 4.12314e10 0.165025
\(708\) 1.53950e11 1.09022e11i 0.612700 0.433891i
\(709\) −4.79726e11 −1.89849 −0.949245 0.314536i \(-0.898151\pi\)
−0.949245 + 0.314536i \(0.898151\pi\)
\(710\) 0 0
\(711\) 2.97493e11i 1.16412i
\(712\) 2.17347e10 + 1.55497e11i 0.0845735 + 0.605064i
\(713\) 3.21318e11i 1.24330i
\(714\) 1.25611e11 2.42871e11i 0.483321 0.934508i
\(715\) 0 0
\(716\) −1.73563e11 + 1.22911e11i −0.660399 + 0.467669i
\(717\) 2.33659e11i 0.884110i
\(718\) −2.42828e10 + 4.69512e10i −0.0913695 + 0.176664i
\(719\) 4.02314e11i 1.50539i 0.658368 + 0.752696i \(0.271247\pi\)
−0.658368 + 0.752696i \(0.728753\pi\)
\(720\) 0 0
\(721\) 2.43801e11 0.902184
\(722\) −2.04519e11 1.05776e11i −0.752635 0.389257i
\(723\) 7.55163e10 0.276368
\(724\) 9.16917e10 + 1.29478e11i 0.333715 + 0.471241i
\(725\) 0 0
\(726\) −6.36887e10 3.29393e10i −0.229253 0.118568i
\(727\) −3.49293e11 −1.25041 −0.625204 0.780461i \(-0.714984\pi\)
−0.625204 + 0.780461i \(0.714984\pi\)
\(728\) −3.47245e11 + 4.85366e10i −1.23626 + 0.172800i
\(729\) −1.92272e11 −0.680777
\(730\) 0 0
\(731\) 1.25397e11i 0.439155i
\(732\) 4.08386e10 + 5.76684e10i 0.142242 + 0.200860i
\(733\) 1.75651e11i 0.608464i 0.952598 + 0.304232i \(0.0983998\pi\)
−0.952598 + 0.304232i \(0.901600\pi\)
\(734\) −1.62769e11 8.41829e10i −0.560774 0.290028i
\(735\) 0 0
\(736\) 2.06841e11 1.94657e11i 0.704898 0.663373i
\(737\) 6.17583e10i 0.209327i
\(738\) 3.89981e11 + 2.01695e11i 1.31467 + 0.679939i
\(739\) 1.85701e11i 0.622640i 0.950305 + 0.311320i \(0.100771\pi\)
−0.950305 + 0.311320i \(0.899229\pi\)
\(740\) 0 0
\(741\) −1.35624e11 −0.449844
\(742\) −1.43232e11 + 2.76941e11i −0.472523 + 0.913632i
\(743\) 2.85901e11 0.938126 0.469063 0.883165i \(-0.344592\pi\)
0.469063 + 0.883165i \(0.344592\pi\)
\(744\) −5.30141e11 + 7.41010e10i −1.73021 + 0.241842i
\(745\) 0 0
\(746\) −1.66445e11 + 3.21824e11i −0.537422 + 1.03911i
\(747\) 3.47295e10 0.111536
\(748\) −1.03511e11 1.46168e11i −0.330658 0.466924i
\(749\) 2.72524e11 0.865919
\(750\) 0 0
\(751\) 6.18679e11i 1.94494i −0.233031 0.972469i \(-0.574864\pi\)
0.233031 0.972469i \(-0.425136\pi\)
\(752\) −2.76256e8 + 7.84881e8i −0.000863854 + 0.00245433i
\(753\) 4.89399e11i 1.52224i
\(754\) 2.35609e11 4.55554e11i 0.728964 1.40946i
\(755\) 0 0
\(756\) −5.68138e10 8.02271e10i −0.173927 0.245603i
\(757\) 9.34034e10i 0.284433i 0.989836 + 0.142216i \(0.0454229\pi\)
−0.989836 + 0.142216i \(0.954577\pi\)
\(758\) −4.12905e10 + 7.98360e10i −0.125076 + 0.241836i
\(759\) 4.76579e11i 1.43604i
\(760\) 0 0
\(761\) −3.21388e11 −0.958276 −0.479138 0.877740i \(-0.659051\pi\)
−0.479138 + 0.877740i \(0.659051\pi\)
\(762\) 4.60861e11 + 2.38354e11i 1.36694 + 0.706971i
\(763\) −1.52067e10 −0.0448681
\(764\) 8.85859e9 6.27332e9i 0.0260011 0.0184130i
\(765\) 0 0
\(766\) 5.83443e10 + 3.01752e10i 0.169466 + 0.0876467i
\(767\) −1.61706e11 −0.467245
\(768\) 3.68863e11 + 2.96375e11i 1.06028 + 0.851916i
\(769\) −2.44957e10 −0.0700461 −0.0350231 0.999387i \(-0.511150\pi\)
−0.0350231 + 0.999387i \(0.511150\pi\)
\(770\) 0 0
\(771\) 1.88591e11i 0.533709i
\(772\) 8.79865e10 6.23087e10i 0.247712 0.175420i
\(773\) 1.61194e11i 0.451472i −0.974189 0.225736i \(-0.927521\pi\)
0.974189 0.225736i \(-0.0724787\pi\)
\(774\) 2.26845e11 + 1.17322e11i 0.632070 + 0.326902i
\(775\) 0 0
\(776\) 3.19348e11 4.46372e10i 0.880678 0.123098i
\(777\) 1.15896e12i 3.17969i
\(778\) −1.95643e10 1.01185e10i −0.0534006 0.0276184i
\(779\) 2.50558e11i 0.680392i
\(780\) 0 0
\(781\) −5.13751e11 −1.38086
\(782\) 8.72252e10 1.68651e11i 0.233246 0.450986i
\(783\) 1.43799e11 0.382569
\(784\) −1.47342e11 + 4.18620e11i −0.389999 + 1.10804i
\(785\) 0 0
\(786\) 2.78010e11 5.37538e11i 0.728401 1.40838i
\(787\) −4.76190e11 −1.24131 −0.620657 0.784083i \(-0.713134\pi\)
−0.620657 + 0.784083i \(0.713134\pi\)
\(788\) 4.05187e11 2.86938e11i 1.05087 0.744189i
\(789\) −2.76084e11 −0.712416
\(790\) 0 0
\(791\) 8.29617e11i 2.11920i
\(792\) 3.61265e11 5.04962e10i 0.918174 0.128339i
\(793\) 6.05735e10i 0.153176i
\(794\) −2.23600e11 + 4.32334e11i −0.562586 + 1.08777i
\(795\) 0 0
\(796\) 4.41352e10 3.12549e10i 0.109934 0.0778512i
\(797\) 1.59422e11i 0.395107i −0.980292 0.197553i \(-0.936700\pi\)
0.980292 0.197553i \(-0.0632996\pi\)
\(798\) −1.45994e11 + 2.82282e11i −0.360018 + 0.696100i
\(799\) 5.56235e8i 0.00136481i
\(800\) 0 0
\(801\) −2.13762e11 −0.519278
\(802\) 2.77801e11 + 1.43677e11i 0.671486 + 0.347287i
\(803\) 3.05603e11 0.735013
\(804\) 6.30335e10 + 8.90100e10i 0.150851 + 0.213017i
\(805\) 0 0
\(806\) 4.07572e11 + 2.10793e11i 0.965748 + 0.499478i
\(807\) 3.99751e10 0.0942530
\(808\) 6.60283e9 + 4.72386e10i 0.0154912 + 0.110829i
\(809\) 4.86253e11 1.13519 0.567594 0.823308i \(-0.307874\pi\)
0.567594 + 0.823308i \(0.307874\pi\)
\(810\) 0 0
\(811\) 3.39760e11i 0.785396i 0.919667 + 0.392698i \(0.128458\pi\)
−0.919667 + 0.392698i \(0.871542\pi\)
\(812\) −6.94548e11 9.80776e11i −1.59764 2.25603i
\(813\) 1.16408e12i 2.66454i
\(814\) 6.74315e11 + 3.48751e11i 1.53591 + 0.794360i
\(815\) 0 0
\(816\) 2.98372e11 + 1.05019e11i 0.672973 + 0.236867i
\(817\) 1.45745e11i 0.327120i
\(818\) −6.21729e11 3.21553e11i −1.38863 0.718191i
\(819\) 4.77358e11i 1.06098i
\(820\) 0 0
\(821\) 6.74268e11 1.48409 0.742044 0.670351i \(-0.233856\pi\)
0.742044 + 0.670351i \(0.233856\pi\)
\(822\) −1.64822e11 + 3.18685e11i −0.361016 + 0.698031i
\(823\) −3.11660e11 −0.679332 −0.339666 0.940546i \(-0.610314\pi\)
−0.339666 + 0.940546i \(0.610314\pi\)
\(824\) 3.90426e10 + 2.79322e11i 0.0846896 + 0.605894i
\(825\) 0 0
\(826\) −1.74071e11 + 3.36569e11i −0.373943 + 0.723026i
\(827\) 3.10210e11 0.663183 0.331592 0.943423i \(-0.392414\pi\)
0.331592 + 0.943423i \(0.392414\pi\)
\(828\) 2.23484e11 + 3.15583e11i 0.475472 + 0.671416i
\(829\) 3.09076e11 0.654406 0.327203 0.944954i \(-0.393894\pi\)
0.327203 + 0.944954i \(0.393894\pi\)
\(830\) 0 0
\(831\) 1.50082e11i 0.314720i
\(832\) −1.11216e11 3.90065e11i −0.232100 0.814035i
\(833\) 2.96670e11i 0.616160i
\(834\) 2.03501e11 3.93473e11i 0.420633 0.813301i
\(835\) 0 0
\(836\) 1.20307e11 + 1.69887e11i 0.246302 + 0.347804i
\(837\) 1.28653e11i 0.262132i
\(838\) 1.41943e11 2.74450e11i 0.287832 0.556528i
\(839\) 5.22492e11i 1.05446i −0.849722 0.527232i \(-0.823230\pi\)
0.849722 0.527232i \(-0.176770\pi\)
\(840\) 0 0
\(841\) 1.25770e12 2.51416
\(842\) 5.19504e11 + 2.68684e11i 1.03357 + 0.534556i
\(843\) 3.32163e11 0.657721
\(844\) −4.20775e11 + 2.97977e11i −0.829240 + 0.587236i
\(845\) 0 0
\(846\) −1.00624e9 5.20417e8i −0.00196435 0.00101594i
\(847\) 1.44025e11 0.279836
\(848\) −3.40227e11 1.19750e11i −0.657939 0.231576i
\(849\) 1.52278e11 0.293094
\(850\) 0 0
\(851\) 8.04790e11i 1.53449i
\(852\) 7.40450e11 5.24359e11i 1.40520 0.995108i
\(853\) 5.25270e11i 0.992171i 0.868274 + 0.496086i \(0.165230\pi\)
−0.868274 + 0.496086i \(0.834770\pi\)
\(854\) −1.26076e11 6.52053e10i −0.237028 0.122589i
\(855\) 0 0
\(856\) 4.36422e10 + 3.12230e11i 0.0812853 + 0.581539i
\(857\) 3.18270e11i 0.590028i 0.955493 + 0.295014i \(0.0953243\pi\)
−0.955493 + 0.295014i \(0.904676\pi\)
\(858\) −6.04510e11 3.12648e11i −1.11546 0.576907i
\(859\) 8.61467e11i 1.58222i −0.611676 0.791108i \(-0.709504\pi\)
0.611676 0.791108i \(-0.290496\pi\)
\(860\) 0 0
\(861\) −1.91948e12 −3.49277
\(862\) 2.93031e11 5.66579e11i 0.530742 1.02620i
\(863\) −1.40931e11 −0.254075 −0.127038 0.991898i \(-0.540547\pi\)
−0.127038 + 0.991898i \(0.540547\pi\)
\(864\) 8.28176e10 7.79390e10i 0.148617 0.139862i
\(865\) 0 0
\(866\) −2.36357e11 + 4.57000e11i −0.420239 + 0.812539i
\(867\) −5.57071e11 −0.985903
\(868\) 8.77474e11 6.21394e11i 1.54581 1.09468i
\(869\) 8.51945e11 1.49394
\(870\) 0 0
\(871\) 9.34940e10i 0.162447i
\(872\) −2.43522e9 1.74223e10i −0.00421185 0.0301328i
\(873\) 4.39008e11i 0.755814i
\(874\) −1.01379e11 + 1.96018e11i −0.173741 + 0.335932i
\(875\) 0 0
\(876\) −4.40454e11 + 3.11913e11i −0.747970 + 0.529684i
\(877\) 4.00362e11i 0.676790i −0.941004 0.338395i \(-0.890116\pi\)
0.941004 0.338395i \(-0.109884\pi\)
\(878\) −1.99937e11 + 3.86582e11i −0.336447 + 0.650525i
\(879\) 6.46426e11i 1.08284i
\(880\) 0 0
\(881\) 4.94890e11 0.821496 0.410748 0.911749i \(-0.365268\pi\)
0.410748 + 0.911749i \(0.365268\pi\)
\(882\) −5.36680e11 2.77567e11i −0.886831 0.458662i
\(883\) 7.88039e11 1.29630 0.648149 0.761513i \(-0.275543\pi\)
0.648149 + 0.761513i \(0.275543\pi\)
\(884\) −1.56701e11 2.21279e11i −0.256604 0.362353i
\(885\) 0 0
\(886\) 1.87919e11 + 9.71903e10i 0.304955 + 0.157720i
\(887\) 2.78785e10 0.0450375 0.0225188 0.999746i \(-0.492831\pi\)
0.0225188 + 0.999746i \(0.492831\pi\)
\(888\) −1.32782e12 + 1.85597e11i −2.13544 + 0.298483i
\(889\) −1.04218e12 −1.66854
\(890\) 0 0
\(891\) 7.75120e11i 1.22987i
\(892\) −1.34169e11 1.89461e11i −0.211930 0.299268i
\(893\) 6.46496e8i 0.00101662i
\(894\) −1.19782e12 6.19501e11i −1.87517 0.969822i
\(895\) 0 0
\(896\) −9.31587e11 1.88410e11i −1.44541 0.292328i
\(897\) 7.21478e11i 1.11443i
\(898\) 4.02133e11 + 2.07980e11i 0.618392 + 0.319828i
\(899\) 1.57279e12i 2.40786i
\(900\) 0 0
\(901\) −2.41114e11 −0.365868
\(902\) −5.77603e11 + 1.11680e12i −0.872576 + 1.68714i
\(903\) −1.11653e12 −1.67926
\(904\) 9.50489e11 1.32856e11i 1.42322 0.198933i
\(905\) 0 0
\(906\) 4.15080e11 8.02564e11i 0.616054 1.19115i
\(907\) 5.94476e11 0.878426 0.439213 0.898383i \(-0.355257\pi\)
0.439213 + 0.898383i \(0.355257\pi\)
\(908\) −1.37780e10 1.94560e10i −0.0202695 0.0286226i
\(909\) −6.49390e10 −0.0951152
\(910\) 0 0
\(911\) 5.11180e11i 0.742165i 0.928600 + 0.371082i \(0.121013\pi\)
−0.928600 + 0.371082i \(0.878987\pi\)
\(912\) −3.46789e11 1.22060e11i −0.501287 0.176439i
\(913\) 9.94564e10i 0.143136i
\(914\) 5.80438e11 1.12229e12i 0.831708 1.60812i
\(915\) 0 0
\(916\) 7.66137e10 + 1.08187e11i 0.108824 + 0.153671i
\(917\) 1.21558e12i 1.71912i
\(918\) 3.49243e10 6.75267e10i 0.0491764 0.0950834i
\(919\) 7.89745e11i 1.10720i −0.832784 0.553598i \(-0.813254\pi\)
0.832784 0.553598i \(-0.186746\pi\)
\(920\) 0 0
\(921\) 6.38313e11 0.887146
\(922\) −3.74783e11 1.93835e11i −0.518628 0.268230i
\(923\) −7.77751e11 −1.07160
\(924\) −1.30147e12 + 9.21650e11i −1.78544 + 1.26438i
\(925\) 0 0
\(926\) −3.89801e11 2.01602e11i −0.530151 0.274190i
\(927\) −3.83985e11 −0.519990
\(928\) 1.01245e12 9.52804e11i 1.36515 1.28473i
\(929\) −1.28241e12 −1.72172 −0.860862 0.508839i \(-0.830075\pi\)
−0.860862 + 0.508839i \(0.830075\pi\)
\(930\) 0 0
\(931\) 3.44811e11i 0.458968i
\(932\) −2.51575e11 + 1.78156e11i −0.333429 + 0.236122i
\(933\) 9.22414e11i 1.21730i
\(934\) 1.17108e12 + 6.05675e11i 1.53886 + 0.795888i
\(935\) 0 0
\(936\) 5.46907e11 7.64446e10i 0.712542 0.0995963i
\(937\) 4.16365e11i 0.540152i −0.962839 0.270076i \(-0.912951\pi\)
0.962839 0.270076i \(-0.0870488\pi\)
\(938\) −1.94595e11 1.00643e11i −0.251374 0.130009i
\(939\) 1.35258e12i 1.73980i
\(940\) 0 0
\(941\) −1.33006e12 −1.69634 −0.848171 0.529723i \(-0.822296\pi\)
−0.848171 + 0.529723i \(0.822296\pi\)
\(942\) −9.47207e11 + 1.83144e12i −1.20293 + 2.32589i
\(943\) −1.33290e12 −1.68558
\(944\) −4.13482e11 1.45534e11i −0.520677 0.183264i
\(945\) 0 0
\(946\) −3.35981e11 + 6.49625e11i −0.419518 + 0.811145i
\(947\) −1.36285e11 −0.169453 −0.0847265 0.996404i \(-0.527002\pi\)
−0.0847265 + 0.996404i \(0.527002\pi\)
\(948\) −1.22788e12 + 8.69536e11i −1.52027 + 1.07660i
\(949\) 4.62642e11 0.570401
\(950\) 0 0
\(951\) 1.52524e12i 1.86473i
\(952\) −6.29246e11 + 8.79536e10i −0.766078 + 0.107079i
\(953\) 1.22326e12i 1.48302i −0.670943 0.741509i \(-0.734111\pi\)
0.670943 0.741509i \(-0.265889\pi\)
\(954\) 2.25588e11 4.36179e11i 0.272347 0.526588i
\(955\) 0 0
\(956\) −4.43093e11 + 3.13782e11i −0.530473 + 0.375661i
\(957\) 2.33275e12i 2.78113i
\(958\) −9.41868e10 + 1.82112e11i −0.111822 + 0.216210i
\(959\) 7.20671e11i 0.852045i
\(960\) 0 0
\(961\) −5.54240e11 −0.649837
\(962\) 1.02083e12 + 5.27963e11i 1.19193 + 0.616457i
\(963\) −4.29222e11 −0.499088
\(964\) −1.01411e11 1.43203e11i −0.117430 0.165823i
\(965\) 0 0
\(966\) −1.50166e12 7.76646e11i −1.72450 0.891897i
\(967\) 7.99217e10 0.0914027 0.0457014 0.998955i \(-0.485448\pi\)
0.0457014 + 0.998955i \(0.485448\pi\)
\(968\) 2.30643e10 + 1.65009e11i 0.0262687 + 0.187934i
\(969\) −2.45765e11 −0.278756
\(970\) 0 0
\(971\) 3.43166e11i 0.386036i −0.981195 0.193018i \(-0.938172\pi\)
0.981195 0.193018i \(-0.0618276\pi\)
\(972\) 6.85848e11 + 9.68490e11i 0.768356 + 1.08500i
\(973\) 8.89796e11i 0.992748i
\(974\) 3.22874e11 + 1.66988e11i 0.358754 + 0.185545i
\(975\) 0 0
\(976\) 5.45156e10 1.54886e11i 0.0600789 0.170692i
\(977\) 2.96831e11i 0.325785i −0.986644 0.162893i \(-0.947918\pi\)
0.986644 0.162893i \(-0.0520824\pi\)
\(978\) 1.37669e12 + 7.12011e11i 1.50480 + 0.778272i
\(979\) 6.12158e11i 0.666397i
\(980\) 0 0
\(981\) 2.39505e10 0.0258605
\(982\) 6.39771e11 1.23701e12i 0.687984 1.33023i
\(983\) 9.12247e11 0.977009 0.488504 0.872561i \(-0.337543\pi\)
0.488504 + 0.872561i \(0.337543\pi\)
\(984\) −3.07387e11 2.19914e12i −0.327873 2.34570i
\(985\) 0 0
\(986\) 4.26949e11 8.25513e11i 0.451719 0.873407i
\(987\) 4.95267e9 0.00521880
\(988\) 1.82130e11 + 2.57186e11i 0.191140 + 0.269911i
\(989\) −7.75323e11 −0.810396
\(990\) 0 0
\(991\) 9.63646e11i 0.999132i 0.866276 + 0.499566i \(0.166507\pi\)
−0.866276 + 0.499566i \(0.833493\pi\)
\(992\) 8.52449e11 + 9.05808e11i 0.880281 + 0.935383i
\(993\) 8.50231e11i 0.874460i
\(994\) −8.37223e11 + 1.61878e12i −0.857621 + 1.65822i
\(995\) 0 0
\(996\) −1.01510e11 1.43343e11i −0.103150 0.145659i
\(997\) 1.13678e12i 1.15052i −0.817970 0.575261i \(-0.804900\pi\)
0.817970 0.575261i \(-0.195100\pi\)
\(998\) −9.92073e10 + 1.91819e11i −0.100005 + 0.193361i
\(999\) 3.22232e11i 0.323524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.d.c.99.5 32
4.3 odd 2 inner 100.9.d.c.99.27 32
5.2 odd 4 100.9.b.d.51.11 16
5.3 odd 4 20.9.b.a.11.6 yes 16
5.4 even 2 inner 100.9.d.c.99.28 32
15.8 even 4 180.9.c.a.91.11 16
20.3 even 4 20.9.b.a.11.5 16
20.7 even 4 100.9.b.d.51.12 16
20.19 odd 2 inner 100.9.d.c.99.6 32
40.3 even 4 320.9.b.d.191.3 16
40.13 odd 4 320.9.b.d.191.14 16
60.23 odd 4 180.9.c.a.91.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.5 16 20.3 even 4
20.9.b.a.11.6 yes 16 5.3 odd 4
100.9.b.d.51.11 16 5.2 odd 4
100.9.b.d.51.12 16 20.7 even 4
100.9.d.c.99.5 32 1.1 even 1 trivial
100.9.d.c.99.6 32 20.19 odd 2 inner
100.9.d.c.99.27 32 4.3 odd 2 inner
100.9.d.c.99.28 32 5.4 even 2 inner
180.9.c.a.91.11 16 15.8 even 4
180.9.c.a.91.12 16 60.23 odd 4
320.9.b.d.191.3 16 40.3 even 4
320.9.b.d.191.14 16 40.13 odd 4