Properties

Label 100.9.b.d.51.12
Level $100$
Weight $9$
Character 100.51
Analytic conductor $40.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 26 x^{14} - 834 x^{13} + 4390 x^{12} - 61783 x^{11} + 466168 x^{10} + \cdots + 206161212459445 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{61}\cdot 5^{16} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.12
Root \(3.05707 - 7.10588i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.9.b.d.51.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.35022 + 14.2118i) q^{2} -110.171i q^{3} +(-147.949 + 208.919i) q^{4} +(1565.72 - 809.778i) q^{6} +3540.70i q^{7} +(-4056.56 - 567.011i) q^{8} -5576.56 q^{9} -15969.8i q^{11} +(23016.7 + 16299.6i) q^{12} +24176.2 q^{13} +(-50319.6 + 26024.9i) q^{14} +(-21758.4 - 61818.6i) q^{16} -43810.0 q^{17} +(-40988.9 - 79252.8i) q^{18} -50919.1i q^{19} +390081. q^{21} +(226960. - 117382. i) q^{22} +270875. i q^{23} +(-62467.9 + 446914. i) q^{24} +(177701. + 343587. i) q^{26} -108456. i q^{27} +(-739720. - 523841. i) q^{28} -1.32588e6 q^{29} -1.18623e6i q^{31} +(718623. - 763605. i) q^{32} -1.75941e6 q^{33} +(-322013. - 622618. i) q^{34} +(825045. - 1.16505e6i) q^{36} -2.97108e6 q^{37} +(723650. - 374266. i) q^{38} -2.66351e6i q^{39} -4.92072e6 q^{41} +(2.86718e6 + 5.54374e6i) q^{42} -2.86229e6i q^{43} +(3.33641e6 + 2.36272e6i) q^{44} +(-3.84961e6 + 1.99099e6i) q^{46} -12696.5i q^{47} +(-6.81059e6 + 2.39714e6i) q^{48} -6.77174e6 q^{49} +4.82658e6i q^{51} +(-3.57684e6 + 5.05088e6i) q^{52} +5.50364e6 q^{53} +(1.54135e6 - 797176. i) q^{54} +(2.00761e6 - 1.43631e7i) q^{56} -5.60979e6 q^{57} +(-9.74547e6 - 1.88430e7i) q^{58} +6.68863e6i q^{59} -2.50550e6 q^{61} +(1.68584e7 - 8.71902e6i) q^{62} -1.97449e7i q^{63} +(1.61342e7 + 4.60023e6i) q^{64} +(-1.29320e7 - 2.50043e7i) q^{66} +3.86718e6i q^{67} +(6.48163e6 - 9.15275e6i) q^{68} +2.98424e7 q^{69} -3.21701e7i q^{71} +(2.26217e7 + 3.16197e6i) q^{72} -1.91362e7 q^{73} +(-2.18381e7 - 4.22243e7i) q^{74} +(1.06380e7 + 7.53341e6i) q^{76} +5.65444e7 q^{77} +(3.78532e7 - 1.95774e7i) q^{78} -5.33471e7i q^{79} -4.85365e7 q^{81} +(-3.61683e7 - 6.99321e7i) q^{82} +6.22776e6i q^{83} +(-5.77119e7 + 8.14954e7i) q^{84} +(4.06782e7 - 2.10385e7i) q^{86} +1.46072e8i q^{87} +(-9.05507e6 + 6.47827e7i) q^{88} +3.83322e7 q^{89} +8.56008e7i q^{91} +(-5.65909e7 - 4.00755e7i) q^{92} -1.30687e8 q^{93} +(180440. - 93322.2i) q^{94} +(-8.41269e7 - 7.91711e7i) q^{96} -7.87237e7 q^{97} +(-4.97738e7 - 9.62384e7i) q^{98} +8.90568e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 52 q^{4} + 4368 q^{6} + 14184 q^{8} - 38800 q^{9} + 64040 q^{12} - 51392 q^{13} + 68472 q^{14} - 81424 q^{16} - 27552 q^{17} + 616994 q^{18} + 414496 q^{21} + 389120 q^{22} + 163792 q^{24}+ \cdots + 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.35022 + 14.2118i 0.459389 + 0.888235i
\(3\) 110.171i 1.36013i −0.733151 0.680065i \(-0.761951\pi\)
0.733151 0.680065i \(-0.238049\pi\)
\(4\) −147.949 + 208.919i −0.577924 + 0.816090i
\(5\) 0 0
\(6\) 1565.72 809.778i 1.20812 0.624829i
\(7\) 3540.70i 1.47468i 0.675524 + 0.737338i \(0.263918\pi\)
−0.675524 + 0.737338i \(0.736082\pi\)
\(8\) −4056.56 567.011i −0.990372 0.138430i
\(9\) −5576.56 −0.849956
\(10\) 0 0
\(11\) 15969.8i 1.09076i −0.838188 0.545381i \(-0.816385\pi\)
0.838188 0.545381i \(-0.183615\pi\)
\(12\) 23016.7 + 16299.6i 1.10999 + 0.786053i
\(13\) 24176.2 0.846477 0.423239 0.906018i \(-0.360893\pi\)
0.423239 + 0.906018i \(0.360893\pi\)
\(14\) −50319.6 + 26024.9i −1.30986 + 0.677449i
\(15\) 0 0
\(16\) −21758.4 61818.6i −0.332007 0.943277i
\(17\) −43810.0 −0.524539 −0.262269 0.964995i \(-0.584471\pi\)
−0.262269 + 0.964995i \(0.584471\pi\)
\(18\) −40988.9 79252.8i −0.390460 0.754961i
\(19\) 50919.1i 0.390721i −0.980732 0.195360i \(-0.937412\pi\)
0.980732 0.195360i \(-0.0625876\pi\)
\(20\) 0 0
\(21\) 390081. 2.00575
\(22\) 226960. 117382.i 0.968853 0.501083i
\(23\) 270875.i 0.967959i 0.875079 + 0.483980i \(0.160809\pi\)
−0.875079 + 0.483980i \(0.839191\pi\)
\(24\) −62467.9 + 446914.i −0.188283 + 1.34704i
\(25\) 0 0
\(26\) 177701. + 343587.i 0.388862 + 0.751871i
\(27\) 108456.i 0.204079i
\(28\) −739720. 523841.i −1.20347 0.852251i
\(29\) −1.32588e6 −1.87461 −0.937305 0.348511i \(-0.886687\pi\)
−0.937305 + 0.348511i \(0.886687\pi\)
\(30\) 0 0
\(31\) 1.18623e6i 1.28446i −0.766512 0.642230i \(-0.778009\pi\)
0.766512 0.642230i \(-0.221991\pi\)
\(32\) 718623. 763605.i 0.685332 0.728231i
\(33\) −1.75941e6 −1.48358
\(34\) −322013. 622618.i −0.240967 0.465914i
\(35\) 0 0
\(36\) 825045. 1.16505e6i 0.491210 0.693641i
\(37\) −2.97108e6 −1.58529 −0.792643 0.609686i \(-0.791295\pi\)
−0.792643 + 0.609686i \(0.791295\pi\)
\(38\) 723650. 374266.i 0.347052 0.179493i
\(39\) 2.66351e6i 1.15132i
\(40\) 0 0
\(41\) −4.92072e6 −1.74138 −0.870689 0.491834i \(-0.836327\pi\)
−0.870689 + 0.491834i \(0.836327\pi\)
\(42\) 2.86718e6 + 5.54374e6i 0.921420 + 1.78158i
\(43\) 2.86229e6i 0.837221i −0.908166 0.418611i \(-0.862517\pi\)
0.908166 0.418611i \(-0.137483\pi\)
\(44\) 3.33641e6 + 2.36272e6i 0.890160 + 0.630378i
\(45\) 0 0
\(46\) −3.84961e6 + 1.99099e6i −0.859776 + 0.444669i
\(47\) 12696.5i 0.00260192i −0.999999 0.00130096i \(-0.999586\pi\)
0.999999 0.00130096i \(-0.000414108\pi\)
\(48\) −6.81059e6 + 2.39714e6i −1.28298 + 0.451573i
\(49\) −6.77174e6 −1.17467
\(50\) 0 0
\(51\) 4.82658e6i 0.713442i
\(52\) −3.57684e6 + 5.05088e6i −0.489200 + 0.690802i
\(53\) 5.50364e6 0.697504 0.348752 0.937215i \(-0.386606\pi\)
0.348752 + 0.937215i \(0.386606\pi\)
\(54\) 1.54135e6 797176.i 0.181270 0.0937517i
\(55\) 0 0
\(56\) 2.00761e6 1.43631e7i 0.204140 1.46048i
\(57\) −5.60979e6 −0.531431
\(58\) −9.74547e6 1.88430e7i −0.861174 1.66509i
\(59\) 6.68863e6i 0.551987i 0.961159 + 0.275994i \(0.0890068\pi\)
−0.961159 + 0.275994i \(0.910993\pi\)
\(60\) 0 0
\(61\) −2.50550e6 −0.180957 −0.0904784 0.995898i \(-0.528840\pi\)
−0.0904784 + 0.995898i \(0.528840\pi\)
\(62\) 1.68584e7 8.71902e6i 1.14090 0.590066i
\(63\) 1.97449e7i 1.25341i
\(64\) 1.61342e7 + 4.60023e6i 0.961674 + 0.274195i
\(65\) 0 0
\(66\) −1.29320e7 2.50043e7i −0.681539 1.31777i
\(67\) 3.86718e6i 0.191909i 0.995386 + 0.0959546i \(0.0305904\pi\)
−0.995386 + 0.0959546i \(0.969410\pi\)
\(68\) 6.48163e6 9.15275e6i 0.303144 0.428071i
\(69\) 2.98424e7 1.31655
\(70\) 0 0
\(71\) 3.21701e7i 1.26596i −0.774170 0.632978i \(-0.781832\pi\)
0.774170 0.632978i \(-0.218168\pi\)
\(72\) 2.26217e7 + 3.16197e6i 0.841773 + 0.117660i
\(73\) −1.91362e7 −0.673853 −0.336927 0.941531i \(-0.609387\pi\)
−0.336927 + 0.941531i \(0.609387\pi\)
\(74\) −2.18381e7 4.22243e7i −0.728262 1.40811i
\(75\) 0 0
\(76\) 1.06380e7 + 7.53341e6i 0.318863 + 0.225807i
\(77\) 5.65444e7 1.60852
\(78\) 3.78532e7 1.95774e7i 1.02264 0.528903i
\(79\) 5.33471e7i 1.36963i −0.728718 0.684814i \(-0.759884\pi\)
0.728718 0.684814i \(-0.240116\pi\)
\(80\) 0 0
\(81\) −4.85365e7 −1.12753
\(82\) −3.61683e7 6.99321e7i −0.799969 1.54675i
\(83\) 6.22776e6i 0.131226i 0.997845 + 0.0656129i \(0.0209003\pi\)
−0.997845 + 0.0656129i \(0.979100\pi\)
\(84\) −5.77119e7 + 8.14954e7i −1.15917 + 1.63688i
\(85\) 0 0
\(86\) 4.06782e7 2.10385e7i 0.743650 0.384610i
\(87\) 1.46072e8i 2.54971i
\(88\) −9.05507e6 + 6.47827e7i −0.150995 + 1.08026i
\(89\) 3.83322e7 0.610947 0.305473 0.952201i \(-0.401185\pi\)
0.305473 + 0.952201i \(0.401185\pi\)
\(90\) 0 0
\(91\) 8.56008e7i 1.24828i
\(92\) −5.65909e7 4.00755e7i −0.789942 0.559407i
\(93\) −1.30687e8 −1.74703
\(94\) 180440. 93322.2i 0.00231111 0.00119529i
\(95\) 0 0
\(96\) −8.41269e7 7.91711e7i −0.990489 0.932141i
\(97\) −7.87237e7 −0.889239 −0.444620 0.895720i \(-0.646661\pi\)
−0.444620 + 0.895720i \(0.646661\pi\)
\(98\) −4.97738e7 9.62384e7i −0.539630 1.04338i
\(99\) 8.90568e7i 0.927100i
\(100\) 0 0
\(101\) −1.16450e7 −0.111906 −0.0559530 0.998433i \(-0.517820\pi\)
−0.0559530 + 0.998433i \(0.517820\pi\)
\(102\) −6.85942e7 + 3.54764e7i −0.633704 + 0.327747i
\(103\) 6.88569e7i 0.611785i −0.952066 0.305892i \(-0.901045\pi\)
0.952066 0.305892i \(-0.0989547\pi\)
\(104\) −9.80725e7 1.37082e7i −0.838328 0.117178i
\(105\) 0 0
\(106\) 4.04529e7 + 7.82164e7i 0.320425 + 0.619547i
\(107\) 7.69690e7i 0.587193i 0.955929 + 0.293596i \(0.0948521\pi\)
−0.955929 + 0.293596i \(0.905148\pi\)
\(108\) 2.26585e7 + 1.60459e7i 0.166547 + 0.117942i
\(109\) −4.29484e6 −0.0304257 −0.0152129 0.999884i \(-0.504843\pi\)
−0.0152129 + 0.999884i \(0.504843\pi\)
\(110\) 0 0
\(111\) 3.27326e8i 2.15620i
\(112\) 2.18881e8 7.70399e7i 1.39103 0.489603i
\(113\) 2.34309e8 1.43706 0.718530 0.695496i \(-0.244815\pi\)
0.718530 + 0.695496i \(0.244815\pi\)
\(114\) −4.12331e7 7.97250e7i −0.244133 0.472036i
\(115\) 0 0
\(116\) 1.96161e8 2.77001e8i 1.08338 1.52985i
\(117\) −1.34820e8 −0.719469
\(118\) −9.50572e7 + 4.91629e7i −0.490294 + 0.253577i
\(119\) 1.55118e8i 0.773525i
\(120\) 0 0
\(121\) −4.06770e7 −0.189761
\(122\) −1.84160e7 3.56076e7i −0.0831295 0.160732i
\(123\) 5.42118e8i 2.36850i
\(124\) 2.47825e8 + 1.75500e8i 1.04824 + 0.742321i
\(125\) 0 0
\(126\) 2.80610e8 1.45129e8i 1.11332 0.575802i
\(127\) 2.94344e8i 1.13146i −0.824589 0.565732i \(-0.808594\pi\)
0.824589 0.565732i \(-0.191406\pi\)
\(128\) 5.32125e7 + 2.63108e8i 0.198232 + 0.980155i
\(129\) −3.15341e8 −1.13873
\(130\) 0 0
\(131\) 3.43317e8i 1.16576i 0.812558 + 0.582881i \(0.198075\pi\)
−0.812558 + 0.582881i \(0.801925\pi\)
\(132\) 2.60302e8 3.67574e8i 0.857396 1.21073i
\(133\) 1.80289e8 0.576186
\(134\) −5.49595e7 + 2.84246e7i −0.170461 + 0.0881609i
\(135\) 0 0
\(136\) 1.77718e8 + 2.48407e7i 0.519489 + 0.0726121i
\(137\) −2.03539e8 −0.577784 −0.288892 0.957362i \(-0.593287\pi\)
−0.288892 + 0.957362i \(0.593287\pi\)
\(138\) 2.19348e8 + 4.24114e8i 0.604808 + 1.16941i
\(139\) 2.51305e8i 0.673197i −0.941648 0.336599i \(-0.890723\pi\)
0.941648 0.336599i \(-0.109277\pi\)
\(140\) 0 0
\(141\) −1.39878e6 −0.00353895
\(142\) 4.57193e8 2.36457e8i 1.12447 0.581566i
\(143\) 3.86091e8i 0.923305i
\(144\) 1.21337e8 + 3.44735e8i 0.282191 + 0.801744i
\(145\) 0 0
\(146\) −1.40656e8 2.71960e8i −0.309560 0.598540i
\(147\) 7.46047e8i 1.59771i
\(148\) 4.39567e8 6.20716e8i 0.916175 1.29374i
\(149\) 7.65026e8 1.55214 0.776070 0.630647i \(-0.217210\pi\)
0.776070 + 0.630647i \(0.217210\pi\)
\(150\) 0 0
\(151\) 5.12585e8i 0.985958i 0.870041 + 0.492979i \(0.164092\pi\)
−0.870041 + 0.492979i \(0.835908\pi\)
\(152\) −2.88717e7 + 2.06557e8i −0.0540876 + 0.386959i
\(153\) 2.44309e8 0.445835
\(154\) 4.15613e8 + 8.03596e8i 0.738936 + 1.42874i
\(155\) 0 0
\(156\) 5.56458e8 + 3.94063e8i 0.939581 + 0.665376i
\(157\) −1.16971e9 −1.92522 −0.962610 0.270890i \(-0.912682\pi\)
−0.962610 + 0.270890i \(0.912682\pi\)
\(158\) 7.58157e8 3.92113e8i 1.21655 0.629191i
\(159\) 6.06339e8i 0.948696i
\(160\) 0 0
\(161\) −9.59085e8 −1.42743
\(162\) −3.56754e8 6.89789e8i −0.517975 1.00151i
\(163\) 8.79268e8i 1.24558i 0.782390 + 0.622789i \(0.214000\pi\)
−0.782390 + 0.622789i \(0.786000\pi\)
\(164\) 7.28014e8 1.02803e9i 1.00638 1.42112i
\(165\) 0 0
\(166\) −8.85075e7 + 4.57754e7i −0.116559 + 0.0602837i
\(167\) 4.63319e8i 0.595682i 0.954616 + 0.297841i \(0.0962665\pi\)
−0.954616 + 0.297841i \(0.903734\pi\)
\(168\) −1.58239e9 2.21180e8i −1.98644 0.277657i
\(169\) −2.31240e8 −0.283476
\(170\) 0 0
\(171\) 2.83954e8i 0.332095i
\(172\) 5.97988e8 + 4.23472e8i 0.683248 + 0.483851i
\(173\) −4.71680e8 −0.526579 −0.263289 0.964717i \(-0.584807\pi\)
−0.263289 + 0.964717i \(0.584807\pi\)
\(174\) −2.07595e9 + 1.07366e9i −2.26475 + 1.17131i
\(175\) 0 0
\(176\) −9.87233e8 + 3.47478e8i −1.02889 + 0.362140i
\(177\) 7.36890e8 0.750775
\(178\) 2.81750e8 + 5.44768e8i 0.280662 + 0.542664i
\(179\) 8.30768e8i 0.809222i 0.914489 + 0.404611i \(0.132593\pi\)
−0.914489 + 0.404611i \(0.867407\pi\)
\(180\) 0 0
\(181\) 6.19754e8 0.577437 0.288719 0.957414i \(-0.406771\pi\)
0.288719 + 0.957414i \(0.406771\pi\)
\(182\) −1.21654e9 + 6.29184e8i −1.10877 + 0.573446i
\(183\) 2.76032e8i 0.246125i
\(184\) 1.53589e8 1.09882e9i 0.133995 0.958640i
\(185\) 0 0
\(186\) −9.60579e8 1.85730e9i −0.802567 1.55178i
\(187\) 6.99639e8i 0.572147i
\(188\) 2.65255e6 + 1.87843e6i 0.00212340 + 0.00150371i
\(189\) 3.84010e8 0.300951
\(190\) 0 0
\(191\) 4.24020e7i 0.0318605i 0.999873 + 0.0159303i \(0.00507097\pi\)
−0.999873 + 0.0159303i \(0.994929\pi\)
\(192\) 5.06810e8 1.77752e9i 0.372941 1.30800i
\(193\) −4.21151e8 −0.303535 −0.151767 0.988416i \(-0.548496\pi\)
−0.151767 + 0.988416i \(0.548496\pi\)
\(194\) −5.78636e8 1.11880e9i −0.408506 0.789854i
\(195\) 0 0
\(196\) 1.00187e9 1.41475e9i 0.678871 0.958637i
\(197\) 1.93944e9 1.28769 0.643846 0.765155i \(-0.277338\pi\)
0.643846 + 0.765155i \(0.277338\pi\)
\(198\) −1.26565e9 + 6.54587e8i −0.823483 + 0.425899i
\(199\) 2.11255e8i 0.134708i −0.997729 0.0673542i \(-0.978544\pi\)
0.997729 0.0673542i \(-0.0214557\pi\)
\(200\) 0 0
\(201\) 4.26050e8 0.261022
\(202\) −8.55931e7 1.65496e8i −0.0514083 0.0993989i
\(203\) 4.69452e9i 2.76444i
\(204\) −1.00836e9 7.14085e8i −0.582233 0.412315i
\(205\) 0 0
\(206\) 9.78578e8 5.06113e8i 0.543409 0.281047i
\(207\) 1.51055e9i 0.822723i
\(208\) −5.26036e8 1.49454e9i −0.281036 0.798463i
\(209\) −8.13170e8 −0.426183
\(210\) 0 0
\(211\) 2.01406e9i 1.01611i −0.861324 0.508056i \(-0.830364\pi\)
0.861324 0.508056i \(-0.169636\pi\)
\(212\) −8.14256e8 + 1.14982e9i −0.403104 + 0.569226i
\(213\) −3.54420e9 −1.72187
\(214\) −1.09387e9 + 5.65739e8i −0.521565 + 0.269750i
\(215\) 0 0
\(216\) −6.14958e7 + 4.39959e8i −0.0282508 + 0.202114i
\(217\) 4.20007e9 1.89416
\(218\) −3.15680e7 6.10373e7i −0.0139772 0.0270252i
\(219\) 2.10825e9i 0.916528i
\(220\) 0 0
\(221\) −1.05916e9 −0.444010
\(222\) −4.65188e9 + 2.40592e9i −1.91521 + 0.990532i
\(223\) 9.06863e8i 0.366710i −0.983047 0.183355i \(-0.941304\pi\)
0.983047 0.183355i \(-0.0586957\pi\)
\(224\) 2.70370e9 + 2.54443e9i 1.07390 + 1.01064i
\(225\) 0 0
\(226\) 1.72222e9 + 3.32994e9i 0.660169 + 1.27645i
\(227\) 9.31268e7i 0.0350729i 0.999846 + 0.0175364i \(0.00558230\pi\)
−0.999846 + 0.0175364i \(0.994418\pi\)
\(228\) 8.29960e8 1.17199e9i 0.307127 0.433696i
\(229\) −5.17840e8 −0.188301 −0.0941507 0.995558i \(-0.530014\pi\)
−0.0941507 + 0.995558i \(0.530014\pi\)
\(230\) 0 0
\(231\) 6.22953e9i 2.18780i
\(232\) 5.37850e9 + 7.51786e8i 1.85656 + 0.259503i
\(233\) 1.20417e9 0.408569 0.204284 0.978912i \(-0.434513\pi\)
0.204284 + 0.978912i \(0.434513\pi\)
\(234\) −9.90959e8 1.91604e9i −0.330516 0.639058i
\(235\) 0 0
\(236\) −1.39738e9 9.89573e8i −0.450471 0.319007i
\(237\) −5.87728e9 −1.86287
\(238\) 2.20450e9 1.14015e9i 0.687072 0.355349i
\(239\) 2.12088e9i 0.650018i 0.945711 + 0.325009i \(0.105367\pi\)
−0.945711 + 0.325009i \(0.894633\pi\)
\(240\) 0 0
\(241\) −6.85448e8 −0.203192 −0.101596 0.994826i \(-0.532395\pi\)
−0.101596 + 0.994826i \(0.532395\pi\)
\(242\) −2.98984e8 5.78092e8i −0.0871740 0.168552i
\(243\) 4.63572e9i 1.32951i
\(244\) 3.70685e8 5.23447e8i 0.104579 0.147677i
\(245\) 0 0
\(246\) −7.70446e9 + 3.98469e9i −2.10379 + 1.08806i
\(247\) 1.23103e9i 0.330736i
\(248\) −6.72603e8 + 4.81200e9i −0.177808 + 1.27209i
\(249\) 6.86116e8 0.178484
\(250\) 0 0
\(251\) 4.44219e9i 1.11919i 0.828768 + 0.559593i \(0.189042\pi\)
−0.828768 + 0.559593i \(0.810958\pi\)
\(252\) 4.12509e9 + 2.92123e9i 1.02290 + 0.724376i
\(253\) 4.32582e9 1.05581
\(254\) 4.18315e9 2.16350e9i 1.00501 0.519782i
\(255\) 0 0
\(256\) −3.34811e9 + 2.69015e9i −0.779543 + 0.626349i
\(257\) −1.71181e9 −0.392395 −0.196198 0.980564i \(-0.562859\pi\)
−0.196198 + 0.980564i \(0.562859\pi\)
\(258\) −2.31782e9 4.48155e9i −0.523120 1.01146i
\(259\) 1.05197e10i 2.33778i
\(260\) 0 0
\(261\) 7.39383e9 1.59334
\(262\) −4.87914e9 + 2.52345e9i −1.03547 + 0.535538i
\(263\) 2.50597e9i 0.523785i 0.965097 + 0.261892i \(0.0843465\pi\)
−0.965097 + 0.261892i \(0.915653\pi\)
\(264\) 7.13715e9 + 9.97603e8i 1.46930 + 0.205372i
\(265\) 0 0
\(266\) 1.32516e9 + 2.56223e9i 0.264693 + 0.511789i
\(267\) 4.22308e9i 0.830967i
\(268\) −8.07929e8 5.72145e8i −0.156615 0.110909i
\(269\) 3.62847e8 0.0692970 0.0346485 0.999400i \(-0.488969\pi\)
0.0346485 + 0.999400i \(0.488969\pi\)
\(270\) 0 0
\(271\) 1.05662e10i 1.95903i −0.201368 0.979516i \(-0.564539\pi\)
0.201368 0.979516i \(-0.435461\pi\)
\(272\) 9.53236e8 + 2.70827e9i 0.174151 + 0.494785i
\(273\) 9.43069e9 1.69782
\(274\) −1.49606e9 2.89265e9i −0.265428 0.513209i
\(275\) 0 0
\(276\) −4.41515e9 + 6.23465e9i −0.760867 + 1.07442i
\(277\) 1.36227e9 0.231390 0.115695 0.993285i \(-0.463091\pi\)
0.115695 + 0.993285i \(0.463091\pi\)
\(278\) 3.57149e9 1.84715e9i 0.597958 0.309259i
\(279\) 6.61506e9i 1.09173i
\(280\) 0 0
\(281\) −3.01499e9 −0.483572 −0.241786 0.970330i \(-0.577733\pi\)
−0.241786 + 0.970330i \(0.577733\pi\)
\(282\) −1.02814e7 1.98792e7i −0.00162575 0.00314342i
\(283\) 1.38220e9i 0.215490i −0.994179 0.107745i \(-0.965637\pi\)
0.994179 0.107745i \(-0.0343629\pi\)
\(284\) 6.72094e9 + 4.75952e9i 1.03313 + 0.731627i
\(285\) 0 0
\(286\) 5.48703e9 2.83785e9i 0.820112 0.424156i
\(287\) 1.74228e10i 2.56797i
\(288\) −4.00744e9 + 4.25829e9i −0.582502 + 0.618964i
\(289\) −5.05644e9 −0.724859
\(290\) 0 0
\(291\) 8.67304e9i 1.20948i
\(292\) 2.83118e9 3.99793e9i 0.389436 0.549925i
\(293\) −5.86750e9 −0.796127 −0.398064 0.917358i \(-0.630318\pi\)
−0.398064 + 0.917358i \(0.630318\pi\)
\(294\) −1.06026e10 + 5.48361e9i −1.41914 + 0.733968i
\(295\) 0 0
\(296\) 1.20524e10 + 1.68463e9i 1.57002 + 0.219452i
\(297\) −1.73203e9 −0.222602
\(298\) 5.62310e9 + 1.08724e10i 0.713035 + 1.37867i
\(299\) 6.54873e9i 0.819355i
\(300\) 0 0
\(301\) 1.01345e10 1.23463
\(302\) −7.28474e9 + 3.76761e9i −0.875762 + 0.452938i
\(303\) 1.28293e9i 0.152207i
\(304\) −3.14775e9 + 1.10792e9i −0.368558 + 0.129722i
\(305\) 0 0
\(306\) 1.79573e9 + 3.47207e9i 0.204812 + 0.396007i
\(307\) 5.79386e9i 0.652250i 0.945327 + 0.326125i \(0.105743\pi\)
−0.945327 + 0.326125i \(0.894257\pi\)
\(308\) −8.36567e9 + 1.18132e10i −0.929603 + 1.31270i
\(309\) −7.58601e9 −0.832107
\(310\) 0 0
\(311\) 8.37260e9i 0.894991i −0.894286 0.447496i \(-0.852316\pi\)
0.894286 0.447496i \(-0.147684\pi\)
\(312\) −1.51024e9 + 1.08047e10i −0.159378 + 1.14024i
\(313\) −1.22771e10 −1.27914 −0.639572 0.768731i \(-0.720889\pi\)
−0.639572 + 0.768731i \(0.720889\pi\)
\(314\) −8.59764e9 1.66237e10i −0.884424 1.71005i
\(315\) 0 0
\(316\) 1.11452e10 + 7.89263e9i 1.11774 + 0.791541i
\(317\) 1.38443e10 1.37099 0.685495 0.728077i \(-0.259586\pi\)
0.685495 + 0.728077i \(0.259586\pi\)
\(318\) 8.61715e9 4.45672e9i 0.842665 0.435820i
\(319\) 2.11740e10i 2.04475i
\(320\) 0 0
\(321\) 8.47972e9 0.798659
\(322\) −7.04948e9 1.36303e10i −0.655743 1.26789i
\(323\) 2.23077e9i 0.204948i
\(324\) 7.18091e9 1.01402e10i 0.651627 0.920167i
\(325\) 0 0
\(326\) −1.24959e10 + 6.46281e9i −1.10637 + 0.572204i
\(327\) 4.73165e8i 0.0413830i
\(328\) 1.99612e10 + 2.79010e9i 1.72461 + 0.241060i
\(329\) 4.49546e7 0.00383699
\(330\) 0 0
\(331\) 7.71740e9i 0.642923i 0.946923 + 0.321462i \(0.104174\pi\)
−0.946923 + 0.321462i \(0.895826\pi\)
\(332\) −1.30110e9 9.21389e8i −0.107092 0.0758386i
\(333\) 1.65684e10 1.34742
\(334\) −6.58458e9 + 3.40549e9i −0.529105 + 0.273649i
\(335\) 0 0
\(336\) −8.48754e9 2.41143e10i −0.665924 1.89198i
\(337\) 1.47787e10 1.14582 0.572910 0.819618i \(-0.305814\pi\)
0.572910 + 0.819618i \(0.305814\pi\)
\(338\) −1.69966e9 3.28633e9i −0.130226 0.251793i
\(339\) 2.58139e10i 1.95459i
\(340\) 0 0
\(341\) −1.89438e10 −1.40104
\(342\) −4.03548e9 + 2.08712e9i −0.294979 + 0.152561i
\(343\) 3.56527e9i 0.257582i
\(344\) −1.62295e9 + 1.16111e10i −0.115897 + 0.829161i
\(345\) 0 0
\(346\) −3.46695e9 6.70341e9i −0.241904 0.467726i
\(347\) 2.69899e10i 1.86158i 0.365549 + 0.930792i \(0.380881\pi\)
−0.365549 + 0.930792i \(0.619119\pi\)
\(348\) −3.05173e10 2.16112e10i −2.08080 1.47354i
\(349\) 2.02677e10 1.36617 0.683083 0.730340i \(-0.260639\pi\)
0.683083 + 0.730340i \(0.260639\pi\)
\(350\) 0 0
\(351\) 2.62206e9i 0.172748i
\(352\) −1.21947e10 1.14763e10i −0.794326 0.747534i
\(353\) −9.41747e9 −0.606506 −0.303253 0.952910i \(-0.598073\pi\)
−0.303253 + 0.952910i \(0.598073\pi\)
\(354\) 5.41630e9 + 1.04725e10i 0.344897 + 0.666865i
\(355\) 0 0
\(356\) −5.67119e9 + 8.00832e9i −0.353081 + 0.498588i
\(357\) −1.70894e10 −1.05210
\(358\) −1.18067e10 + 6.10633e9i −0.718780 + 0.371747i
\(359\) 3.30369e9i 0.198894i −0.995043 0.0994469i \(-0.968293\pi\)
0.995043 0.0994469i \(-0.0317073\pi\)
\(360\) 0 0
\(361\) 1.43908e10 0.847337
\(362\) 4.55533e9 + 8.80780e9i 0.265268 + 0.512900i
\(363\) 4.48141e9i 0.258100i
\(364\) −1.78836e10 1.26645e10i −1.01871 0.721412i
\(365\) 0 0
\(366\) −3.92291e9 + 2.02890e9i −0.218617 + 0.113067i
\(367\) 1.14531e10i 0.631335i −0.948870 0.315667i \(-0.897772\pi\)
0.948870 0.315667i \(-0.102228\pi\)
\(368\) 1.67451e10 5.89380e9i 0.913053 0.321369i
\(369\) 2.74407e10 1.48009
\(370\) 0 0
\(371\) 1.94867e10i 1.02859i
\(372\) 1.93350e10 2.73031e10i 1.00965 1.42574i
\(373\) −2.26449e10 −1.16986 −0.584932 0.811083i \(-0.698879\pi\)
−0.584932 + 0.811083i \(0.698879\pi\)
\(374\) −9.94311e9 + 5.14250e9i −0.508201 + 0.262838i
\(375\) 0 0
\(376\) −7.19907e6 + 5.15043e7i −0.000360184 + 0.00257687i
\(377\) −3.20547e10 −1.58681
\(378\) 2.82256e9 + 5.45746e9i 0.138253 + 0.267315i
\(379\) 5.61760e9i 0.272266i −0.990691 0.136133i \(-0.956533\pi\)
0.990691 0.136133i \(-0.0434675\pi\)
\(380\) 0 0
\(381\) −3.24281e10 −1.53894
\(382\) −6.02607e8 + 3.11664e8i −0.0282996 + 0.0146364i
\(383\) 4.10535e9i 0.190790i −0.995440 0.0953950i \(-0.969589\pi\)
0.995440 0.0953950i \(-0.0304114\pi\)
\(384\) 2.89868e10 5.86246e9i 1.33314 0.269622i
\(385\) 0 0
\(386\) −3.09555e9 5.98530e9i −0.139440 0.269610i
\(387\) 1.59618e10i 0.711602i
\(388\) 1.16471e10 1.64469e10i 0.513913 0.725699i
\(389\) −1.37663e9 −0.0601199 −0.0300599 0.999548i \(-0.509570\pi\)
−0.0300599 + 0.999548i \(0.509570\pi\)
\(390\) 0 0
\(391\) 1.18670e10i 0.507732i
\(392\) 2.74700e10 + 3.83965e9i 1.16336 + 0.162610i
\(393\) 3.78234e10 1.58559
\(394\) 1.42553e10 + 2.75629e10i 0.591551 + 1.14377i
\(395\) 0 0
\(396\) −1.86057e10 1.31758e10i −0.756597 0.535793i
\(397\) 3.04208e10 1.22464 0.612321 0.790610i \(-0.290236\pi\)
0.612321 + 0.790610i \(0.290236\pi\)
\(398\) 3.00231e9 1.55277e9i 0.119653 0.0618835i
\(399\) 1.98626e10i 0.783689i
\(400\) 0 0
\(401\) −1.95473e10 −0.755977 −0.377989 0.925810i \(-0.623384\pi\)
−0.377989 + 0.925810i \(0.623384\pi\)
\(402\) 3.13156e9 + 6.05492e9i 0.119910 + 0.231849i
\(403\) 2.86785e10i 1.08727i
\(404\) 1.72286e9 2.43286e9i 0.0646732 0.0913254i
\(405\) 0 0
\(406\) 6.67175e10 3.45058e10i 2.45548 1.26995i
\(407\) 4.74477e10i 1.72917i
\(408\) 2.73672e9 1.95793e10i 0.0987620 0.706573i
\(409\) −4.37475e10 −1.56336 −0.781681 0.623678i \(-0.785638\pi\)
−0.781681 + 0.623678i \(0.785638\pi\)
\(410\) 0 0
\(411\) 2.24240e10i 0.785862i
\(412\) 1.43855e10 + 1.01873e10i 0.499271 + 0.353565i
\(413\) −2.36824e10 −0.814002
\(414\) 2.14676e10 1.11029e10i 0.730772 0.377949i
\(415\) 0 0
\(416\) 1.73736e10 1.84611e10i 0.580118 0.616431i
\(417\) −2.76865e10 −0.915637
\(418\) −5.97697e9 1.15566e10i −0.195784 0.378551i
\(419\) 1.93115e10i 0.626555i 0.949662 + 0.313277i \(0.101427\pi\)
−0.949662 + 0.313277i \(0.898573\pi\)
\(420\) 0 0
\(421\) −3.65545e10 −1.16362 −0.581812 0.813323i \(-0.697656\pi\)
−0.581812 + 0.813323i \(0.697656\pi\)
\(422\) 2.86233e10 1.48038e10i 0.902547 0.466791i
\(423\) 7.08030e7i 0.00221152i
\(424\) −2.23259e10 3.12062e9i −0.690788 0.0965557i
\(425\) 0 0
\(426\) −2.60506e10 5.03693e10i −0.791005 1.52942i
\(427\) 8.87121e9i 0.266853i
\(428\) −1.60803e10 1.13875e10i −0.479202 0.339353i
\(429\) −4.25359e10 −1.25582
\(430\) 0 0
\(431\) 3.98669e10i 1.15532i −0.816276 0.577662i \(-0.803965\pi\)
0.816276 0.577662i \(-0.196035\pi\)
\(432\) −6.70460e9 + 2.35983e9i −0.192503 + 0.0677557i
\(433\) −3.21564e10 −0.914779 −0.457389 0.889266i \(-0.651215\pi\)
−0.457389 + 0.889266i \(0.651215\pi\)
\(434\) 3.08714e10 + 5.96904e10i 0.870157 + 1.68246i
\(435\) 0 0
\(436\) 6.35416e8 8.97275e8i 0.0175838 0.0248302i
\(437\) 1.37927e10 0.378201
\(438\) −2.99620e10 + 1.54961e10i −0.814093 + 0.421043i
\(439\) 2.72016e10i 0.732379i −0.930540 0.366189i \(-0.880662\pi\)
0.930540 0.366189i \(-0.119338\pi\)
\(440\) 0 0
\(441\) 3.77630e10 0.998418
\(442\) −7.78507e9 1.50526e10i −0.203973 0.394386i
\(443\) 1.32228e10i 0.343327i −0.985156 0.171663i \(-0.945086\pi\)
0.985156 0.171663i \(-0.0549142\pi\)
\(444\) −6.83846e10 4.84274e10i −1.75965 1.24612i
\(445\) 0 0
\(446\) 1.28881e10 6.66564e9i 0.325724 0.168462i
\(447\) 8.42834e10i 2.11111i
\(448\) −1.62880e10 + 5.71264e10i −0.404349 + 1.41816i
\(449\) 2.82958e10 0.696203 0.348102 0.937457i \(-0.386826\pi\)
0.348102 + 0.937457i \(0.386826\pi\)
\(450\) 0 0
\(451\) 7.85831e10i 1.89943i
\(452\) −3.46657e10 + 4.89516e10i −0.830512 + 1.17277i
\(453\) 5.64718e10 1.34103
\(454\) −1.32350e9 + 6.84502e8i −0.0311530 + 0.0161121i
\(455\) 0 0
\(456\) 2.27565e10 + 3.18081e9i 0.526315 + 0.0735662i
\(457\) −7.89688e10 −1.81047 −0.905234 0.424914i \(-0.860304\pi\)
−0.905234 + 0.424914i \(0.860304\pi\)
\(458\) −3.80623e9 7.35942e9i −0.0865035 0.167256i
\(459\) 4.75146e9i 0.107047i
\(460\) 0 0
\(461\) 2.63713e10 0.583885 0.291943 0.956436i \(-0.405698\pi\)
0.291943 + 0.956436i \(0.405698\pi\)
\(462\) 8.85326e10 4.57884e10i 1.94328 1.00505i
\(463\) 2.74281e10i 0.596858i 0.954432 + 0.298429i \(0.0964627\pi\)
−0.954432 + 0.298429i \(0.903537\pi\)
\(464\) 2.88489e10 + 8.19638e10i 0.622383 + 1.76828i
\(465\) 0 0
\(466\) 8.85093e9 + 1.71134e10i 0.187692 + 0.362905i
\(467\) 8.24023e10i 1.73249i 0.499616 + 0.866247i \(0.333475\pi\)
−0.499616 + 0.866247i \(0.666525\pi\)
\(468\) 1.99465e10 2.81665e10i 0.415799 0.587151i
\(469\) −1.36925e10 −0.283004
\(470\) 0 0
\(471\) 1.28868e11i 2.61855i
\(472\) 3.79252e9 2.71328e10i 0.0764118 0.546673i
\(473\) −4.57104e10 −0.913209
\(474\) −4.31993e10 8.35266e10i −0.855782 1.65467i
\(475\) 0 0
\(476\) 3.24071e10 + 2.29495e10i 0.631266 + 0.447039i
\(477\) −3.06914e10 −0.592847
\(478\) −3.01415e10 + 1.55890e10i −0.577369 + 0.298611i
\(479\) 1.28142e10i 0.243415i −0.992566 0.121708i \(-0.961163\pi\)
0.992566 0.121708i \(-0.0388370\pi\)
\(480\) 0 0
\(481\) −7.18296e10 −1.34191
\(482\) −5.03819e9 9.74143e9i −0.0933441 0.180482i
\(483\) 1.05663e11i 1.94149i
\(484\) 6.01810e9 8.49820e9i 0.109668 0.154862i
\(485\) 0 0
\(486\) −6.58817e10 + 3.40735e10i −1.18092 + 0.610762i
\(487\) 2.27188e10i 0.403895i 0.979396 + 0.201948i \(0.0647271\pi\)
−0.979396 + 0.201948i \(0.935273\pi\)
\(488\) 1.01637e10 + 1.42064e9i 0.179215 + 0.0250499i
\(489\) 9.68695e10 1.69415
\(490\) 0 0
\(491\) 8.70411e10i 1.49761i −0.662791 0.748805i \(-0.730628\pi\)
0.662791 0.748805i \(-0.269372\pi\)
\(492\) −1.13259e11 8.02057e10i −1.93291 1.36882i
\(493\) 5.80866e10 0.983305
\(494\) 1.74951e10 9.04835e9i 0.293772 0.151936i
\(495\) 0 0
\(496\) −7.33308e10 + 2.58104e10i −1.21160 + 0.426449i
\(497\) 1.13904e11 1.86688
\(498\) 5.04310e9 + 9.75092e9i 0.0819937 + 0.158536i
\(499\) 1.34972e10i 0.217691i −0.994059 0.108846i \(-0.965285\pi\)
0.994059 0.108846i \(-0.0347154\pi\)
\(500\) 0 0
\(501\) 5.10441e10 0.810205
\(502\) −6.31313e10 + 3.26510e10i −0.994100 + 0.514141i
\(503\) 4.13249e10i 0.645565i −0.946473 0.322782i \(-0.895382\pi\)
0.946473 0.322782i \(-0.104618\pi\)
\(504\) −1.11956e10 + 8.00966e10i −0.173510 + 1.24134i
\(505\) 0 0
\(506\) 3.17957e10 + 6.14776e10i 0.485028 + 0.937810i
\(507\) 2.54759e10i 0.385564i
\(508\) 6.14942e10 + 4.35479e10i 0.923377 + 0.653901i
\(509\) −3.37390e9 −0.0502645 −0.0251322 0.999684i \(-0.508001\pi\)
−0.0251322 + 0.999684i \(0.508001\pi\)
\(510\) 0 0
\(511\) 6.77557e10i 0.993715i
\(512\) −6.28411e10 2.78094e10i −0.914458 0.404680i
\(513\) −5.52248e9 −0.0797379
\(514\) −1.25822e10 2.43279e10i −0.180262 0.348539i
\(515\) 0 0
\(516\) 4.66542e10 6.58807e10i 0.658100 0.929307i
\(517\) −2.02761e8 −0.00283807
\(518\) 1.49504e11 7.73221e10i 2.07650 1.07395i
\(519\) 5.19653e10i 0.716216i
\(520\) 0 0
\(521\) 1.24497e11 1.68969 0.844847 0.535007i \(-0.179691\pi\)
0.844847 + 0.535007i \(0.179691\pi\)
\(522\) 5.43462e10 + 1.05079e11i 0.731960 + 1.41526i
\(523\) 4.47960e10i 0.598733i 0.954138 + 0.299366i \(0.0967753\pi\)
−0.954138 + 0.299366i \(0.903225\pi\)
\(524\) −7.17254e10 5.07932e10i −0.951367 0.673722i
\(525\) 0 0
\(526\) −3.56142e10 + 1.84194e10i −0.465244 + 0.240621i
\(527\) 5.19686e10i 0.673749i
\(528\) 3.82819e10 + 1.08764e11i 0.492558 + 1.39943i
\(529\) 4.93792e9 0.0630553
\(530\) 0 0
\(531\) 3.72995e10i 0.469165i
\(532\) −2.66735e10 + 3.76658e10i −0.332992 + 0.470220i
\(533\) −1.18964e11 −1.47404
\(534\) 6.00174e10 3.10405e10i 0.738095 0.381737i
\(535\) 0 0
\(536\) 2.19274e9 1.56875e10i 0.0265661 0.190061i
\(537\) 9.15263e10 1.10065
\(538\) 2.66700e9 + 5.15670e9i 0.0318342 + 0.0615520i
\(539\) 1.08144e11i 1.28129i
\(540\) 0 0
\(541\) −8.68526e10 −1.01390 −0.506948 0.861977i \(-0.669226\pi\)
−0.506948 + 0.861977i \(0.669226\pi\)
\(542\) 1.50164e11 7.76638e10i 1.74008 0.899957i
\(543\) 6.82787e10i 0.785391i
\(544\) −3.14829e10 + 3.34536e10i −0.359483 + 0.381985i
\(545\) 0 0
\(546\) 6.93176e10 + 1.34027e11i 0.779961 + 1.50807i
\(547\) 1.65768e11i 1.85162i −0.377993 0.925808i \(-0.623386\pi\)
0.377993 0.925808i \(-0.376614\pi\)
\(548\) 3.01133e10 4.25232e10i 0.333916 0.471524i
\(549\) 1.39721e10 0.153805
\(550\) 0 0
\(551\) 6.75124e10i 0.732448i
\(552\) −1.21058e11 1.69210e10i −1.30388 0.182251i
\(553\) 1.88886e11 2.01976
\(554\) 1.00130e10 + 1.93603e10i 0.106298 + 0.205529i
\(555\) 0 0
\(556\) 5.25025e10 + 3.71803e10i 0.549390 + 0.389057i
\(557\) 9.73769e10 1.01166 0.505831 0.862633i \(-0.331186\pi\)
0.505831 + 0.862633i \(0.331186\pi\)
\(558\) −9.40117e10 + 4.86221e10i −0.969717 + 0.501530i
\(559\) 6.91995e10i 0.708689i
\(560\) 0 0
\(561\) 7.70796e10 0.778195
\(562\) −2.21608e10 4.28484e10i −0.222147 0.429525i
\(563\) 1.96004e9i 0.0195088i −0.999952 0.00975440i \(-0.996895\pi\)
0.999952 0.00975440i \(-0.00310497\pi\)
\(564\) 2.06948e8 2.92233e8i 0.00204524 0.00288810i
\(565\) 0 0
\(566\) 1.96435e10 1.01595e10i 0.191405 0.0989934i
\(567\) 1.71853e11i 1.66274i
\(568\) −1.82408e10 + 1.30500e11i −0.175247 + 1.25377i
\(569\) 7.88598e10 0.752327 0.376164 0.926553i \(-0.377243\pi\)
0.376164 + 0.926553i \(0.377243\pi\)
\(570\) 0 0
\(571\) 5.71331e10i 0.537457i −0.963216 0.268728i \(-0.913397\pi\)
0.963216 0.268728i \(-0.0866034\pi\)
\(572\) 8.06617e10 + 5.71216e10i 0.753500 + 0.533601i
\(573\) 4.67145e9 0.0433345
\(574\) 2.47608e11 1.28061e11i 2.28096 1.17970i
\(575\) 0 0
\(576\) −8.99735e10 2.56535e10i −0.817381 0.233054i
\(577\) −1.51459e11 −1.36644 −0.683221 0.730212i \(-0.739421\pi\)
−0.683221 + 0.730212i \(0.739421\pi\)
\(578\) −3.71659e10 7.18610e10i −0.332992 0.643845i
\(579\) 4.63984e10i 0.412847i
\(580\) 0 0
\(581\) −2.20506e10 −0.193516
\(582\) −1.23259e11 + 6.37487e10i −1.07430 + 0.555622i
\(583\) 8.78922e10i 0.760810i
\(584\) 7.76274e10 + 1.08505e10i 0.667365 + 0.0932817i
\(585\) 0 0
\(586\) −4.31274e10 8.33875e10i −0.365732 0.707148i
\(587\) 1.33645e11i 1.12564i −0.826580 0.562819i \(-0.809717\pi\)
0.826580 0.562819i \(-0.190283\pi\)
\(588\) −1.55863e11 1.10377e11i −1.30387 0.923353i
\(589\) −6.04015e10 −0.501865
\(590\) 0 0
\(591\) 2.13670e11i 1.75143i
\(592\) 6.46460e10 + 1.83668e11i 0.526326 + 1.49536i
\(593\) 1.58419e11 1.28112 0.640558 0.767910i \(-0.278703\pi\)
0.640558 + 0.767910i \(0.278703\pi\)
\(594\) −1.27308e10 2.46152e10i −0.102261 0.197723i
\(595\) 0 0
\(596\) −1.13185e11 + 1.59829e11i −0.897020 + 1.26669i
\(597\) −2.32741e10 −0.183221
\(598\) −9.30690e10 + 4.81346e10i −0.727781 + 0.376403i
\(599\) 4.31245e10i 0.334978i 0.985874 + 0.167489i \(0.0535659\pi\)
−0.985874 + 0.167489i \(0.946434\pi\)
\(600\) 0 0
\(601\) 4.15092e10 0.318160 0.159080 0.987266i \(-0.449147\pi\)
0.159080 + 0.987266i \(0.449147\pi\)
\(602\) 7.44909e10 + 1.44029e11i 0.567175 + 1.09664i
\(603\) 2.15656e10i 0.163114i
\(604\) −1.07089e11 7.58363e10i −0.804630 0.569809i
\(605\) 0 0
\(606\) −1.82328e10 + 9.42985e9i −0.135195 + 0.0699221i
\(607\) 2.83174e10i 0.208592i 0.994546 + 0.104296i \(0.0332590\pi\)
−0.994546 + 0.104296i \(0.966741\pi\)
\(608\) −3.88821e10 3.65916e10i −0.284535 0.267773i
\(609\) −5.17199e11 −3.76000
\(610\) 0 0
\(611\) 3.06954e8i 0.00220246i
\(612\) −3.61452e10 + 5.10409e10i −0.257659 + 0.363842i
\(613\) −2.40024e11 −1.69986 −0.849928 0.526899i \(-0.823355\pi\)
−0.849928 + 0.526899i \(0.823355\pi\)
\(614\) −8.23410e10 + 4.25861e10i −0.579352 + 0.299636i
\(615\) 0 0
\(616\) −2.29376e11 3.20613e10i −1.59303 0.222668i
\(617\) 1.16795e10 0.0805904 0.0402952 0.999188i \(-0.487170\pi\)
0.0402952 + 0.999188i \(0.487170\pi\)
\(618\) −5.57588e10 1.07811e11i −0.382260 0.739107i
\(619\) 2.19401e11i 1.49443i −0.664583 0.747215i \(-0.731391\pi\)
0.664583 0.747215i \(-0.268609\pi\)
\(620\) 0 0
\(621\) 2.93780e10 0.197540
\(622\) 1.18989e11 6.15404e10i 0.794963 0.411149i
\(623\) 1.35723e11i 0.900948i
\(624\) −1.64655e11 + 5.79537e10i −1.08601 + 0.382246i
\(625\) 0 0
\(626\) −9.02396e10 1.74480e11i −0.587624 1.13618i
\(627\) 8.95874e10i 0.579665i
\(628\) 1.73057e11 2.44375e11i 1.11263 1.57115i
\(629\) 1.30163e11 0.831544
\(630\) 0 0
\(631\) 2.35335e10i 0.148446i −0.997242 0.0742230i \(-0.976352\pi\)
0.997242 0.0742230i \(-0.0236477\pi\)
\(632\) −3.02484e10 + 2.16406e11i −0.189598 + 1.35644i
\(633\) −2.21890e11 −1.38205
\(634\) 1.01759e11 + 1.96752e11i 0.629817 + 1.21776i
\(635\) 0 0
\(636\) 1.26676e11 + 8.97071e10i 0.774222 + 0.548275i
\(637\) −1.63715e11 −0.994332
\(638\) −3.00920e11 + 1.55634e11i −1.81622 + 0.939336i
\(639\) 1.79398e11i 1.07601i
\(640\) 0 0
\(641\) −8.47231e10 −0.501845 −0.250923 0.968007i \(-0.580734\pi\)
−0.250923 + 0.968007i \(0.580734\pi\)
\(642\) 6.23278e10 + 1.20512e11i 0.366895 + 0.709397i
\(643\) 2.37102e11i 1.38705i −0.720435 0.693523i \(-0.756058\pi\)
0.720435 0.693523i \(-0.243942\pi\)
\(644\) 1.41895e11 2.00371e11i 0.824944 1.16491i
\(645\) 0 0
\(646\) −3.17031e10 + 1.63966e10i −0.182042 + 0.0941508i
\(647\) 2.88712e11i 1.64758i 0.566892 + 0.823792i \(0.308146\pi\)
−0.566892 + 0.823792i \(0.691854\pi\)
\(648\) 1.96891e11 + 2.75207e10i 1.11667 + 0.156084i
\(649\) 1.06816e11 0.602086
\(650\) 0 0
\(651\) 4.62724e11i 2.57631i
\(652\) −1.83696e11 1.30086e11i −1.01650 0.719850i
\(653\) −7.01205e10 −0.385649 −0.192824 0.981233i \(-0.561765\pi\)
−0.192824 + 0.981233i \(0.561765\pi\)
\(654\) −6.72451e9 + 3.47787e9i −0.0367578 + 0.0190109i
\(655\) 0 0
\(656\) 1.07067e11 + 3.04192e11i 0.578149 + 1.64260i
\(657\) 1.06714e11 0.572746
\(658\) 3.30426e8 + 6.38884e8i 0.00176267 + 0.00340815i
\(659\) 1.30280e11i 0.690774i 0.938460 + 0.345387i \(0.112252\pi\)
−0.938460 + 0.345387i \(0.887748\pi\)
\(660\) 0 0
\(661\) −9.13098e10 −0.478312 −0.239156 0.970981i \(-0.576871\pi\)
−0.239156 + 0.970981i \(0.576871\pi\)
\(662\) −1.09678e11 + 5.67246e10i −0.571067 + 0.295352i
\(663\) 1.16688e11i 0.603912i
\(664\) 3.53121e9 2.52633e10i 0.0181656 0.129962i
\(665\) 0 0
\(666\) 1.21781e11 + 2.35466e11i 0.618991 + 1.19683i
\(667\) 3.59146e11i 1.81454i
\(668\) −9.67962e10 6.85474e10i −0.486130 0.344259i
\(669\) −9.99097e10 −0.498773
\(670\) 0 0
\(671\) 4.00124e10i 0.197381i
\(672\) 2.80321e11 2.97868e11i 1.37461 1.46065i
\(673\) 2.19105e11 1.06805 0.534026 0.845468i \(-0.320679\pi\)
0.534026 + 0.845468i \(0.320679\pi\)
\(674\) 1.08627e11 + 2.10031e11i 0.526377 + 1.01776i
\(675\) 0 0
\(676\) 3.42117e10 4.83105e10i 0.163828 0.231342i
\(677\) 8.12354e10 0.386715 0.193357 0.981128i \(-0.438062\pi\)
0.193357 + 0.981128i \(0.438062\pi\)
\(678\) 3.66862e11 1.89738e11i 1.73614 0.897916i
\(679\) 2.78737e11i 1.31134i
\(680\) 0 0
\(681\) 1.02598e10 0.0477037
\(682\) −1.39241e11 2.69225e11i −0.643622 1.24445i
\(683\) 2.91761e11i 1.34074i −0.742028 0.670369i \(-0.766136\pi\)
0.742028 0.670369i \(-0.233864\pi\)
\(684\) −5.93233e10 4.20105e10i −0.271020 0.191926i
\(685\) 0 0
\(686\) 5.06688e10 2.62055e10i 0.228794 0.118330i
\(687\) 5.70507e10i 0.256115i
\(688\) −1.76943e11 + 6.22789e10i −0.789732 + 0.277963i
\(689\) 1.33057e11 0.590421
\(690\) 0 0
\(691\) 1.35594e11i 0.594743i 0.954762 + 0.297371i \(0.0961100\pi\)
−0.954762 + 0.297371i \(0.903890\pi\)
\(692\) 6.97845e10 9.85430e10i 0.304323 0.429736i
\(693\) −3.15323e11 −1.36717
\(694\) −3.83574e11 + 1.98381e11i −1.65353 + 0.855191i
\(695\) 0 0
\(696\) 8.28247e10 5.92552e11i 0.352958 2.52517i
\(697\) 2.15577e11 0.913420
\(698\) 1.48972e11 + 2.88040e11i 0.627601 + 1.21348i
\(699\) 1.32664e11i 0.555707i
\(700\) 0 0
\(701\) 1.48441e11 0.614725 0.307363 0.951592i \(-0.400554\pi\)
0.307363 + 0.951592i \(0.400554\pi\)
\(702\) 3.72641e10 1.92727e10i 0.153441 0.0793587i
\(703\) 1.51285e11i 0.619404i
\(704\) 7.34650e10 2.57661e11i 0.299082 1.04896i
\(705\) 0 0
\(706\) −6.92204e10 1.33839e11i −0.278622 0.538720i
\(707\) 4.12314e10i 0.165025i
\(708\) −1.09022e11 + 1.53950e11i −0.433891 + 0.612700i
\(709\) 4.79726e11 1.89849 0.949245 0.314536i \(-0.101849\pi\)
0.949245 + 0.314536i \(0.101849\pi\)
\(710\) 0 0
\(711\) 2.97493e11i 1.16412i
\(712\) −1.55497e11 2.17347e10i −0.605064 0.0845735i
\(713\) 3.21318e11 1.24330
\(714\) −1.25611e11 2.42871e11i −0.483321 0.934508i
\(715\) 0 0
\(716\) −1.73563e11 1.22911e11i −0.660399 0.467669i
\(717\) 2.33659e11 0.884110
\(718\) 4.69512e10 2.42828e10i 0.176664 0.0913695i
\(719\) 4.02314e11i 1.50539i 0.658368 + 0.752696i \(0.271247\pi\)
−0.658368 + 0.752696i \(0.728753\pi\)
\(720\) 0 0
\(721\) 2.43801e11 0.902184
\(722\) 1.05776e11 + 2.04519e11i 0.389257 + 0.752635i
\(723\) 7.55163e10i 0.276368i
\(724\) −9.16917e10 + 1.29478e11i −0.333715 + 0.471241i
\(725\) 0 0
\(726\) −6.36887e10 + 3.29393e10i −0.229253 + 0.118568i
\(727\) 3.49293e11i 1.25041i 0.780461 + 0.625204i \(0.214984\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(728\) 4.85366e10 3.47245e11i 0.172800 1.23626i
\(729\) 1.92272e11 0.680777
\(730\) 0 0
\(731\) 1.25397e11i 0.439155i
\(732\) −5.76684e10 4.08386e10i −0.200860 0.142242i
\(733\) 1.75651e11 0.608464 0.304232 0.952598i \(-0.401600\pi\)
0.304232 + 0.952598i \(0.401600\pi\)
\(734\) 1.62769e11 8.41829e10i 0.560774 0.290028i
\(735\) 0 0
\(736\) 2.06841e11 + 1.94657e11i 0.704898 + 0.663373i
\(737\) 6.17583e10 0.209327
\(738\) 2.01695e11 + 3.89981e11i 0.679939 + 1.31467i
\(739\) 1.85701e11i 0.622640i 0.950305 + 0.311320i \(0.100771\pi\)
−0.950305 + 0.311320i \(0.899229\pi\)
\(740\) 0 0
\(741\) −1.35624e11 −0.449844
\(742\) −2.76941e11 + 1.43232e11i −0.913632 + 0.472523i
\(743\) 2.85901e11i 0.938126i 0.883165 + 0.469063i \(0.155408\pi\)
−0.883165 + 0.469063i \(0.844592\pi\)
\(744\) 5.30141e11 + 7.41010e10i 1.73021 + 0.241842i
\(745\) 0 0
\(746\) −1.66445e11 3.21824e11i −0.537422 1.03911i
\(747\) 3.47295e10i 0.111536i
\(748\) −1.46168e11 1.03511e11i −0.466924 0.330658i
\(749\) −2.72524e11 −0.865919
\(750\) 0 0
\(751\) 6.18679e11i 1.94494i 0.233031 + 0.972469i \(0.425136\pi\)
−0.233031 + 0.972469i \(0.574864\pi\)
\(752\) −7.84881e8 + 2.76256e8i −0.00245433 + 0.000863854i
\(753\) 4.89399e11 1.52224
\(754\) −2.35609e11 4.55554e11i −0.728964 1.40946i
\(755\) 0 0
\(756\) −5.68138e10 + 8.02271e10i −0.173927 + 0.245603i
\(757\) −9.34034e10 −0.284433 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(758\) 7.98360e10 4.12905e10i 0.241836 0.125076i
\(759\) 4.76579e11i 1.43604i
\(760\) 0 0
\(761\) −3.21388e11 −0.958276 −0.479138 0.877740i \(-0.659051\pi\)
−0.479138 + 0.877740i \(0.659051\pi\)
\(762\) −2.38354e11 4.60861e11i −0.706971 1.36694i
\(763\) 1.52067e10i 0.0448681i
\(764\) −8.85859e9 6.27332e9i −0.0260011 0.0184130i
\(765\) 0 0
\(766\) 5.83443e10 3.01752e10i 0.169466 0.0876467i
\(767\) 1.61706e11i 0.467245i
\(768\) 2.96375e11 + 3.68863e11i 0.851916 + 1.06028i
\(769\) 2.44957e10 0.0700461 0.0350231 0.999387i \(-0.488850\pi\)
0.0350231 + 0.999387i \(0.488850\pi\)
\(770\) 0 0
\(771\) 1.88591e11i 0.533709i
\(772\) 6.23087e10 8.79865e10i 0.175420 0.247712i
\(773\) −1.61194e11 −0.451472 −0.225736 0.974189i \(-0.572479\pi\)
−0.225736 + 0.974189i \(0.572479\pi\)
\(774\) −2.26845e11 + 1.17322e11i −0.632070 + 0.326902i
\(775\) 0 0
\(776\) 3.19348e11 + 4.46372e10i 0.880678 + 0.123098i
\(777\) −1.15896e12 −3.17969
\(778\) −1.01185e10 1.95643e10i −0.0276184 0.0534006i
\(779\) 2.50558e11i 0.680392i
\(780\) 0 0
\(781\) −5.13751e11 −1.38086
\(782\) 1.68651e11 8.72252e10i 0.450986 0.233246i
\(783\) 1.43799e11i 0.382569i
\(784\) 1.47342e11 + 4.18620e11i 0.389999 + 1.10804i
\(785\) 0 0
\(786\) 2.78010e11 + 5.37538e11i 0.728401 + 1.40838i
\(787\) 4.76190e11i 1.24131i 0.784083 + 0.620657i \(0.213134\pi\)
−0.784083 + 0.620657i \(0.786866\pi\)
\(788\) −2.86938e11 + 4.05187e11i −0.744189 + 1.05087i
\(789\) 2.76084e11 0.712416
\(790\) 0 0
\(791\) 8.29617e11i 2.11920i
\(792\) 5.04962e10 3.61265e11i 0.128339 0.918174i
\(793\) −6.05735e10 −0.153176
\(794\) 2.23600e11 + 4.32334e11i 0.562586 + 1.08777i
\(795\) 0 0
\(796\) 4.41352e10 + 3.12549e10i 0.109934 + 0.0778512i
\(797\) 1.59422e11 0.395107 0.197553 0.980292i \(-0.436700\pi\)
0.197553 + 0.980292i \(0.436700\pi\)
\(798\) 2.82282e11 1.45994e11i 0.696100 0.360018i
\(799\) 5.56235e8i 0.00136481i
\(800\) 0 0
\(801\) −2.13762e11 −0.519278
\(802\) −1.43677e11 2.77801e11i −0.347287 0.671486i
\(803\) 3.05603e11i 0.735013i
\(804\) −6.30335e10 + 8.90100e10i −0.150851 + 0.213017i
\(805\) 0 0
\(806\) 4.07572e11 2.10793e11i 0.965748 0.499478i
\(807\) 3.99751e10i 0.0942530i
\(808\) 4.72386e10 + 6.60283e9i 0.110829 + 0.0154912i
\(809\) −4.86253e11 −1.13519 −0.567594 0.823308i \(-0.692126\pi\)
−0.567594 + 0.823308i \(0.692126\pi\)
\(810\) 0 0
\(811\) 3.39760e11i 0.785396i −0.919667 0.392698i \(-0.871542\pi\)
0.919667 0.392698i \(-0.128458\pi\)
\(812\) 9.80776e11 + 6.94548e11i 2.25603 + 1.59764i
\(813\) −1.16408e12 −2.66454
\(814\) −6.74315e11 + 3.48751e11i −1.53591 + 0.794360i
\(815\) 0 0
\(816\) 2.98372e11 1.05019e11i 0.672973 0.236867i
\(817\) −1.45745e11 −0.327120
\(818\) −3.21553e11 6.21729e11i −0.718191 1.38863i
\(819\) 4.77358e11i 1.06098i
\(820\) 0 0
\(821\) 6.74268e11 1.48409 0.742044 0.670351i \(-0.233856\pi\)
0.742044 + 0.670351i \(0.233856\pi\)
\(822\) −3.18685e11 + 1.64822e11i −0.698031 + 0.361016i
\(823\) 3.11660e11i 0.679332i −0.940546 0.339666i \(-0.889686\pi\)
0.940546 0.339666i \(-0.110314\pi\)
\(824\) −3.90426e10 + 2.79322e11i −0.0846896 + 0.605894i
\(825\) 0 0
\(826\) −1.74071e11 3.36569e11i −0.373943 0.723026i
\(827\) 3.10210e11i 0.663183i −0.943423 0.331592i \(-0.892414\pi\)
0.943423 0.331592i \(-0.107586\pi\)
\(828\) 3.15583e11 + 2.23484e11i 0.671416 + 0.475472i
\(829\) −3.09076e11 −0.654406 −0.327203 0.944954i \(-0.606106\pi\)
−0.327203 + 0.944954i \(0.606106\pi\)
\(830\) 0 0
\(831\) 1.50082e11i 0.314720i
\(832\) 3.90065e11 + 1.11216e11i 0.814035 + 0.232100i
\(833\) 2.96670e11 0.616160
\(834\) −2.03501e11 3.93473e11i −0.420633 0.813301i
\(835\) 0 0
\(836\) 1.20307e11 1.69887e11i 0.246302 0.347804i
\(837\) −1.28653e11 −0.262132
\(838\) −2.74450e11 + 1.41943e11i −0.556528 + 0.287832i
\(839\) 5.22492e11i 1.05446i −0.849722 0.527232i \(-0.823230\pi\)
0.849722 0.527232i \(-0.176770\pi\)
\(840\) 0 0
\(841\) 1.25770e12 2.51416
\(842\) −2.68684e11 5.19504e11i −0.534556 1.03357i
\(843\) 3.32163e11i 0.657721i
\(844\) 4.20775e11 + 2.97977e11i 0.829240 + 0.587236i
\(845\) 0 0
\(846\) −1.00624e9 + 5.20417e8i −0.00196435 + 0.00101594i
\(847\) 1.44025e11i 0.279836i
\(848\) −1.19750e11 3.40227e11i −0.231576 0.657939i
\(849\) −1.52278e11 −0.293094
\(850\) 0 0
\(851\) 8.04790e11i 1.53449i
\(852\) 5.24359e11 7.40450e11i 0.995108 1.40520i
\(853\) 5.25270e11 0.992171 0.496086 0.868274i \(-0.334770\pi\)
0.496086 + 0.868274i \(0.334770\pi\)
\(854\) 1.26076e11 6.52053e10i 0.237028 0.122589i
\(855\) 0 0
\(856\) 4.36422e10 3.12230e11i 0.0812853 0.581539i
\(857\) −3.18270e11 −0.590028 −0.295014 0.955493i \(-0.595324\pi\)
−0.295014 + 0.955493i \(0.595324\pi\)
\(858\) −3.12648e11 6.04510e11i −0.576907 1.11546i
\(859\) 8.61467e11i 1.58222i −0.611676 0.791108i \(-0.709504\pi\)
0.611676 0.791108i \(-0.290496\pi\)
\(860\) 0 0
\(861\) −1.91948e12 −3.49277
\(862\) 5.66579e11 2.93031e11i 1.02620 0.530742i
\(863\) 1.40931e11i 0.254075i −0.991898 0.127038i \(-0.959453\pi\)
0.991898 0.127038i \(-0.0405469\pi\)
\(864\) −8.28176e10 7.79390e10i −0.148617 0.139862i
\(865\) 0 0
\(866\) −2.36357e11 4.57000e11i −0.420239 0.812539i
\(867\) 5.57071e11i 0.985903i
\(868\) −6.21394e11 + 8.77474e11i −1.09468 + 1.54581i
\(869\) −8.51945e11 −1.49394
\(870\) 0 0
\(871\) 9.34940e10i 0.162447i
\(872\) 1.74223e10 + 2.43522e9i 0.0301328 + 0.00421185i
\(873\) 4.39008e11 0.755814
\(874\) 1.01379e11 + 1.96018e11i 0.173741 + 0.335932i
\(875\) 0 0
\(876\) −4.40454e11 3.11913e11i −0.747970 0.529684i
\(877\) 4.00362e11 0.676790 0.338395 0.941004i \(-0.390116\pi\)
0.338395 + 0.941004i \(0.390116\pi\)
\(878\) 3.86582e11 1.99937e11i 0.650525 0.336447i
\(879\) 6.46426e11i 1.08284i
\(880\) 0 0
\(881\) 4.94890e11 0.821496 0.410748 0.911749i \(-0.365268\pi\)
0.410748 + 0.911749i \(0.365268\pi\)
\(882\) 2.77567e11 + 5.36680e11i 0.458662 + 0.886831i
\(883\) 7.88039e11i 1.29630i 0.761513 + 0.648149i \(0.224457\pi\)
−0.761513 + 0.648149i \(0.775543\pi\)
\(884\) 1.56701e11 2.21279e11i 0.256604 0.362353i
\(885\) 0 0
\(886\) 1.87919e11 9.71903e10i 0.304955 0.157720i
\(887\) 2.78785e10i 0.0450375i −0.999746 0.0225188i \(-0.992831\pi\)
0.999746 0.0225188i \(-0.00716855\pi\)
\(888\) 1.85597e11 1.32782e12i 0.298483 2.13544i
\(889\) 1.04218e12 1.66854
\(890\) 0 0
\(891\) 7.75120e11i 1.22987i
\(892\) 1.89461e11 + 1.34169e11i 0.299268 + 0.211930i
\(893\) −6.46496e8 −0.00101662
\(894\) 1.19782e12 6.19501e11i 1.87517 0.969822i
\(895\) 0 0
\(896\) −9.31587e11 + 1.88410e11i −1.44541 + 0.292328i
\(897\) 7.21478e11 1.11443
\(898\) 2.07980e11 + 4.02133e11i 0.319828 + 0.618392i
\(899\) 1.57279e12i 2.40786i
\(900\) 0 0
\(901\) −2.41114e11 −0.365868
\(902\) −1.11680e12 + 5.77603e11i −1.68714 + 0.872576i
\(903\) 1.11653e12i 1.67926i
\(904\) −9.50489e11 1.32856e11i −1.42322 0.198933i
\(905\) 0 0
\(906\) 4.15080e11 + 8.02564e11i 0.616054 + 1.19115i
\(907\) 5.94476e11i 0.878426i −0.898383 0.439213i \(-0.855257\pi\)
0.898383 0.439213i \(-0.144743\pi\)
\(908\) −1.94560e10 1.37780e10i −0.0286226 0.0202695i
\(909\) 6.49390e10 0.0951152
\(910\) 0 0
\(911\) 5.11180e11i 0.742165i −0.928600 0.371082i \(-0.878987\pi\)
0.928600 0.371082i \(-0.121013\pi\)
\(912\) 1.22060e11 + 3.46789e11i 0.176439 + 0.501287i
\(913\) 9.94564e10 0.143136
\(914\) −5.80438e11 1.12229e12i −0.831708 1.60812i
\(915\) 0 0
\(916\) 7.66137e10 1.08187e11i 0.108824 0.153671i
\(917\) −1.21558e12 −1.71912
\(918\) −6.75267e10 + 3.49243e10i −0.0950834 + 0.0491764i
\(919\) 7.89745e11i 1.10720i −0.832784 0.553598i \(-0.813254\pi\)
0.832784 0.553598i \(-0.186746\pi\)
\(920\) 0 0
\(921\) 6.38313e11 0.887146
\(922\) 1.93835e11 + 3.74783e11i 0.268230 + 0.518628i
\(923\) 7.77751e11i 1.07160i
\(924\) 1.30147e12 + 9.21650e11i 1.78544 + 1.26438i
\(925\) 0 0
\(926\) −3.89801e11 + 2.01602e11i −0.530151 + 0.274190i
\(927\) 3.83985e11i 0.519990i
\(928\) −9.52804e11 + 1.01245e12i −1.28473 + 1.36515i
\(929\) 1.28241e12 1.72172 0.860862 0.508839i \(-0.169925\pi\)
0.860862 + 0.508839i \(0.169925\pi\)
\(930\) 0 0
\(931\) 3.44811e11i 0.458968i
\(932\) −1.78156e11 + 2.51575e11i −0.236122 + 0.333429i
\(933\) −9.22414e11 −1.21730
\(934\) −1.17108e12 + 6.05675e11i −1.53886 + 0.795888i
\(935\) 0 0
\(936\) 5.46907e11 + 7.64446e10i 0.712542 + 0.0995963i
\(937\) 4.16365e11 0.540152 0.270076 0.962839i \(-0.412951\pi\)
0.270076 + 0.962839i \(0.412951\pi\)
\(938\) −1.00643e11 1.94595e11i −0.130009 0.251374i
\(939\) 1.35258e12i 1.73980i
\(940\) 0 0
\(941\) −1.33006e12 −1.69634 −0.848171 0.529723i \(-0.822296\pi\)
−0.848171 + 0.529723i \(0.822296\pi\)
\(942\) −1.83144e12 + 9.47207e11i −2.32589 + 1.20293i
\(943\) 1.33290e12i 1.68558i
\(944\) 4.13482e11 1.45534e11i 0.520677 0.183264i
\(945\) 0 0
\(946\) −3.35981e11 6.49625e11i −0.419518 0.811145i
\(947\) 1.36285e11i 0.169453i 0.996404 + 0.0847265i \(0.0270017\pi\)
−0.996404 + 0.0847265i \(0.972998\pi\)
\(948\) 8.69536e11 1.22788e12i 1.07660 1.52027i
\(949\) −4.62642e11 −0.570401
\(950\) 0 0
\(951\) 1.52524e12i 1.86473i
\(952\) −8.79536e10 + 6.29246e11i −0.107079 + 0.766078i
\(953\) −1.22326e12 −1.48302 −0.741509 0.670943i \(-0.765889\pi\)
−0.741509 + 0.670943i \(0.765889\pi\)
\(954\) −2.25588e11 4.36179e11i −0.272347 0.526588i
\(955\) 0 0
\(956\) −4.43093e11 3.13782e11i −0.530473 0.375661i
\(957\) 2.33275e12 2.78113
\(958\) 1.82112e11 9.41868e10i 0.216210 0.111822i
\(959\) 7.20671e11i 0.852045i
\(960\) 0 0
\(961\) −5.54240e11 −0.649837
\(962\) −5.27963e11 1.02083e12i −0.616457 1.19193i
\(963\) 4.29222e11i 0.499088i
\(964\) 1.01411e11 1.43203e11i 0.117430 0.165823i
\(965\) 0 0
\(966\) −1.50166e12 + 7.76646e11i −1.72450 + 0.891897i
\(967\) 7.99217e10i 0.0914027i −0.998955 0.0457014i \(-0.985448\pi\)
0.998955 0.0457014i \(-0.0145523\pi\)
\(968\) 1.65009e11 + 2.30643e10i 0.187934 + 0.0262687i
\(969\) 2.45765e11 0.278756
\(970\) 0 0
\(971\) 3.43166e11i 0.386036i 0.981195 + 0.193018i \(0.0618276\pi\)
−0.981195 + 0.193018i \(0.938172\pi\)
\(972\) −9.68490e11 6.85848e11i −1.08500 0.768356i
\(973\) 8.89796e11 0.992748
\(974\) −3.22874e11 + 1.66988e11i −0.358754 + 0.185545i
\(975\) 0 0
\(976\) 5.45156e10 + 1.54886e11i 0.0600789 + 0.170692i
\(977\) 2.96831e11 0.325785 0.162893 0.986644i \(-0.447918\pi\)
0.162893 + 0.986644i \(0.447918\pi\)
\(978\) 7.12011e11 + 1.37669e12i 0.778272 + 1.50480i
\(979\) 6.12158e11i 0.666397i
\(980\) 0 0
\(981\) 2.39505e10 0.0258605
\(982\) 1.23701e12 6.39771e11i 1.33023 0.687984i
\(983\) 9.12247e11i 0.977009i 0.872561 + 0.488504i \(0.162457\pi\)
−0.872561 + 0.488504i \(0.837543\pi\)
\(984\) 3.07387e11 2.19914e12i 0.327873 2.34570i
\(985\) 0 0
\(986\) 4.26949e11 + 8.25513e11i 0.451719 + 0.873407i
\(987\) 4.95267e9i 0.00521880i
\(988\) 2.57186e11 + 1.82130e11i 0.269911 + 0.191140i
\(989\) 7.75323e11 0.810396
\(990\) 0 0
\(991\) 9.63646e11i 0.999132i −0.866276 0.499566i \(-0.833493\pi\)
0.866276 0.499566i \(-0.166507\pi\)
\(992\) −9.05808e11 8.52449e11i −0.935383 0.880281i
\(993\) 8.50231e11 0.874460
\(994\) 8.37223e11 + 1.61878e12i 0.857621 + 1.65822i
\(995\) 0 0
\(996\) −1.01510e11 + 1.43343e11i −0.103150 + 0.145659i
\(997\) 1.13678e12 1.15052 0.575261 0.817970i \(-0.304900\pi\)
0.575261 + 0.817970i \(0.304900\pi\)
\(998\) 1.91819e11 9.92073e10i 0.193361 0.100005i
\(999\) 3.22232e11i 0.323524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.b.d.51.12 16
4.3 odd 2 inner 100.9.b.d.51.11 16
5.2 odd 4 100.9.d.c.99.6 32
5.3 odd 4 100.9.d.c.99.27 32
5.4 even 2 20.9.b.a.11.5 16
15.14 odd 2 180.9.c.a.91.12 16
20.3 even 4 100.9.d.c.99.5 32
20.7 even 4 100.9.d.c.99.28 32
20.19 odd 2 20.9.b.a.11.6 yes 16
40.19 odd 2 320.9.b.d.191.14 16
40.29 even 2 320.9.b.d.191.3 16
60.59 even 2 180.9.c.a.91.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.b.a.11.5 16 5.4 even 2
20.9.b.a.11.6 yes 16 20.19 odd 2
100.9.b.d.51.11 16 4.3 odd 2 inner
100.9.b.d.51.12 16 1.1 even 1 trivial
100.9.d.c.99.5 32 20.3 even 4
100.9.d.c.99.6 32 5.2 odd 4
100.9.d.c.99.27 32 5.3 odd 4
100.9.d.c.99.28 32 20.7 even 4
180.9.c.a.91.11 16 60.59 even 2
180.9.c.a.91.12 16 15.14 odd 2
320.9.b.d.191.3 16 40.29 even 2
320.9.b.d.191.14 16 40.19 odd 2